文档库 最新最全的文档下载
当前位置:文档库 › 高中物理 第10章 热力学定律限时检测 新人教版选修3-3

高中物理 第10章 热力学定律限时检测 新人教版选修3-3

高中物理 第10章 热力学定律限时检测 新人教版选修3-3
高中物理 第10章 热力学定律限时检测 新人教版选修3-3

高中物理第10章热力学定律限时检测

本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分,时间90分钟。

第Ⅰ卷(选择题共40分)

一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~10小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)

1.(上海理工大学附中2014~2015学年高二下学期期中)下列说法中正确的是( ) A.做功和热传递在改变内能的效果上是等效的,因此做功与热传递是没有区别的

B.虽然做功和热传递在改变内能的效果上是等效的,但我们还是可以通过分析改变前后的物体的内能,来区别是做功还是热传递改变内能的

C.做功和热传递在改变内能的效果上是等效的,表明要使物体的内能发生变化,既可以通过做功来实现,也可以通过热传递来实现

D.做功和热传递在改变内能的效果上是等效的,说明人在出汗散热时,还可以通过对外做功来代替出汗改变内能

答案:C

解析:做功和热传递在改变内能的效果上是等效的,但做功是能量的转化,热传递是能量的转移,故A错误;虽然做功和热传递在改变内能的效果上是等效的,但不可以通过分析改变前后的物体的内能,来区别是做功还是热传递改变内能的,故B错误;做功和热传递在改变内能的效果上是等效的,表明要使物体的内能发生变化,既可以通过做功来实现,也可以通过热传递来实现,故C正确。做功和热传递在改变内能的效果上是等效的,但是在人出汗散热时,不可以通过对外做功来代替出汗改变内能,故D错误。

2.如图是压力保温瓶的结构简图,活塞a与液面之间密闭了一定质量的气体。假设封闭气体为理想气体且与外界没有热交换,则向下压a的过程中,瓶内气体( )

A.内能增大B.体积增大

C.压强不变D.温度不变

答案:A

解析:向下压a的过程中,外界对气体做功,瓶内气体内能增大,选项A正确。向下压a的过程中,瓶内气体体积减小,压强增大,温度升高,选项B、C、D错误。

3.热力学第二定律常见的表述方式有两种,其一是:不可能使热量由低

温物体传递到高温物体而不引起其他变化;其二是:不可能从单一热源吸收

热量并把它全部用来做功,而不引起其他变化。第一种表述方式可以用如右

图示意图来表示,根据你对第二种表述的理解,如果也用类似的示意图来表

示,你认为下列示意图中正确的是( )

答案:B

解析:第二种表述的意思是:热机吸收热量,对外做功,同时把热量传给低温物体。

4.如图所示,有一导热性良好的气缸放在水平面上,活塞与气缸壁间的摩擦不计,气缸内用一定质量的活塞封闭了一定质量的气体,忽略气体分子间的相互作用(即分子势能视为零),忽略环境温度的变化,现缓慢推倒气缸,在此过程中( )

A.气体吸收热量,内能不变

B.气缸内分子的平均动能增大

C.单位时间内撞击气缸壁单位面积上的分子数增多

D.气缸内分子撞击气缸壁的平均作用力增大

答案:A

解析:由题图可知,该过程气体对外做功,由于忽略环境温度变化,温度不变,内能不变,由热力学第一定律可知,气体吸收热量。内能不变。A正确。

5.下面提供了科技发展的四则信息。

①低温技术已有重大突破,1933年低温已达0.25K,1957年达到了2×10-5K,1995年通过一系列巧妙的方法已达到1×10-8K。随着低温技术的出现和发展,科学家一定能把热力学温度降到绝对零度以下;

②随着火箭技术的发展,人类一定能够在地球上任意位置的上空发射一颗同步卫星;

③一个国际科研小组正在研制某种使光速大大降低的介质,这些科学家希望在不久的将来能使光的速度降到每小时40m左右,慢到几乎与乌龟爬行的速度相仿;

④由于太阳的照射,海洋表面的温度可达30℃左右,而海洋深处的温度要低得多,在水深600~1000m的地方,水温约4℃,因此人们正在研制一种抗腐蚀的热交换器,利用海水温差发电,并取得了成功。

请辨别、判断以上信息中正确的是( )

A.①②B.②④

C.①③D.③④

答案:D

解析:四则信息均为与当今科技发展前沿相关的信息,但①项违背了热力学第二定律,即绝对零度不可达到;②项中同步卫星只能定点在赤道正上方;③项中光速与介质有关,光在不同介质中传播速度不相同;④项中叙述符合能量守恒定律而不违背其他物理原理。

6.如图,一绝热容器被隔板K隔开成a,b两部分。已知a内有一定量的稀薄气体,b 内为真空。抽开隔板K后,a内气体进入b,最终达到平衡状态。在此过程中( )

A.气体对外界做功,内能减少

B.气体不做功,内能不变

C.气体压强变小,温度降低

D.气体压强不变,温度不变

答案:B

解析:因b内为真空,抽开隔板K后,a内气体对外界不做功,由ΔU=W+Q知内能不变,故选项A错误。选项B正确。稀薄气体可看作理想气体,其内能只与温度有关,气体的内能不变,温度也不变,由p1V1=p1V2和V1p2,即气体压强变小,故选项C、D错误。

7.据××报报道:天津一小男孩睡觉时,将压在臀部下面的打火机焐炸,丁烷气体外泄,致使屁股局部速冻成伤。请你运用学过的热学知识判断下列说法正确的是( ) A.焐炸是因为打火机内丁烷液体变热汽化,体积增加,压强增大而爆炸

B.焐炸的过程符合热力学第一定律

C.××报关于局部速冻成伤的报道不符合科学道理

D.爆炸后,丁烷外泄并迅速汽化吸热,由于吸热速度快而使屁股局部速冻成伤

答案:ABD

解析:丁烷液体变热汽化,体积增加,压强增大而爆炸,由于吸热速度快而使屁股局部速冻成伤。

8.导热气缸开口向下,内有理想气体,缸内活塞可自由滑动且不漏气,

活塞下挂一个沙桶,沙桶装满沙子时,活塞恰好静止,现在把沙桶底部钻一

个小洞,细沙慢慢漏出,并缓慢降低气缸外部环境温度,则( )

A.气体压强增大,内能可能不变

B.外界对气体做功,气体温度降低

C.气体体积减小,压强增大,内能一定减小

D.外界对气体做功,气体内能一定增加

答案:BC

解析:由平衡条件知活塞受到的沙桶拉力减小,其他力如活塞重力、大气压力不变,则气体压强增大、体积减小,外界对气体做功,由于环境温度缓慢降低,则气体内能减少,由ΔU=W+Q知Q<0,即向外放热。

9.如图所示,一定质量的理想气体,从状态A经绝热过程A→B、等容过程B→C、等温过程C→A又回到了状态A,则( )

A.A→B过程气体降温

B.B→C过程气体内能增加,可能外界对气体做了功

C.C→A过程气体放热

D.全部过程气体做功为零

答案:AC

解析:A→B过程气体绝热膨胀,气体对外界做功,其对应的内能必定减小,即气体温度降低,选项A正确;B→C过程气体等容升压,由p/T=C(常量)可知,气体温度升高,其对应内能增加,因做功W=0,选项B错;C→A过程气体等温压缩,故内能变化为零,但外界对气体做功,因此该过程中气体放热,选项C正确;A→B过程气体对外做功,其数值等于AB线与横轴包围的面积。B→C过程气体不做功。C→A过程外界对气体做功,其数值等于CA线与横轴包围的面积,显然全过程对气体做的净功为ABC封闭曲线包围的面积,选项D 不正确。

10.(济南市2014~2015学年部分高中高二联考)下列四幅图的有关说法中正确的是( )

A.分子间距离为r0时,分子间不存在引力和斥力

B.水面上的单分子油膜,在测量油膜直径d大小时可把分子当做球形处理

C.食盐晶体中的钠离子、氯离子按一定规律分布,具有空间上的周期性

D.猛推木质推杆,密闭的气体温度升高,压强变大,气体对外界做正功

答案:BC

解析:分子间同时存在引力和斥力,分子间距离为r0时,分子力的合力为零,故A错误;从B图可以看出,水面上的单分子油膜,在测量油膜直径d大小时可把分子当做球形处理,故B正确;从C图可以看出,食盐晶体中的钠离子、氯离子按一定规律分布,具有空间上的周期性,故C正确;猛推木质推杆,密闭的气体温度升高,压强变大,外界对气体做正功,故D错误。

第Ⅱ卷(非选择题共60分)

二、填空题(共3小题,共18分。把答案直接填在横线上)

11.(5分)某同学做了如图所示的探究性实验,U形管左管口套有一小气球,管内装有水银,当在右管内再注入一些水银时,气球将鼓得更大。假设封闭气体与外界绝热,则在注入水银时,封闭气体的体积________________,压强________________,温度________________,内能________________。(均选填“增大”“减小”“升高”“降低”或“不变”)

答案:减小增大升高增大

解析:注入水银,封闭气体的压强变大,水银对气体做功,气体体积减小,由于封闭气体与外界绝热,所以温度升高,内能增大。

12.(6分)根据制冷机的工作原理,试分析每个工作过程中工作物质的内能改变情况和引起改变的物理过程:

(1)工作物质的内能________________,是________________的过程;

(2)工作物质的内能________________,是________________的过程;

(3)工作物质的内能________________,是________________的过程。

答案:(1)增加做功(2)减小放热(3)增加吸热

解析:在(1)中,压缩气体,对气体做功,内能增加;在②中,气体液化要放出热量,内能减小;在(3)中,是工作物质的汽化过程,要吸收热量,内能增加。

13.(7分)开发利用太阳能,将会满足人类长期对大量能源的需求。太阳能的光热转换是目前技术最为成熟、应用最广泛的形式。太阳能热水器的构造示意图如图所示,下方是象日光灯管似的集热管,由导热性能良好的材料制成,在黑色管的下方是一块光亮的铝合金反光板,做成凹凸一定的曲面。

(1)说明太阳能热水器哪些结构与其功能相适应,水箱为何安装在顶部而非下部?

答:________________________________________________________________________ ________________________________________________________________________

(2)下图中A是集热器,B是储水容器,在阳光直射下水将沿________________时针方向流动,这是因为______________________________。C是辅助加热器,其作用是______________________________。请在下图中适当位置安上进水阀门和出水阀门,并说明选择位置的理由。

答案:(1)日光灯管似的集热管面积较大,便于吸收较多的太阳能;外有透明玻璃管,内有黑色管子,使阳光能直射入玻璃管而不易被反射;在黑色管和外面透明管间有空隙,并

抽成真空,减少两管间因空气对流引起的热损失,减少热传导;集热管的下方是一块光亮的铝合金板子,做成凹凸一定的曲面,使周围及穿过管隙的阳光尽量聚焦在水管内,水箱安装在顶部而非下部,便于水的对流。

(2)顺;集热器中的水被太阳光晒热后密度变小,沿管向右上方运动;在阴天用电加热的方式使水温升高;在封闭的环形管道的左下方安上进水阀门,在贮水容器下方竖直管道上安出水阀门,可使热水流出,冷水得以补充。

三、论述·计算题(共4小题,42分。解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)

14.(10分)如图所示为焦耳测定热功当量的实验装置,若重物P 、P ′的质量共为m =26.320kg ,每次下落的高度均为h =160.5cm ,共下落n =20次,量热器及其中的水和其他物体的平均热容量为C =6316cal/℃,实验中测得温度升高Δt =0.31℃,试根据这些数据算出热功当量的值。(热功当量J =W Q )

答案:4.23J/cal

解析:重物下落n =20次共做功

W =nmgh

量热器中的水及容器等温度升高Δt 需吸热Q =C Δt

由热功当量的定义得

J =W Q =nmgh C Δt =20×26.320×9.8×160.5×10-2J 6316×0.31cal

≈4.23J/cal。 15.(10分)如图所示,为一气缸内封闭的一定质量的气体的p -V

图线,当该系统从状态a 沿过程a →c →b 到达状态b 时,有335J 的热

量传入系统,系统对外界做功126J ,求:

(1)若沿a →d →b 过程,系统对外做功42J ,则有多少热量传入系

统?

(2)若系统由状态b 沿曲线过程返回状态a 时,外界对系统做功84J ,问系统是吸热还是放热?热量传递是多少?

答案:(1)251J (2)放热 293J

解析:(1)沿a →c →b 过程

ΔU =W +Q =(-126+335)J =209J 。

沿a →d →b 过程,

ΔU =W ′+Q ′,Q ′=ΔU -W ′=[209-(-42)]J =251J ,即有251J 的热量传入系统。

(2)由b →a ,ΔU ′=-209J 。

ΔU ′=W ″+Q ″=84J +Q ″,

Q ″=(-209-84)J =-293J 。

负号说明系统放出热量。

16.(10分)如图所示,一导热汽缸放在水平地面上,其内封闭一定质量的某种理想气体,活塞通过定滑轮与一重物连接,并保持平衡,已知汽缸高度为h ,开始时活塞在汽缸中央,初始温度为t 摄氏度,活塞面积为S ,大气压强为p 0。物体重力为G ,活塞质量及一切摩擦不计,缓慢升高环境温度,使活塞上升Δx ,封闭气体吸收了Q 的热量。(汽缸始终未离开地面)求:

(1)环境温度升高了多少度?

(2)气体的内能如何变化?变化了多少?

答案:(1)2Δx h

(273+t )K (2)内能增加;ΔU =Q -(p 0S -G )Δx 解析:(1)活塞缓慢移动,任意时刻都处于平衡状态,故气体做等压变化,由盖·吕萨

克定律可知:V T =ΔV ΔT

得ΔT =2Δx h

(273+t )K (2)气体温度升高,内能增加。

设汽缸内压强为p ,由平衡条件得:pS =p 0S -G ,

封闭气体对外做功W =pS Δx =(p 0S -G )Δx ,

由热力学第一定律得:ΔU =Q +(-W )=Q -(p 0S -G )Δx 。

17.(12分)一太阳能空气集热器,底面及侧面为隔热材料,

顶面为透明玻璃板,集热器容积为V 0,开始时内部封闭气体的压

强为p 0。经过太阳曝晒,气体温度由T 0=300K 升至T 1=350K 。

(1)求此时气体的压强。

(2)保持T 1=350K 不变,缓慢抽出部分气体,使气体压强再变回到p 0。求集热器内剩余

气体的质量与原来总质量的比值。判断在抽气过程中剩余气体是吸热还是放热,并简述原因。

答案:(1)76p 0 (3)67

吸热 原因见解析 解析:(1)由题意知,气体体积不变,由查理定律得

p 0T 0=p 1T 1

所以此时气体的压强p 1=T 1T 0p 0=350300p 0=76

p 0 (2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V 2,由玻意耳定律可得p 1V 0=p 0V 2

可得V 2=p 1V 0p 0=76

V 0 所以集热器内剩余气体的质量与原来总质量的比值为

ρV 0ρ·76V 0=67 因为抽气过程中剩余气体温度不变,故内能不变,而剩余气体的体积膨胀对外做功。由热力学第一定律ΔU =W +Q 可知,气体一定从外界吸收热量。

点评:考查气体的实验定律应用及热力学第一定律,求解时应灵活处理变质量气体问题。本题中如果只选集热器内气体,则属于变质量问题,但如果把抽出的气体全部包括,则属于定量气体问题,应用气体实验定律处理会很方便。

大学物理_电磁学公式全集

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面均匀带电球体 均匀带电长直圆柱面均匀带电长直圆柱体 无限大均匀带电平面

六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零;导体表面附近场强与表面垂直。 (2) 导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。

十二、电容器的电容 平行板电容器圆柱形电容器 球形电容器孤立导体球 十三、电容器的联接 并联电容器串联电容器 十四、电场的能量 电容器的能量电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场

圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强电源电动 势 一段电路的电动势闭合电路的电动势 当时,电动势沿电路(或回路)l的正方向,时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为 若时,电动势沿回路l的正方向,时,沿反方向。对线图,为全磁通。

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度 越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子 间斥力随分子间距离加大而减小得更快些,如图1中两条虚线 所示。分子间同时存在引力和斥力,两种力的合力又叫做分子 力。在图1图象中实线曲线表示引力和斥力的合力(即分子力) 随距离变化的情况。当两个分子间距在图象横坐标0r 距离时, 分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为 1010-m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十 分微弱,可以忽略不计了 4、温度

高中物理-热力学第一定律

高中物理-热力学第一定律 如图,一个质量为m 的T 形活塞在气缸内封闭一定量的理想气体,活塞体积可忽略不计,距气缸底部h 0处连接一U 形细管(管内气体的体积可忽略)。初始时,封闭气体温度为T 0,活塞距离气缸底部1.5h 0,两边水银柱存在高度差。已知水银密度为ρ,大气压强为p 0,气缸横截面积为S ,活塞竖直部分高为1.2h 0,重力加速度为g 。 (1)通过制冷装置缓慢降低气体温度,当温度为多少时两边水银面恰好相平? (2)从开始至两水银面恰好相平的过程,若气体放出的热量为Q ,求气体内能的变化。 【参考答案】(1) (2)0.3h 0(p 0S +mg )–Q 【试题解析】(1)初态时,气体压强,体积V 1=1.5h 0S ,温度为T 0 要使两边水银面相平,气缸内气体的压强p 2=p 0,此时活塞下端一定与气缸底接触,V 2=1.2h 0 设此时温度为T ,由理想气体状态方程有 解得 (2)从开始至活塞竖直部分恰与气缸底接触,体积变小,气体压强不变,外界对气体做功,其后体积不变,外界对气体不做功,故外界对气体做的功W =p 1ΔV =()×0.3h 0S 由热力学第一定律有ΔU =W –Q =0.3h 0(p 0S +mg )–Q 【知识补给】 状态变化与内能变化 中学常见的状态变化主要有等温变化、等容变化、等压变化和绝热变化。 000455p ST p S mg +10mg p p S =+11220p V p V T T =000455p ST T p S mg =+0mg p S +

(1)等温变化:理想气体的内能等于分子动能,不变;一般气体的分子间距较大,分子间作用力为引力,体积增大,则分子势能增大,内能增大。 (2)等容变化:理想气体的内能随温度升高而增大;一般气体分子势能不变,温度升高时分子动能增大,内能增大;体积不变则外界对气体不做功,内能变化只与热传递有关。 (3)等压变化:理想气体的内能随温度升高而增大;一般气体温度升高时,分子平均速率增大,压强不变,则分子数密度应减小,即体积增大,分子势能和分子动能都增大,内能增大。(4)绝热变化:与外界无热交换,内能变化只与体积变化,即外界对气体做的功有关;理想气体的体积增大时,内能减小,温度降低,压强减小;一般气体的体积增大时,内能减小,分子势能增大,分子动能减小,温度降低,压强减小。 下列说法正确的是 A.物体的温度升高,物体内所有分子热运动的速率都增大 B.物体的温度升高,物体内分子的平均动能增大 C.物体吸收热量,其内能一定增加 D.物体放出热量,其内能一定减少 如图所示为密闭的气缸,外力推动活塞P压缩气体,对缸内气体做功800 J,同时气体向外界放热200 J,缸内气体的 A.温度升高,内能增加600 J B.温度升高,内能减少200 J C.温度降低,内能增加600 J D.温度降低,内能减少200 J 如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A,其中A→B和C→D为等温过程,B→C为等压过程,D→A为等容过程。

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

热力学第一定律在状态变化过程中的应用

1.3 热力学第一定律在状态变化过程的应用 1.3.1 简单状态变化(物理变化) (1) 凝聚态体系 特点是:△V ≈ 0,体积功W ≈ 0,且Cp ≈ CV 恒压变温有: ? 恒温变压有: (2)气体体系 ①自由膨胀: 特点是 p 外=0,则W = 0 速度快 Q ≈0,则△U = 0 对理想气体:△T = 0,则△H = 0 对非理想气体: △H = △U + △(pV ) = p 2V 2- p 1V 1 ②恒容过程 特点是 △V = 0,则 W = 0 △H = △U + V △p 对理想气体△U = nCV ,m △T , △H = nCp ,m △T ③恒压过程 特点是 p 体= p 外= p ,故 W = - p △V △U = △H - p △V 对理想气体: △U = nCV ,m △T ,△H = nCp ,m △T W = - p △V = nR △T Q H T nC T nC U p V =?=≈=?? ?2 1 21T T m ,T T m ,d d 0d 2 1 T T m ,===?? T nC Q U V p V V P V P PV U H ?≈-=?+?=?1122)(? ==?2 1 T T m ,d T nC Q U V ?==?2 1 T T m ,d T nC Q H p p ?==?2 1 T T m ,d T nC Q U V V

④恒温过程(只讨论理想气体的恒温过程) 特点是 △T = 0,对理想气体有 △U =△H = 0 ▲恒温可逆过程 ▲恒温不可逆过程: 计算要依过程特点而定 ⑤绝热过程 特点是 Q = 0,则△U = W ,△H =△U + △(pV ) 对理想气体: △U = nCV ,m △T ,△H = nCp ,m △T ▲绝热可逆过程 可以导出:理想气体绝热可逆过程方程: γpV =常数 ▲绝热不可逆过程: 绝热可逆过程方程不能用!!! 由热力学第一定律导出结果 1.3.2 2. 相态变化 (1)可逆相变 在正常相变点处进行的相变过程可视为恒温恒压可逆过程,则Qp =△H ,称为相变热,如蒸发热(△vap H ),升华热(△sub H ),熔化热( △fus H )等,或△vap H m , △sub H m ,△fus H m ,等等。 通过相变过程的量热或者热分析获得相变热 W =-p △V △U = Q +W =△trs H -p △V 注意计算过程中的近似处理: ※考虑融化时:△V 1 ≈ 0,则△U 1≈△H 1 ※考虑蒸发时: V 气>> V 液, 则△V = V 气 - V 液≈ V 气 , W =-p △V ≈ -pV 气 = -nRT 1 2 ln d )d (2 12 1 V V nRT V V nRT V p W Q V V V V ==--=-=? ?T nC H m p ?=?,??- =-=?=2 1 2 1 d )(d )(V V V V V V K V p U W T nC U m V ?=?,

(word完整版)高中物理热学试题及答案

热学试题 一选择题: 1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离 A.阿伏加徳罗常数,该气体的摩尔质量和质量 B.阿伏加徳罗常数,该气体的摩尔质量和密度 C.阿伏加徳罗常数,该气体的质量和体积 D.该气体的质量、体积、和摩尔质量 2.关于布朗运动下列说法正确的是 A.布朗运动是液体分子的运动 B.布朗运动是悬浮微粒分子的运动 C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果 D.温度越高,布朗运动越显著 3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误 ..的 A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN A C.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是 A.固体分子间的引力总是大于斥力 B.气体能充满任何仪器是因为分子间的斥力大于引力 C.分子间的引力和斥力都随着分子间的距离增大而减小 D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小 5.关于物体内能,下列说法正确的是 A.相同质量的两种物体,升高相同温度,内能增量相同 B.一定量0℃的水结成0℃的冰,内能一定减少 C.一定质量的气体体积增大,既不吸热也不放热,内能减少 D.一定质量的气体吸热,而保持体积不变,内能一定减少 6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同 B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大 C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大 D.它们的分子数目不相同,分子的平均动能相同 7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则 A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量 C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量 8.关于气体压强,以下理解不正确的是 A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小 B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的 C.容器内气体的压强是由气体的重力所产生的 D.压强的国际单位是帕,1Pa=1N/m2

高中物理电磁学公式总整理

高中物理電磁學公式總整理 電子電量為19106.1-?庫侖(Coul),1Coul=181025.6?電子電量。 一、靜電學 1.庫侖定律,描述空間中兩點電荷之間的電力 r r q kq r r q q F ??41221221012==πε ,2 2 1221041r q kq r q q F ==πε,229/109Coul m Nt k ??≈ 由庫侖定律經過演算可推出電場的高斯定律kq q A d E E πε40==?=Φ?? 。 2.點電荷或均勻帶電球體在空間中形成之電場 r r kq q F E ?211== ,21r kq q F E == 導體表面電場方向與表面垂直。電力線的切線方向為電場方向,電力線越密集電場強度越大。 平行板間的電場A kq A kq E ππ224= = 3.點電荷或均勻帶電球體間之電位能r q kq U e 2 1= 。本式以以無限遠為零位面。 4.點電荷或均勻帶電球體在空間中形成之電位r kq q U V e 1==。 導體內部為等電位。接地之導體電位恆為零。 電位為零之處,電場未必等於零。電場為零之處,電位未必等於零。 均勻電場內,相距d 之兩點電位差θcos Ed d E V =?=? 。故平行板間的電位差 d A kq Ed V π2==?。 5.電容V C q V q C ?=?= ,,為儲存電荷的元件,C 越大,則固定電位差下可儲存的電荷量就越大。電容本身為電中性,兩極上各儲存了+q 與-q 的電荷。電容同時 儲存電能,C q CV U E 222 2==。

a.球狀導體的電容k r r kq q V q C === ,本電容之另一極在無限遠,帶有電荷-q 。 b.平行板電容kd A A kqd q V q C ππ22== = 。故欲加大電容之值,必須增大極板面積A ,減少板間距離d ,或改變板間的介電質使k 變小。 二、電路學 1.理想電池兩端電位差固定為ε。實際電池可以簡化為一理想電池串連內電阻r 。實際電池在放電時,電池的輸出電壓Ir V -=?ε,故輸出之最大電流有限制,且輸出電壓之最大值等於電動勢,發生在輸出電流=0時。 實際電池在充電時,電池的輸入電壓Ir V +=?ε,故輸入電壓必須大於電動勢。 2.若一長度d 的均勻導體兩端電位差為V ?,則其內部電場d V E ?=。導線上沒有 電荷堆積,總帶電量為零,故導線外部無電場。理想導線上無電位降,故內部電場等於0。 3.克希荷夫定律 a.節點定理:電路上任一點流入電流等於流出電流。 b.環路定理:電路上任意環路上總電位升等於總電位降。 三、靜磁學 1.必歐-沙伐定律,描述長 d 的電線在r 處所建立的磁場 2 0sin 4r Id dB θπμ =,20?4r r Id B d ?= πμ ,A m T /10470??=-πμ 磁場單位,MKS 制為Tesla ,CGS 制為Gauss ,1Tesla=10000Gauss ,地表磁場約為0.5Gauss ,從南極指向北極。 由必歐-沙伐定律經過演算可推出安培定律?=?NI d B 0μ 2.重要磁場公式 無限長直導線磁場 長 之螺線管內之磁場 r NI B πμ20= NI B 0μ=

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高中物理专题-热力学定律

高中物理专题-热力学定律 在绝热气缸中封闭着两部分同种类的气体A和B,中间用绝热活塞隔开,活塞用销钉固定着。开始时两部分气体的体积和温度都相同,气体A的质量大于气体B的质量。撤去销钉后活塞可以自由移动,最后达到平衡。关于B部分气体的内能和压强的大小 A.内能增加,压强不变B.内能不变,压强不变 C.内能增加,压强增大D.内能不变,压强增大 【参考答案】C 【试题解析】因为气体A的质量大于气体B的质量,故开始时气体A的压强大于气体B的压强,撤去销钉后,A气体膨胀对B气体做功,故B气体内能增加,压强增大,选C。 【知识补给】 功和内能 (1)气体做功的特征是气体体积的变化,若气体只有压强的变化而无体积的变化,气体不做功。 (2)做功的对象是实物,故气体向真空膨胀不做功。 (3)理想气体被绝热压缩,则内能增加,温度升高,体积减小,压强一定增大;理想气体绝热膨胀,则内能减少,温度降低,压强一定增大。 如图所示,内壁光滑的绝热气缸竖直立于地面上,绝热活塞将一定质量的理想气体封闭在气缸中,活塞静止时处于A位置。现将一重物轻轻地放在活塞上,活塞最终静止在B位置。则活塞在B位置时与活塞在A位置时相比较

A.气体的内能可能相同 B.气体的温度一定不同 C.单位体积内的气体分子数不变 D.单位时间内气体分子撞击单位面积气缸壁的次数一定增多 如图所示,绝热气缸固定在水平地面上,气缸内用绝热活塞封闭着一定质量的理想气体。开始时活塞静止在图示位置现用力使活塞缓慢向右移动一段距离,则在此过程中 A.外界对缸内气体做正功 B.缸内气体的内能不变 C.缸内气体在单位时间内作用于活塞单位面积的冲量增大 D.在单位时间内缸内气体分子与活塞碰撞的次数减少 如图所示,用绝热活塞把绝热容器隔成容积相同的两部分,先把活塞锁住,将质量和温度都相同的理想气体氢气和氧气分别充入容器的两部分,然后提起销子,使活塞可以无摩擦地滑动,当活塞平衡时 A.氢气的温度不变B.氢气的压强减小 C.氢气的体积减小D.氧气的温度升高 绝热气缸的质量为M,绝热活塞的质量为m,活塞与气缸壁之间无摩擦且不漏气,气缸中密封一部分理想气体,最初气缸被销钉固定在足够长的光滑固定斜面上。如图所示,现拔去销钉,让气缸在斜面上自由下滑,当活塞与气缸相对静止时,被封气体与原来气缸静止在斜面上时相比较,下列说法中正确的是 A.气体的压强不变B.气体的内能减小

高中物理电学公式大全

高中物理电学公式总结大全 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=U AB/d 6.电场力:F=qE 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd 9.电势能:E A=qφA 10.电势能的变化ΔE AB=E B-E A 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值)0 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速 (V o=0):W=ΔE K或qU=mV t2/2,V t=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V o t(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总

高考物理热力学综合题

1.根据热力学定律,下列说法正确的是() A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量 C.科技的进步可以使内燃机成为单一的热源热机 D.对能源的过度消耗使自然界的能量不断减少,形成“能源危机” 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 2.液体与固体具有的相同特点是 (A)都具有确定的形状(B)体积都不易被压缩 (C)物质分子的位置都确定(D)物质分子都在固定位置附近振动 答案:B 解析:液体与固体具有的相同特点是体积都不易被压缩,选项B正确。 3.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3) (A)12.8倍(B)8.5倍(C)3.1倍(D)2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。 4. 图6为某同学设计的喷水装置,内部装有2L水,上部密封1atm的空气0.5L,保持阀门关闭,再充入1atm的空气0.1L,设在所有过程中空可看作理想气体,且温度不变,下列说法正确的有 A.充气后,密封气体压强增加 B.充气后,密封气体的分子平均动能增加 C.打开阀门后,密封气体对外界做正功 D.打开阀门后,不再充气也能把水喷光 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 5.A.[选修3-3](12分)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。这就是著名的“卡诺循环”。

高中高二物理电学公式大全

高中物理电学公式总结 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=U AB/d 6.电场力:F=qE 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd 9.电势能:E A=qφA 10.电势能的变化ΔE AB=E B-E A 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速(V o=0):W=ΔE K或qU=mV t2/2,V t=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V o t(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P 出/P总 9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成 反比) 电阻关系(串同并反) 10.欧姆表测电阻(1)电路组成(2)测量原理(3)使用方法(4)注意事项 11.伏安法测电阻电流表内接法:电流表外接法: 三、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A 2.安培力F=BIL; 3.洛仑兹力f=qVB(注V⊥B);质谱仪 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动, 四、电磁感应 1.感应电动势的大小计算公式: 1)E=nΔΦ/Δt(普适公式){法拉第电 磁感应定律, 2)E=BLV垂(切割磁感线运动) 3)E m=nBSω(交流发电机最大的感应电动势) 4)E=BL2ω/2(导体一端固定以ω旋转切割) 2.磁通量Φ=BS

高中物理电学公式汇总

2019高中物理电学公式汇总 高中物理电学公式 高中物理恒定电流公式 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U 外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}; 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流 (A),t:时间(s),P:电功率(W)}; 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}; 7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R; 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+ U总=U1=U2=U3 功率分配P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻:(1)电路组成(2)测量原理 两表笔短接后,调节R0使电表指针满偏,得Ig=E/(r+Rg+R0);接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+R0+Rx)=E/(R中+Rx);由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法:电压表示数:U=UR+UA;电流表外接法:电流表示数:I=IR+IV RX的测量值=U/I=(UA+UR)/R=RA+RX>R真;RX的测量值 =U/I=UR/(IR+IV)=RVRX/(RV+R)>RA [或Rx>(RARV)1/2];选用电路条件 Rx<RX

热力学发展史阅读感想

热力学发展史阅读感想 廖瑞杰 (北京航空航天大学能源与动力工程学院,北京 100191) “热”这一个字伴随着人类的发展,人们对热的本质及热现象的认识经历了一个漫长的、曲折的探索过程。在古代,人们就知道冷与热的差别,能够利用摩擦生热、燃烧、传热、爆炸等热现象,来达到一定的目的。温度对于热力学研究起着至关重要的作用。温度的定义以及测量是热力学的开端,三个热力学基本定律的发现是贯穿热力学发展史的线索。 在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递中能量的数量保持不变。该定律就称为热力学第一定律,也称为能量转换与守恒定律,这一定律也被表示为:第一类永动机(不消耗任何形式的能量而能对外做功的机械)是不能制作出来的。 2.热力学第一定律建立的成因 1)理论——迈尔 迈尔是明确提出“无不能生有”,“有不能变无”的能量守恒与转化思想的第一人。而这理论正是建立热力学第一定律的基础。

高中物理知识点总结:热力学基础

一. 教学内容:热力学基础 (一)改变物体内能的两种方式:做功和热传递 1. 做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。 2. 热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。 (二)热力学第一定律 1. 内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。 2. 表达式:。 3. 符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热 量Q取正值,物体放出热量Q取负值;物体内能增加取正值,物体内能 减少取负值。 (三)能的转化和守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒定律。 (四)热力学第二定律 两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。

(2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。 热力学第二定律揭示了涉及热现象的宏观过程都有方向性。 (3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热运动状态无序性增加的方向进行的。 (4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体的熵就越大。 (五)说明的问题 1. 第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。 2. 第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热力学第二定律。 (六)能源和可持续发展 1. 能量与环境 (1)温室效应:化石燃料燃烧放出的大量二氧化碳,使大气中二氧化碳的含量大量提高,导致“温室效应”,使得地面温度上升,两极的冰雪融化,海平面上升,淹没沿海地区等不良影响。 (2)酸雨污染:排放到大气中的大量二氧化硫和氮氧化物等在降水过程中溶入雨水,使其形成酸雨,酸雨进入地表、江河、破坏土壤,影响农作物生长,使生物死亡,破坏生态平衡,同时腐蚀建筑结构、工业装备、动力和通讯设备等,还直接危害人类健康。 2. 能量耗散和能量降退 (1)能量耗散:在能量转化过程中,一部分机械能转变成内能,而这些内能最终流散到周围的环境中,我们没有办法把这些流散的内能重新收集起来加以利用,这种现象叫做能量的耗散。 (2)能量降退:从可被利用的价值来看,内能较之机械能、电能等,是一种低品质的能量。能量耗散不会使能的总量减少,却会导致能量品质的降低。

相关文档
相关文档 最新文档