文档库 最新最全的文档下载
当前位置:文档库 › 实验2:线性代数实验答案

实验2:线性代数实验答案

实验2:线性代数实验答案
实验2:线性代数实验答案

撰写人姓名:撰写时间:审查人姓名:

实验全过程记录实验

名称线性代数实验

时间2学时

地点数学实验室

姓名学号

同实验者学号

一、实验目的

1、熟练掌握矩阵的基本运算;

2、熟练掌握一般线性方程组的求解;

3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。

二、实验内容:

1、利用MATLAB实现矩阵的基本运算;

2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组;

3、利用MATLAB化二次型为标准型。

三、实验用仪器设备及材料

软件需求:

操作系统:Windows XP或更新的版本;

实用数学软件:MATLAB 7.0或更新的版本。

硬件需求:

Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。

四、实验原理:

线性代数理论

五、实验步骤:

1、计算下列行列式:

4124

1202

10520

0117

>> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7];

>> det(A) ans =

100 110 011 001

a

b

c

d

-

-

-

>> syms a b c d;

>> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A)

ans =

a*b*c*d+a*b+a*d+c*d+1

2、设

212

122

221

A

??

??

=??

??

??

,求1098

()65

A A A A

?=-+。

>> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8

ans =

2 2 -4

2 2 -4

-4 -4 8

3、求下列矩阵的逆矩阵:

121

342

541

-

??

??

-

??

??

-

??

>> A=[2 1 2;1 2 2;2 2 1];

>> A^10-6*A^9+5*A^8

ans =

2 2 -4

2 2 -4

-4 -4 8

>> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A)

ans =

-2.0000 1.0000 -0.0000 -6.5000 3.0000 -0.5000 -16.0000 7.0000 -1.0000

10

01

00

λ

λ

λ

??

??

??

??

??

>> syms a

>> A=[a 1 0;0 a 1;0 0 a]; >> inv(A)

ans =

[ 1/a, -1/a^2, 1/a^3] [ 0, 1/a, -1/a^2] [ 0, 0, 1/a]

4、给定线性方程组:Ax b

=,

0,1,2

3,5,7

0,1,8

A

-

??

??

=

??

??

??

1

2

3

b

??

??

=

??

??

??

,利用\

A b或inv(A)*b求出其解。

>> A=[0 -1 2;3 5 7;0 1 8]; b=[1 2 3];

x=A\b'

x =

0.0667

-0.2000

0.4000

>> x=inv(A)*b'

x =

0.0667

-0.2000

0.4000

5、设

4,2,3

1,1,0

1,2,3

A

??

??

=

??

-??

??

,2

AB A B

=+,求B。

>> A=[4 2 3;1 1 0;-1 2 3]; B=A/(A-2*eye(3))

3.0000 -8.0000 -6.0000 2.0000 -9.0000 -6.0000 -2.0000 12.0000 9.0000 6、把下列矩阵化为行最简形:

⑴ 102120313043-??

????

??-??

; >> A=[1 0 2 -1;2 0 3 1;3 0 4 -3]; >> rref(A)

ans =

1 0 0 0 0 0 1 0 0 0 0 1

⑵ 23137120243283423743--????

--?

???--??-??

。 >> A=[2 3 1 -3 -7;1 2 0 -2 -4;3 -2 8 3 -4;2 -3 7 4 3]; >> rref(A)

ans =

1 0

2 0 0 0 1 -1 0 0 0 0 0 1 0 0 0 0 0 1

7、利用MATLAB 求向量组[]12135α=-,[]24313α=-,[]33234α=-,

[]4411517α=-,[]57670α=-的极大线性无关组,并将其余向量用该极

大线性无关组线性表示。

>> a1=[2 -1 3 5]; >> a2=[-4 3 1 3]; >> a3=[3 -2 3 4]; >> a4=[4 -1 15 17]; >> a5=[7 6 -7 0];

>> A=[a1' a2' a3' a4' a5']

2 -4

3

4 7 -1 3 -2 -1 6 3 1 3 1

5 -7 5 3 4 17 0 >> [R,j]=rref(A) R =

1.0000 0 0 0 37.6667 0 1.0000 0 0 -14.0000 0 0 1.0000 0 -43.6667 0 0 0 1.0000 1.6667 j =

1 2 3 4

37.6667*a1+(-14.0000)*a2+(43.6667)*a3+1.6667*a4=a5

8、a 、b 取何值时,方程组()12342

3423412340221

12321

x x x x x x x x a x x b x x x ax +++=??++=??-+--=??+++=-?有唯一解,无解,无穷多组解,并

求有无穷多组时的一般解。

>> syms a b;

A=[1 1 1 1;0 1 2 2;0 -1 a-1 -2;3 2 1 a]; det(A) ans = a^2-1

>> a=solve('a^2-1','a') a = 1 -1

当a 不等于正负1时,有唯一解;

当a=1或-1时有无穷多解.

9、某一种甲虫最多可活两年,且其年龄群体分配数的矩阵如下:

061/20001/30A ????=??

???? 如果有600只在第一年龄群体,300只在第二年龄群体,100只在第三年龄群体,则

年复一年各年龄群体的甲虫数目是否会改变,从数学上给以解释。

>> x0=[600;300;100];

>> A=[0 0 6;1/2 0 0;0 1/3 0]; >> x1=A*x0 x1 = 600 300 100

>> x2=A*x1 x2 = 600 300 100 x3 = 600 300 100

>> x4=A*x3

x4 =

600

300

100

>> eig(A)

ans =

-0.5000 + 0.8660i

-0.5000 - 0.8660i

1.0000

>> x=[600;300;100];d1=1.0000;

>> A=[0 0 6;1/2 0 0;0 1/3 0];

>> y=A*x;

>> y1=d1*x;

>> k=1;

>> while max(abs(y-y1))>0.1

x=y;

y=A*x;

y1=d1*x;

k=k+1;

end

可知,当k为正整数时,x^(k+1)=x^k .所以,年复一年各年龄群体的甲虫数目不改变

10、设定两个一般的4阶上三角矩阵,用MATLAB验证其乘积还是上三角矩阵,其逆矩阵

还是上三角矩阵。

>> a=[1 5 7 6;0 5 6 7;0 0 4 6;0 0 0 9];

b=[1 8 1 7;0 7 7 4;0 0 1 9;0 0 0 8];

a*b

ans =

1 43 43 138

0 35 41 130

0 0 4 84

0 0 0 72

>> inv(a)

ans =

1.0000 -1.0000 -0.2500 0.2778

0 0.2000 -0.3000 0.0444

0 0 0.2500 -0.1667

0 0 0 0.1111

11、求下列矩阵的特征值和特征向量,并判断能否对角化,若能,则将其对角化。

120

230

302

A

-??

??=-??

??

??

>> a=[-1 2 0;-2 3 0;3 0 2]; >> [v d]=eig(a)

v =

0 0.3015 0.3015

0 0.3015 0.3015

1.0000 -0.9045 -0.9045

d =

2 0 0

0 1 0

0 0 1

>> rank(v)

ans =

2

V不满秩,不可相似对角化。

211

020

413

A

-??

??=??

??

-??

>> a=[-2 1 1;0 2 0;-4 1 3]; >> [v d]=eig(a)

v =

-0.7071 -0.2425 0.3015 0 0 0.9045 -0.7071 -0.9701 0.3015

d =

-1 0 0

0 2 0

0 0 2

>> rank(v)

ans =

3

V满秩,可相似对角化。

542

452

228

A

-

??

??=??

??

-??

>> a=[5 4 -2;4 5 2;-2 2 8];

>> [v d]=eig(a)

v =

-0.6667 -0.6464 0.3712

0.6667 -0.7398 -0.0909

-0.3333 -0.1868 -0.9241

d =

-0.0000 0 0

0 9.0000 0

0 0 9.0000

>> rank(v)

ans =

3

V满秩,可相似对角化。

12、将下列二次型化为标准型:

⑴ 222

1231231223(,,)2344f x x x x x x x x x x =++--;

>> a=[1 -2 0;-2 2 -2;0 -2 3]; >> [v d]=eig(a) v =

-0.6667 -0.6667 0.3333 -0.6667 0.3333 -0.6667 -0.3333 0.6667 0.6667 d =

-1.0000 0 0 0 2.0000 0 0 0 5.0000

⑵ 1231223(,,)22f x x x x x x x =-。

>> a=[0 1 0;1 0 -1;0 -1 0]; >> [v d]=eig(a) v =

-0.5000 0.7071 -0.5000 0.7071 -0.0000 -0.7071 0.5000 0.7071 0.5000 d =

-1.4142 0 0 0 -0.0000 0 0 0 1.4142

成绩评定: 指导教师:

年 月 日

线性代数实验一

数学实验(线性代数)题目 一. 用MATLAB 计算行列式 1.求矩阵10211 22323310 12 1A ????-? ?=??????的行列式的值.2。计算行列式100 110011001 a b c d --- 二.用MATLAB 计算矩阵 1.求矩阵??????????=133212321A 与矩阵???? ??????=132352423B 的和与差及53A B -. 2.求矩阵123212331A ????=??????与324253231B ????=??????的乘积.3.求矩阵112011210A -?? ??=-?? ????的逆矩阵. 4.求矩阵123421213A ????=??????和212121321B ?? ??=?? ???? 相除。 三.用MATLAB 解线性方程组 1. 求解方程组1231231 23240200 x x x x x x x x x --+=?? ++=??+-=?。 2。解方程组AX b =,其中A =212214321??????????,b =317?? ???????? .。 3.Matlab 实验题 某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元. (1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值. (2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会 一、学习方法 今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。 首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成; 2. 这些点之间存在相对的关系; 3. 可以在空间中定义长度、角度; 4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

用MATLAB解决线性代数问题实验报告

实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 实验目的: 学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似 对角化问题,以及解决投入产出分析等应用问题。 实验内容: 矩阵转置:A=[1 2;3 4];B=[4 3;2 1]; >> A',B' ans = 1 3 2 4 ans = 4 3 3 1 矩阵加减:A-B ans= -3 -1 1 3 矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans= 8 5 20 13 ans= 4 6 6 4 矩阵除法:A\B,B./A ans=

-6 -5 5 4 ans= 4 1.5 0.6667 0.25 特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵 ones(m,n)||生成m行n列的元素全为一的矩阵 eye(n)||生成n阶单位矩阵 rand(m,n)||生成m行n列[0 ,1]上均匀分布随 机数矩阵 zeros(2,3) ans = 0 0 0 0 0 0 >> ones(3,3) ans = 1 1 1 1 1 1 1 1 1 >> eye(3)

ans = 1 0 0 0 1 0 0 0 1 >> rand(2,4) ans = Columns 1 through 3 0.9501 0.6068 0.8913 0.2311 0.4860 0.7621 Column 4 0.4565 0.0185 矩阵处理:trace(A)||返回矩阵的迹 diag(A)||返回矩阵对角线元素构成的向量 tril(A)||提取矩阵的下三角部分 triu(A)||提取矩阵的上三角部分 flipud(A)||矩阵上下翻转 fliplr(A)||矩阵左右翻转 reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9]; >> t=trace(A),d=diag(A),u=triu(A)

实验2:线性代数实验答案

撰写人姓名:撰写时间:审查人姓名: 实验全过程记录实验 名称线性代数实验 时间2学时 地点数学实验室 姓名学号 同实验者学号 一、实验目的 1、熟练掌握矩阵的基本运算; 2、熟练掌握一般线性方程组的求解; 3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。 二、实验内容: 1、利用MATLAB实现矩阵的基本运算; 2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组; 3、利用MATLAB化二次型为标准型。 三、实验用仪器设备及材料 软件需求: 操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求: Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。 四、实验原理: 线性代数理论 五、实验步骤: 1、计算下列行列式: ⑴ 4124 1202 10520 0117 ; >> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7]; >> det(A) ans =

⑵ 100 110 011 001 a b c d - - - 。 >> syms a b c d; >> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A) ans = a*b*c*d+a*b+a*d+c*d+1 2、设 212 122 221 A ?? ?? =?? ?? ?? ,求1098 ()65 A A A A ?=-+。 >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 3、求下列矩阵的逆矩阵: ⑴ 121 342 541 - ?? ?? - ?? ?? - ?? ; >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 >> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A) ans =

Matlab线性代数实验指导书

Matlab线性代数实验指导书 理学院线性代数课程组 二零零七年十月

目录 一、基础知识 (1) 1.1、常见数学函数 (1) 1.2、系统在线帮助 (1) 1.3、常量与变量 (2) 1.4、数组(矩阵)的点运算 (3) 1.5、矩阵的运算 (3) 二、编程 (4) 2.1、无条件循环 (4) 2.2、条件循环 (5) 2.3、分支结构 (5) 2.4、建立M文件 (6) 2.5、建立函数文件 (6) 三、矩阵及其运算 (7) 3.1、矩阵的创建 (7) 3.2、符号矩阵的运算 (11) 四、秩与线性相关性 (14) 4.1、矩阵和向量组的秩以及向量组的线性相关性 (14) 4.2、向量组的最大无关组 (14) 五、线性方程的组的求解 (16) 5.1、求线性方程组的唯一解或特解(第一类问题) (16) 5.2、求线性齐次方程组的通解 (18) 5.3、求非齐次线性方程组的通解 (19) 六、特征值与二次型 (22) 6.1、方阵的特征值特征向量 (22) 6.2、正交矩阵及二次型 (23)

一、基础知识 1.1常见数学函数 函数数学计算功能函数数学计算功能 abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整acos(x) 反余弦arcsinx gcd(m,n) 求正整数m和n的最大公约数acosh(x) 反双曲余弦arccoshx imag(x) 求复数x的虚部angle(x) 在四象限内求复数x的相角lcm(m,n)求正整数m和n的最小公倍 自然对数(以e为底数) asin(x) 反正弦arcsinx log(x) 常用对数(以 10 为底数) asinh(x) 反双曲正弦arcsinhx log10(x) atan(x) 反正切arctanx real(x) 求复数 x 的实部atan2(x,y) 在四象限内求反正切rem(m,n) 求正整数m和n的m/n之余数atanh(x) 反双曲正切arctanhx round(x) 对x四舍五入到最接近的整数 符号函数:求出 x 的符号ceil(x) 对x朝+∞方向取整 sign(x) conj(x) 求复数x的共轭复数 sin(x) 正弦sinx 反双曲正弦sinhx cos(x) 余弦cosx sinh(x) cosh(x) 双曲余弦coshx sqrt(x) 求实数x的平方根exp(x) 指数函数e x tan(x) 正切tanx fix(x) 对 x 朝原点方向取整 tanh(x) 双曲正切tanhx 如:输入 x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则: ceil(x)= -4 -2 0 2 5 7 fix(x) = -4 -2 0 1 4 6 floor(x) =-5 -3 -1 1 4 6 round(x) = -5 -2 0 1 5 7 1.2 系统的在线帮助 1.2.1 help 命令: 1.当不知系统有何帮助内容时,可直接输入 help以寻求帮助: >> help(回车) 2.当想了解某一主题的内容时,如输入: >> help syntax (了解Matlab的语法规定) 3.当想了解某一具体的函数或命令的帮助信息时,如输入: >> help sqrt (了解函数sqrt的相关信息) 1.2.2 lookfor 命令 现需要完成某一具体操作,不知有何命令或函数可以完成,如输入: >> lookfor line (查找与直线、线性问题有关的函数) 1.3 常量与变量

线性代数实验作业

线性代数实验作业 14B09125 李强 实验一:交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整 求(1)利用上面的观测数据,建立关于各个路口交通流量的线性方程组,并用MATLAB 软件求解; (2)分析在建立的方程组中,哪些方程是多余的,进而判断哪些流量数据是多余的; (3)为了唯一确定未知交通流量,还需要增加哪几条道路的流量统计。 程序:A=zeros(9,12); A(1,1)=1;A(1,7)=1;A(2,1)=1;A(2,2)=-1;A(2,9)=1; A(3,2)=1;A(3,11)=-1;A(4,3)=1;A(4,7)=1;A(4,8)=-1; A(5,3)=-1;A(5,4)=1;A(5,9)=-1;A(5,10)=1; A(6,4)=-1;A(6,11)=1;A(6,12)=-1;A(7,5)=1;A(7,8)=1; A(8,5)=-1;A(8,6)=1;A(8,10)=-1;A(9,6)=-1;A(9,12)=1; A=sym(A) b=[400,300,200,350,0,-500,310,-400,140]'; B=[A,b]; C0=rref(B) d=1:13; d(6)=12;d(12)=6;d(7)=9;d(9)=7;d(8)=10;d(10)=8; B1=B(:,d); C1=rref(B1);

C=C1(:,d) r_B=rank(B) for i=1:9 B_=B;B_(i,:)=[]; r2=rank(B_); A_=B_(:,1:end-1); r1=rank(A_); r(i)=(r1==r2 & r1==8); end r A = [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] [ 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0] [ 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0] [ 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0] [ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, -1] [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] [ 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0] [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1] C0 = [ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1,0,500] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1,0,200] [ 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, -1, 1,500] [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 500] [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -1, 260] [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, -140] [ 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -100] [ 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0,1, 50] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C = [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 400] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 200] [ 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 350] [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 360] [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 310] [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 140] [ 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 100] [ 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 90] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] r_B = 8 fori = 1 2 3 4 5 6 7 8 9

数值线性代数第二版徐树方高立张平文上机习题第一章实验报告(供参考)

上机习题 1.先用你所熟悉的的计算机语言将不选主元和列主元Gauss 消去法编写成通用的子程序;然后用你编写的程序求解84阶方程组;最后将你的计算结果与方程的精确解进行比较,并就此谈谈你对Gauss 消去法的看法。 Sol : (1)先用matlab 将不选主元和列主元Gauss 消去法编写成通用的子程序,得到P U L ,,: 不选主元Gauss 消去法:[])(,A GaussLA U L =得到U L ,满足LU A = 列主元Gauss 消去法:[])(,,A GaussCol P U L =得到P U L ,,满足LU PA = (2)用前代法解()Pb or b Ly =,得y 用回代法解y Ux =,得x 求解程序为()P U L b A Gauss x ,,,,=(P 可缺省,缺省时默认为单位矩阵) (3)计算脚本为ex1_1 代码 %算法(计算三角分解:Gauss 消去法) function [L,U]=GaussLA(A) n=length(A); for k=1:n-1 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end

U=triu(A); L=tril(A); L=L-diag(diag(L))+diag(ones(1,n)); end %算法计算列主元三角分解:列主元Gauss消去法) function [L,U,P]=GaussCol(A) n=length(A); for k=1:n-1 [s,t]=max(abs(A(k:n,k))); p=t+k-1; temp=A(k,1:n); A(k,1:n)=A(p,1:n); A(p,1:n)=temp; u(k)=p; if A(k,k)~=0 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); else break; end end L=tril(A);U=triu(A);L=L-diag(diag(L))+diag(ones(1,n));

线性代数实验题04-交通网络的流量分析

数学实验报告 学号: , 姓名: , 得分: 实验内容:实验题:交通网络流量分析问题(线性方程组应用) 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整个图中进入和离开的车数相等。 求(1)建立确定每条道路流量的线性方程组; (2)分析哪些流量数据是多余的; (3)为了唯一确定未知流量,需要增添哪几条道路的流量统计。 解: (1)由题意得:x1+ x7=400 x1+ x9= x2+300 x2+100=300+ x11 x3+ x7=350+ x8 x4+ x10= x9+ x3 x11+500= x4+ x12 x8+ x5=310 x6+400= x10+ x5 x12+150= x6+290

整理得: x 1+ x 7=400 x 1- x 2+ x 9=300 x 2+ x 11=200 x 3+ x 7- x 8=350 -x 3+x 4+ x 10- x 9=0 -x 4+x 11- x 12=-500 x 5 +x 8=310 - x 5+x 6- x 10=-400 -x 6+ x 12= 140 将方程组写成矩阵向量形式为AX = b 1 0 0 0 0 0 1 0 0 0 0 0 400 x 1 1 -1 0 0 0 0 0 0 1 0 0 0 300 x 2 0 1 0 0 0 0 0 0 0 0 1 0 200 x 3 A= 0 0 1 0 0 0 1 -1 0 0 0 0 b= 350 X= x 4 0 0 -1 1 0 0 0 0 -1 1 0 0 0 x 5 0 0 0 -1 0 0 0 0 0 0 1 -1 -500 x 6 0 0 0 0 1 0 0 1 0 0 0 0 310 x 7 0 0 0 0 -1 1 0 0 0 -1 0 0 -400 x 8 0 0 0 0 0 -1 0 0 0 0 0 1 140 x 9 x 10 x 11 x 12 在MATLAB 环境中,首先输入方程组的系数矩阵A 和方程组右端向量b A=[1,0,0,0,0,0,1,0,0,0,0,0;1,-1,0,0,0,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,1,0;0,0,1,0,0,0,1,-1,0,0,0,0;0,0,-1,1,0,0,0,0,-1,1,0,0;0,0,0,-1,0,0,0,0,0,0,1,-1;0,0,0,0,1,0,0,1,0,0,0,0;0,0,0,0,-1,1,0,0,0,-1,0,0;0,0,0,0,-1,0,0,0,0,0,1] b = [400;300;200;350;0;500;310;-400;140] 解得 x 1=- x 9+500 x 2=200 x 3=- x 9+ x 10- x 12

线性代数实践课作业

华北水利水电学院 行列式的计算方法 课程名称:线性代数 专业班级:电子信息工程 2012154班 成员组成: 联系方式: 2013年10月27日

摘要: 行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本`最常用的工具.本质上,行列式描述的是在n维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.尤其在讨论方程组的解,矩阵的秩,向量组的线性相关性,方阵的特征向量等问题时发挥着至关重要的作用,所以掌握行列式的计算方法显得尤其重要。 关键词: 行列式,范德蒙行列式,矩阵,特征值,拉普拉斯定理,克拉默法则。 The calculation method of determinant Abstract: Determinant is an important research object of linear algebra, is one of the most basic of linear algebra ` the most commonly used tools. In essence, the determinant is described in n dimensional space, a parallel polyhedron volume which is formed by the linear transformation, it is widely used in solving linear equations, the matrix, the calculation of calculus, etc. Especially in the discussion of solving systems of nonlinear equations, matrix rank, vector linear correlation, the problem such as characteristic vector of play a crucial role, so to master the calculation method of determinant is especially important Key words: Determinant vandermonde determinant, matrix, eigenvalue, the Laplace's theorem, kramer rule.

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

《线性代数》作业

《线性代数》作业 第一章 1、求排列(2n)(2n-1)…(n+1)1 2…(n -1)n 的逆序数。 解:后面是正常顺序,逆序出现在前n 个数与后n 个数之间,2n 的逆序数是2n-1,2n-1的逆序数是2n-2,……,n+1的逆序数是n ,所以整个排列的逆序数是(2n-1)+(2n-2)+……+n =n(3n-1)/2 2、求排列246......(2n)135……(2n-1)的逆序数。 解析:后一项比前一项的算逆序一次,246......(2n)无逆序,所以从1开始,有246......(2n)共N 个,3开始有46......(2n)有N-1个,.......,.2n-1有一个,所以,加一起得,逆序数为1+2+......+N=N (N+1)/2 N=n+(n-1)+......+2+1=n(n+1)/2 3、试判断655642312314a a a a a a ,662551144332a a a a a a -,662552144332a a a a a a -是否都是六阶行列式中的项。 解a 14a 23a 31a 42a 56a 65 下标的逆序数为 t (431265)=0+1+2+2+0+1=6 所以655642312314a a a a a a 是六阶行列式中的项。 662551144332a a a a a a -下标的逆序数为 t (452316)=8所以662551144332a a a a a a -不是六阶行列式中的项。 662552144332a a a a a a -下标的逆序数为t(452316)=8所以662552144332a a a a a a -不是六阶行列式中的项。 4、已知4阶行列式D 中的第3列上的元素分别是3,-4,4,2,第1列上元素的余子式依次为8,2,-10,X ,求X 。 解:X=20 5、设15234312a a a a a j i 是5阶行列式的一项,若该项的符号为负,则 i= 5 ,j= 4 。 6、要使3972i15j4成为偶排列,则 i= 6 ,j= 8 。 7、设D 为一个三阶行列式,并且D=4,现对D 进行下列变换:先交换第1和第2行,然后用2乘以行列式的每个元素,再用-3乘以第2列加到第3列,则行列式最后结果为 32 。 8、设对五阶行列式(其值为m )依次进行下面变换,求其结果:交换一行与第五行,再转置,用2乘所有元素,现用-3乘以第二列加到第四列,最后用4除第二行各元素。 解析:交换一行与第五行 行列式的值变号 转置 行列式的值不变 用2乘所有元素 行列式的值乘以2^5 现用-3乘以第二列加到第四列 行列式的值不变 最后用4除以第二行各元素(应该是用4“除”第二行各元素吧?) 行列式的值乘以1/4

数值线性代数第二版徐树方高立张平文上机习题第三章实验报告

数值线性代数第二版徐树方高立张平文上机习题第三章实验报告

第三章上机习题 用 你所熟悉的的计算机语言编制利用QR 分解 求解线性方程组和线性最小二乘问题的通用子程序,并用你编制的子程序完成下面的计算任务: (1)求解第一章上机习题中的三个线性方程组,并将所得的计算结果与前面的结果相比较,说明各方法的优劣; (2)求一个二次多项式+bt+c y=at 2 ,使得在残向量 的2范数下最小的意义下拟合表3.2中的数据; (3)在房产估价的线性模型 11 1122110x a x a x a x y ++++= 中,11 2 1 ,,,a a a 分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房龄、建筑类型、户型及壁炉数目,y 代表房屋价格。现根据表3.3和表3.4给出的28组数据,求出模型中参数的最小二乘结果。

(表3.3和表3.4见课本P99-100) 解 分析: (1)计算一个Householder 变换H : 由于T T vv I ww I H β-=-=2,则计算一个Householder 变换H 等价于计算相应的 v 、β。其中 ) /(2,||||12v v e x x v T =-=β。 在实际计算中, 为避免出现两个相近的数出现的情形,当0 1 >x 时, 令 2 12 221||||)(-x x x x v n +++= ; 为便于储存,将v 规格化为1 /v v v =,相应的,β变为)/(22 1 v v v T =β 为防止溢出现象,用∞ ||||/x x 代替 (2)QR 分解: 利用Householder 变换逐步将n m A n m ≥?,转化为上三 角矩阵A H H H n n 11 -=Λ,则有

数值线性代数实验

数值线性代数实验 题目:数值线性代数 专业:信息与计算科学班级:班姓名: 山东科技大学 2013年 1 月16日

实验报告说明 学院:信息学院专业:信息班级10-2 姓名: 一、主要参考资料: (1)《Matlab数值计算-案例分析》北京航空出版(2)《Matlab数值分析》机械工业出版 二、课程设计应解决的主要问题: (1)平方根 (2)QR方法 (3)最小二乘法 三、应用软件: (1)Matlab7.0 (2)数学公式编辑器 四、发出日期:课程设计完成日期: 指导教师签字:系主任签字:

指导教师对课程设计的评语 指导教师签字: 年月日

一、问题描述 先用你所熟悉的计算机语言将平方根和改进的平方根法编成写通用的子程序,然后用你编写的程序求解对称正定方程组b x =A ,其中 (1)b 随机的选取,系数矩阵位100阶矩阵 ?? ? ??? ???? ????????????1011101110111011101110 (2)系数矩阵为40阶Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 11-+=j i a ij ,向量b 的第i 个分量为∑=-+=n j i j i b 11 1 。 二、分析与程序 1. 平方根法函数程序如下: function [x,b]=pingfanggenfa(A,b) n=size(A); n=n(1); x=A^-1*b; disp('Matlab 自带解即为x'); for k=1:n A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(k,k); for j=k+1:n; A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k); end end for j=1:n-1 b(j)=b(j)/A(j,j);

线性代数心得体会

线性代数 关键词:高等数学自学理解 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。 线性代数是继微积分之后又一门高等数学,与微积分想比,线性代数的基础行列式和矩阵是在高中有所学习的,入门还是相对比较简单的。线性代数从内容上看前后联系紧密,环环相扣,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。所以多做题也是积累经验来方便自己在解题时能更快更准确得运用适当的性质来简化题目。 认真上好每一堂课对于学习好线性代数是格外重要的.教材上的知识和技巧主要由老师在课堂上以授课的形式传授给你。你在上课时应集中精力听讲,积极思考老师提出的问题,迅速而恰当地做笔记。看书的准确程序是:课前预习内容,课上跟着老师的思路走,尽量不看书来回答上课提出的问题,课后进行复习巩固。而有的人恰恰相反,他们在课上埋头看自己的书,丝毫不理会老师在讲什么,这样做只会降低效率 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能朦朦胧胧地想到它的所以然就行了。学习线代及其它任何学科时都要静下心来,如果学习前很亢奋就拿出一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路记住,即做完题目后要总结自己做题的思路,活用在之后的做题中。 很多人都说,审计是文科的,学像微积分和线代这样的理科课程没有什么意义,虽然表面看起来是这样的,但实际上却不然。理科注重的逻辑,在学习的理科的过程中,我们的思路会变得清晰,会计是很复杂的一个专业,很多时候不同的条件会需要进行不同的处理,而理科会让这些复杂的东西在我们脑海中变得仅仅有条,所以学习线代也是有必要的。

线性代数实验试题 dscs

线性代数实验试题 dscs.m 班级 姓名 成绩 一、 矩阵的创建: 1. a1 = ( 1 2 … 30 ) 2. a2 = ( 5 10 15 … 85 )' 3. a3 = ????? ??--39725 42637243521 4. a4 = ???? ? ??---22116 52513974 5. a5 = ??? ? ??403a E a 6. a6 是阶数为6×6方阵且为整数的随机矩阵. 7. 用a6的第一行创建范德蒙矩阵赋给a7. 二、 矩阵的操作 1. 将a3的负元素改为1赋值给a8. 2. 用a5的第1、3、5 行,2、4、6列的交叉点上的元素构成三阶子阵赋给a9. 3. 将a3的所有元素构成一行向量赋给a10 4. 用a10中绝对值有大于30的元素生成向量a11. 三、 矩阵的运算 1. a12 = 3a5 + 2a6. 2. a13 = a5 ·a6. 3. a14 = |a6| 4. 解矩阵方程 : a6 X = a5 5. a15 = R ( a5 ) 6. 求解方程组:? ? ??????? ? ?=+++++-=+++--=+-+-+=++-++-=-++-+=+-+++5423684242544342323253263155442223642654321654321654321654321654321654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 写出通解。 四、 将二次型化为标准形:

()6 5645463534362423 24131212 62 52 42 32 22 16543218422646826424432,,,,,x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x f ++-+-+-++-+++-+++=写出标准形。

线性代数学习心得

线性代数学习心得 各位学友好! 首先让我们分析一下线性代数考试卷(本人以1999年上半年和下半年为例) 我个人让为,先做计算题,填空题,然后证明题,选择题等(一定要坚持先易后难的原则,一定要。旁边有某些同志说:“这些都是屁话,我们都知的快快转入正题吧!”) 把选择题第8题拉出来让大家看看 n(n>1)阶实对矩阵A是正定矩阵的充份必要条件是() A.A是正定二次型f(x)=x(A)x的矩阵 B.A是各阶顺序主子式均大于等于零(书本的p231定5.9知,大于零就可以了,明显也是错的) C.二次型f(x)=xTAx的负惯性指数为零 D.存在n阶矩阵C,使得A=CTC(由书本的P230知,存在非奇异N阶矩阵C,使A=CTC)很明显,这个选择是错了) 各位学友在做选择题时要仔细呀! 证明题 先讲1999年下半年 设A,B,C均为n阶矩阵,若ABC=I,这里I为单位矩阵,求证:B为可逆矩阵,且写出的逆矩阵? 证的过程:己知ABC=I,|ABC|=|I|不等于零,|A|*|B|*|C|不等于零,得出|B|不等于零。所以B是可逆矩阵。 求其逆矩阵,ABC=I,两边同时右乘C-1得AB=C-1,接下来左乘以A-1得B=A-1C-1,最后BC=A-1,BCA=I,于是得B-1=CA(不知各位学友有没有更简便的方法谢谢告之) 对这题做后的心得,本人认为一定要记得,a逆阵可逆的充分必要条件是行列式|a|不等零(切记,还有如ab=i,那么a-1=b) 对了还有,在求解逆矩阵,最简单方法是用初等行变换 公式法吗!容易出错,只适合求解比较特殊的

下面这些是相关的证明题 设B矩阵可逆,A矩阵与B矩阵同阶。且满足A2+AB+B2=O,证明A和A+B都是可逆矩阵?(相信大家都能做出) 己知i+ab可逆,试证I+BA也可逆? 接下来看看1999年上半年的 设n阶方阵A与B相似,证明:A和B有相同的特征多项式? 应搞清楚下面的概念 什么是特征多项式呢(1) 什么是特征值呢(2) 什么还有特征向量(3) 什么是相似矩阵(4) λI-A称为A的特征矩阵;|λI-A|称为A的特征多项式;|λI-A|=0称为A的特征矩阵,而由些求出的全部根,即为A的全部特征值。 对每一个求出特征值λ,求出齐次方程组(λI-A)x=o的基础解是&1,&2,&3...&s,则k1&1+k2&2+...ks&s即是A对应于λ的全部特征向量(其中,k1...ks不全为零) 相似矩阵:设A,B都是n阶方阵,若存在n阶可逆阵p,使得p-1ap=b,则称A相似于B,记为A~B(相拟矩阵有相同的行列式,相同的秩,相同的特征值) 我觉得有这么一题使终我还是一知半解的,拉出来让大家看看: 设A为4阶方阵,A*为A的伴随矩阵,若|A|=3,则|A*|=?,|2A*|=? 这题答案是27,432 怎么算的呢?这个具体我也不太清楚,我是用自己的方法,|A|N-1=|A*|,这个N代表多少阶,如是4阶那么3^3=27,后面那个,切记:把2提出行列式以外,看A是几阶行列式,4阶就提4次,2^4*3^3=432(可能书上不是这样的,我只是根据其习题答案推论出来的) 应注意的问题:区为行列式和矩阵之间的区别,特别是用一个不为零的数K乘以行列式或矩阵,前者只是乘以某一行或列,后者则是每一个元素都要乘! 很容易搞不零清的:线性相关或无关和什么情况下线性方程组有解或无解,还有什么极

数值分析实验报告

实验五 解线性方程组的直接方法 实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ? ?? ?? ?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的 条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 思考题一:(Vadermonde 矩阵)设 ?? ??????????????????????=? ? ? ?????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 0020 10022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=, (1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化? (2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。 (4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗? 相关MATLAB 函数提示: zeros(m,n) 生成m 行,n 列的零矩阵 ones(m,n) 生成m 行,n 列的元素全为1的矩阵 eye(n) 生成n 阶单位矩阵 rand(m,n) 生成m 行,n 列(0,1)上均匀分布的随机矩阵 diag(x) 返回由向量x 的元素构成的对角矩阵 tril(A) 提取矩阵A 的下三角部分生成下三角矩阵

相关文档