文档库 最新最全的文档下载
当前位置:文档库 › 浮法玻璃熔窑的结构

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构
浮法玻璃熔窑的结构

浮法玻璃熔窑的结构

浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。

一投料池

投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。

1.投料池的尺寸

图1-1 浮法玻璃熔窑平面图

1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室

图1-2 浮法玻璃熔窑立面图

1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。

(1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。

(2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使

用,它的投料方式与垄式投料机相似,只是投料面比垄式投料机要宽得多,因此其投料池的尺寸在设计上与采用垄式投料机的投料池尺寸没有太大的区别,仍然决定于熔化池的宽度和投料面的要求。

随着玻璃熔化技术的成熟和熔化工艺的更新,浮法玻璃熔窑投料池的宽度越来越大。因为配合料吸收的热量与其覆盖面积是成正比的,投料池越宽,配合料的覆盖面积越大,越有利于提高热效率和节能,有利于提高熔化率。因此,目前在大型浮法玻璃熔窑的设计中,均采用投料池与熔化池等宽和准等宽的模式。随着投料池宽度的不断增大,大型斜毯式投料机也应运而生,熔化池和投料池宽度均在11m的熔窑,采用两台斜毯式投料机即可满足生产和技术要求。

二熔化部

浮法玻璃熔窑的熔化部是进行配合料熔化和玻璃液澄清、均化的部位。熔化部前后由熔化区和澄清区组成;上下又分为上部火焰空间和下部窑池。其中上部空间又称为火焰空间,由前脸墙、玻璃液表面、窑顶的大碹与窑壁的胸墙所围成的充满火焰的空间;下部池窑由池底和池壁组成。也就是说熔化区的功能是配合料在高温下经物理、化学反应形成玻璃液,而澄清区的功能是使形成的玻璃液中的气泡迅速完全排出,达到生产所需的玻璃液质量。

熔化部的下部池窑由池底和池壁组成,如图1—3所示。

1、火焰空间火焰空间内充满了来自热源供给的灼热火焰气体,火焰气体将自身热量用于熔化配合料,同时也辐射给玻璃液、窑墙和窑顶。火焰空间应能够满足燃料完全燃烧,保证供给玻璃熔化、澄清和均化所需的热量,并应尽量减少散热。

2、池窑池窑是配合料熔化成玻璃液并进行澄清和均化的部位,它应该能供给足够量的熔化完全的透明玻璃液。为使窑池达到一定的使用年限,池壁厚度一般在250~300㎜.池底厚度根据其保温情况而异,不采用保温带池底厚度一般为300㎜。

(1)前脸墙结构

前脸墙是熔化部火焰空间的前部端墙,横跨在投料池的上部,以阻挡熔窑前端投料口处的的热气体(含火焰)的逸出和热辐射。由于前脸墙受到火焰的烧损和料粉侵蚀容易损坏,并且在热风烤窑时容易变形,为此,目前国内大多数浮法玻璃生产企业采用的是L型吊墙,L型吊墙结构见图1—4。

L型吊墙与以往的多幅碹相比,具有延长前脸墙使用寿命、增强节能效果、改善现场环境、保护投料机、提高熔化速度、减少粉尘飞扬、提高格子体的寿命等特点。在前脸墙的设计过程中,应注意合理选择与熔化部1#小炉中心线的距离。距离过小会加速前脸墙的烧损,减少配合料的预热效果,增加1#、2#小炉烧损及堵塞等;距离过大又会造成投料池温度过低,料堆熔化、前进困难等缺陷,目前国内浮法玻璃生产线根据燃料和吨位的不同,前脸墙与熔化部1#小炉中心线的距离范围一般在3.2~4.3m。

①拱碹结构前脸墙这种前脸墙是由两层或三层碹和砌在碹上耐火砖构成,前脸墙下弓形形口还需加挡火墙阻挡火焰喷出,以节约燃料,保护投料机。挡火墙的承重靠一横跨投料池的大水包提供,大水包上挂刀把形耐火砖,以阻止火焰直接与水包接触,刀把形砖上码砌条形砖,其结构如图1-5所示。采用这种结构形式的前脸墙,由于安全因素,受到其股跨比的限制,其跨度不宜太大,一般不超过7m,即便这样,由于前脸碹和挡火墙受到火焰烧损和碱性气氛的侵蚀,很容易损坏,挡火墙和水包损坏后,可以热修更换,前脸碹一旦烧损严重,只能放水冷修。因此,这种前脸墙结构在浮法玻璃熔窑上正在被淘汰,浮法玻璃熔窑以外的平板玻璃熔窑仍在使用。

普通拱碹结构前脸墙受到跨度和安全因素的限制,而欲进一步提高熔化面积,必须加宽投料池、扩大投料面,为解决此矛盾,产生了L形吊墙。

②L形吊墙结构大型浮法玻璃熔窑较为广泛采用的是L形前脸吊墙。该吊墙是单独悬

吊的,通过机械千斤顶可以调节吊墙距玻璃液面对高度。L形吊墙由耐热钢件和耐火材料构

图1—3 熔化部剖面结构图1—4 L型吊墙结构

1-窑顶(大碹);2-碹脚(碹碴);3-上间隙砖;1-垂直墙区;2-下鼻区;3-吊杆;4-钢壳;5-水冷门4-胸墙;5-挂钩砖;6-下间隙砖;7-池壁;8-池底;

9-拉条;10-立柱;11-碹碴角钢;12-上巴掌铁;

13-联杆;14-胸墙托板;15-下巴掌铁;16-池壁顶铁;

17-池壁顶丝;18-柱脚角钢;19-柱脚螺栓;20-扁钢;

21-次梁;22-主梁;23-窑柱

图1-5 普通拱碹结构前脸墙

1-大碹; 2-前脸墙;

3-刀把砖; 4-水包; 5-投料口池壁

成,其结构安全性不会受其宽度的影响,L形吊墙的宽度可与熔化池等宽,这样可满足投料池的等宽或准等宽设计需要。采用L形吊墙的同时加长加料池,不但减少了粉尘,还加强了对配合料的预熔作用。L形吊墙分为直段部分和L形部分,直段耐火材料用优质硅砖,鼻部用烧结莫来石和烧结锆玉材料,吊墙外墙壁采用陶瓷纤维毡进行保温,鼻部前端设有水包,

起到冷却后密封的作用。其结构形式如图1-4所示。

(2)胸墙结构

浮法玻璃熔窑由于各个部位受侵蚀情况及热修时间各不相同,为了分开热修损坏最严重的部分,将胸墙、大碹、窑池分成三个单独支撑部分,最后将负荷传到窑底钢结构上,胸墙的承重是由胸墙托板(用铸铁或角钢)及下巴掌铁传到立柱上,最后传到窑底钢结构上。

胸墙的设计需保证在高温下有足够的强度,其中挂钩砖是关键部位,在胸墙的底部设有挂钩砖,挡住窑内火焰,不使其穿出烧坏胸墙托板和巴掌铁。一般熔化区胸墙采用AZS33电熔砖,上间隙砖采用低蠕变耐崩裂的烧结锆英石砖,澄清区胸墙一般采用优质硅砖。

胸墙的高度取决于燃料的种类和质量、熔化率、熔化耗热量、熔窑规模、散热量、气层厚度等因素。

从理论上讲,只要保证胸墙用耐火材料的抗侵蚀能力,胸墙就不会成为影响到熔窑寿命的关键部位,然而在实际使用中,很多熔窑因熔化区胸墙内倾导致熔窑寿命缩短,有的熔窑在后期由于放料不及时,出现了胸墙倒塌事故。究其原因,主要是由于大碹砌筑结束后紧固拉条时导致胸墙托板倾斜(外高内低)使胸墙内倾。另一原因是由于池壁绑砖后,胸墙托板暴露在火焰空间中,使托板变形,导致胸墙内倾,为了减少或避免这一现象的出现,对熔窑胸墙进行了改进的的设计,这种结构的特点是取消了间隙砖,大碹碹脚直接靠紧胸墙,胸墙托板降低,上层胸墙有意内倾,大碹边碹砖采用三层锆英石砖,熔化区挂钩砖取消了挂钩设计,这样可避免因电熔AZS质挂钩砖质量原因,导致挂钩砖断裂而引起胸墙内倾。另外,有些大型熔窑将50mm厚普通碳钢托板改为60mm厚中硅球墨铸铁托板,也收到良好效果。

(3)大碹结构

大碹的作用是与胸墙、前脸墙组成火焰空间,同时,还可以作为火焰向物料和玻璃液辐射传热的媒介,即吸收燃料燃烧时释放的热量,再辐射到玻璃液表面上。

大碹的重量是由钢碹碴通过上巴掌铁并由立柱传到窑底钢结构上。

大碹的高低和特性可通过股跨比来反映。从热工角度考虑,大碹低一些是有益的,能尽可能地将热量辐射给玻璃液。降低大碹高度可通过降低胸墙高度和减少大碹碹股来实现,但是,胸墙高度是受到小炉喷出口和大碹的结构强度等因素的制约;股高越小,推力越大,同时散热亦小。减少碹股会增加大碹的水平推力,碹的不稳定性加大。一般大型浮法玻璃熔窑的大碹股跨比为1:8左右。根据熔化部的长度,大碹可以分为若干节,一般至少在三节以上。砌筑时每节碹之间预留的膨胀缝约为100~120㎜,前、后山墙处的碹顶膨胀缝要留宽些。

大碹一般用优质硅砖砌筑,砖的形状为契形,横缝采用错缝砌筑,灰缝(又称泥缝)的大小根据所采用砌筑灰浆(又称泥浆)的具体要求来确定,一般为1~2㎜。

浮法玻璃熔窑大碹碹碴大多采用钢碹碴,并要求吹风冷却。两边钢碹碴的斜面延长线需通过大碹碹弧的圆心,其形成的夹角为大碹的中心角。

大碹的寿命决定了整个熔窑的窑龄,大碹在使用中的薄弱环节为测温孔、测压孔等孔洞、大碹砖的横缝(又称顶头缝)、每节碹的碹头以及大碹的边碹部分。窑炉在正常作业时,窑内为正压,碹顶的各种孔洞很容易因穿火被越烧越大,边碹如果与钢碹碴接触不够紧密,很容易被火焰冲刷、烧损,因此,这些地方应采用性能较好的耐火材料,目前使用较多的是烧结锆英石砖。

(4)池壁、池底的结构

窑池由池壁和池底两部分组成,池壁和池底均用大砖砌筑。窑池建筑在由窑下炉柱支撑的钢结构梁上,整个窑池的质量及其盛装的玻璃液的质量均有窑下炉柱支撑的钢结构承担,浮法玻璃熔窑的炉柱一般为混凝土质或钢质立柱。炉柱上面架设沿窑长方向的工字钢或H 型钢主梁,大型浮法玻璃熔窑主梁一般为4根,在主梁上沿主梁垂直方向安装工字钢次梁。

以前没有窑底保温时,直接在次梁上铺扁钢,在扁钢上铺粘土大砖,此时次梁应避开粘土大砖的砖缝,每块砖的下面要对应2根扁钢和2根次梁。目前保温技术已经普遍采用,窑底结构也随之发生变化,即在次梁上沿垂直次梁方向铺设槽钢,槽钢内卡砌垛砖,垛砖上铺设池底粘土大砖,铺大砖之前,在槽钢上焊活动钢板支撑架,并在垛砖之间,支撑架之上砌保温层。池深变浅和窑底保温后,底层玻璃液温度升高,,流动性增大,为减少玻璃液对池底砖的腐蚀,在粘土大砖之上铺保护层,即捣打一层厚25㎜的锆英石捣打料或锆刚玉质捣打料,再在其上铺一层厚度为75㎜的电熔锆钢玉或烧结锆钢玉砖。

池壁砌筑在池底粘土大砖上。因熔化部玻璃液表面进行燃料的燃烧和配合料的熔化,玻璃液表面的温度达到1450℃以上,玻璃液的对流也较强,加之液面的上下波动,因此,池壁的腐蚀比较严重,特别是玻璃液面线附近池壁损坏较快。以前,因投资费用和其他因素的影响,池壁往往采用多层结构,下部用粘土砖,中部采用电熔莫来石砖,上部使用电熔锆钢玉砖,此种结构池壁的受侵蚀情况不均匀,即接近液面线处侵蚀最严重,这种池壁对玻璃液的质量影响较大。

目前,浮法玻璃熔窑池壁采用整块大砖——通常采用刀把砖竖缝干砌,材质一般为AZS33电熔砖,这种池壁没有横缝,材质档次提高,受侵蚀速度较慢,对玻璃液的污染小,使用寿命长,被广泛应用。池壁厚度由300㎜减少到250㎜。

随着人们对窑炉寿命的期望值不断提高,对池壁结构也在不停进行着探索,到2000年以后,刀把形池壁砖在浮法玻璃熔窑上得到应用和推广。材质为AZS33、AZS36电熔砖,也有个别企业使用AZS41电熔砖的。但是,AZS41电熔砖的热稳定性较差,在烤窑时容易发生炸裂。因此池壁厚度越小,冷却风的冷却效果就越好,采用刀把形砖可以绑两次砖,且侵蚀速度慢,因此大大延长了池壁的寿命(可以达到10年以上)。

三卡脖、冷却部

卡脖处于熔化部与冷却部之间,是为了安装冷却水包和搅拌器,隔离熔化部气流对冷却部玻璃成型的影响。

因为熔化好的玻璃液黏度小不适于成型,必须通过冷却使其黏度达到成型所需要的黏度范围要求,因此设置了冷却部。冷却部结构与熔化部结构基本相同,也分上部空间和下部池窑两部分,不同之处就是胸墙的高度低于熔化部,池底深度比熔化部浅。冷却的方式一般采用自然冷却,主要依靠玻璃液面以及池壁池底向外均匀散热来进行缓慢冷却。

1、卡脖、冷却部的结构

(1)卡脖的结构

自从浮法工艺在在国内诞生以来,常采用的卡脖结构主要有矮碹结构和吊墙结构。

①矮墙结构国内浮法玻璃生产线最早使用的矮墙,其熔化部后山墙碹、卡脖碹和冷却部前山墙碹的碹跨和股高是一样的或相差很小,胸墙高度不高,有的卡脖碹碴砖直接搭在池壁上,这样做可尽可能性地减少空间开度,(即业内常讲的不使用搅拌器的卡脖结构)。随着技术的发展以及人们对玻璃质量要求的提高,卡脖处逐渐安装了搅拌器。搅拌器有两种形式:一种是垂直式;另一种是水平式。垂直式搅拌器从卡脖碹顶预留孔插入,这种搅拌器对卡脖胸墙的高度不作要求。水平式搅拌器是从卡脖两边胸墙插入的,成对安装使用,此种形式在碹顶不需留孔,但在卡脖胸墙上需留有高300mm左右及点足够长的孔,以便于搅拌器的插入。因此要求胸墙必须抬高。这种结构也为将大水管从熔化部末端至卡胸处创造了条件。

②吊墙卡胸结构矮碹结构由于考虑到碹的安全性,股跨比不能太小,因此其空间开度比较大,其分隔效果不太好,特别是水平搅拌器的使用,胸墙高度的增加,其使用效果更差,为此出现了带吊墙的卡脖结构。此种结构可将股跨比设计得大一些,增加其安全性,空间分隔靠吊墙实现。这种吊墙目前国内外均可生产,吊墙用耐火材料多为优质硅砖和烧结莫来石砖,砖的形态为工字形或王字形,整面墙靠每块砖咬挂而成,两边用钢板夹紧。

除了以上所述两种卡脖结构外,近年来从国外引进技术的还有U形吊碹、双L形吊碹以及吊平碹等多种形式的卡脖结构,这些卡脖结构形式复杂,且投资较大,在国内一些高档玻璃和圧延玻璃生产线得到应用和推广。

(2)冷却部的结构

冷却部的作用是将已熔化好的玻璃液均匀冷却降温。

冷却部结构与熔化部结构基本相同,也包括大碹、碹碴、胸墙、池壁和池底及相应的钢结构等组成。只不过池深可以和熔化部相同也可以略低一些,大碹跨度比熔化部要小一些,因此结构上略微简单一点,但所用耐火材料根据玻璃质量的要求有所不同。高档玻璃的冷却部池壁以及池底铺面砖一般采用α-βAl2O3砖,铺面砖下的捣打层用α-βAl2O3质捣打料,这些材料的发泡指数为零,污染指数为零,因此对玻璃液不构成污染。胸墙、大碹采用优质硅砖较好。

四小炉、蓄热室

小炉和蓄热室是熔窑结构的主要组成部分,浮法玻璃熔窑的小炉和蓄热室结构组合形式根据燃料形式的不同有两种形式,即箱形组合和半箱形组合。燃油、天然气的熔窑采用箱形组合,燃发生炉煤气的熔窑采用半箱形组合。浮法玻璃熔窑的小炉和蓄热室设置在池窑的两侧,对称布置,根据熔化量的规模不同,设4~10对小炉。

1、小炉

(1)名称

浮法玻璃熔窑小炉根据使用燃料的不同而有不同的类型。

燃料是发生炉煤气的,其燃烧设备称之为小炉,小炉口称之为喷火口。

燃料是重油或其他液体燃料时,采用的是喷嘴(既燃烧器),小炉口应称之为喷出口。

(2)小炉的作用

小炉是玻璃熔窑的重要组成部分,是使燃料和空气预热、混合,组织燃烧的装置。它应该能保证火焰有一定的长度、亮度、刚度、有足够的覆盖面积,不发飘、不分层,还要满足窑内所需的温度和气氛的要求。

煤气和空气分别由蓄热室预热后经过垂直通道(上升道)和水平通道进入预燃室,在预燃室内进行混合和部分燃烧,并以一定方向和速度喷入窑内继续燃烧,烟气这时则进入对面的小炉,因此,小炉起到一个空气通道和排烟通道的作用。但是,小炉的结构对于窑内的传热情况及玻璃熔化过程都有着重要的作用。

目前,国内生产规模为400t/d以上的浮法玻璃熔窑采用6对小炉的居多,700t/d以上的有的采用7对小炉,最多达到10对小炉。在小炉的设计时由于燃油、燃煤以及燃气的特性决定了其小炉技术参数的差异性。如:小炉喷出口的总面积与熔化部面积的比值以及小炉斜碹的下倾角度等。

(1)小炉的结构

小炉由顶碹、侧墙和坑底组成。小炉与熔窑连接的碹称为小炉平碹,与蓄热室连接的碹称为后平碹,中间部分碹为斜碹。图1-6为烧油小炉的结构。碹和侧墙、坑底组成小炉空间。浮法玻璃熔窑的平碹采用插入式结构,做成上平下弧形,并与熔窑胸墙匹配,前述防止胸墙内倾的措施是将胸墙设计面内倾式,并且大碹边碹砖直接压在胸墙上,因此小炉平碹也要相应设计成如图1-4所示的结构,这种结构也是目前普遍采用的。

图1-6 烧油小炉的结构

1-蓄热室顶碹;2-小炉后平碹;3-小炉斜碹;4-小炉平碹;5-熔化部;

6-小炉坑底;7-蓄热室内侧墙;8-格子体;9-蓄热室外侧墙

图1-8 小炉平碹

小炉斜碹是组成小炉的重要部位,也是容易被烧损的部位,斜碹的设计要与相应的小炉平碹结构匹配,如图1-8所示(图1-8是与图1-7的平碹相对应的斜碹结构)。

后平碹、侧墙和坑底结构较简单,这里就不一一叙述了。

(2)烧煤气小炉的结构特点

烧煤气小炉在结构上与烧油小炉除了上述不同点外,最主要的不同之处还有小炉舌头。通常小炉舌头伸出长度为400~450㎜,如图1-9所示。

图1-7 小炉斜碹图1-9 烧煤气小炉的结构一般烧煤气小炉口的高度为400~500㎜,拱的股跨比为1:10.

蓄热室烧煤气小炉的斜碹形式目前有两种:一种是直通形;另一种是喇叭形。直通形小炉的优点是:煤气呈扁平状出上升道,容易与助燃空气混合,混合气体对小炉侧墙的冲刷小,而且小炉结构简单,施工方便。喇叭形小炉的优点是:喇叭形状强制性地使火焰形成扩散状,可提高火焰的覆盖面,并能改善因煤气上升道间距较小而造成维修环境恶劣的状况。

2、蓄热室

蓄热室实际是一种余热回收装置——属于废气余热利用系统的一部分,蓄热室属于废气余热利用系统的一部分,它是利用耐火材料做蓄热体(称为格子砖),蓄积从窑内排出烟气的部分热量,用来加热进入窑内的空气。当窑内高温废气流经蓄热室格子体时,将格子砖加

热,在这一过程中,格子砖的温度逐渐升高。存储在格子体内的热量在火焰转向后,将流经此格子砖的煤气或空气加热,从而保证火焰有足够高的温度,以满足玻璃熔制的需要,在这一过程中,格子砖温度逐步降低,如此循环。所以,蓄热室的作用就是将废气中所含的热量通过格子砖的吸收、蓄热作用,然后传给空气和煤气,将其加热到一定的温度,以达到节约燃料、降低成本的目的。

玻璃熔窑内地废气从窑内排出时的温度为1400~1500℃左右,可将煤气预热到800~1000℃,空气预热到1000~1200℃,废气排出蓄热室时代温度在600℃左右。

(1)蓄热室的结构

蓄热室由顶碹、内外侧墙、端墙、隔墙、格子体及炉条等组成。浮法玻璃熔窑蓄热室顶碹厚度一般都等于或大于350㎜,用优质硅砖砌筑,中心角为90°~120°,要视具体情况而定。侧墙、端墙、隔墙一般厚度为580mm,一般下部用低气孔黏土砖砌筑,中、上部用碱性耐火材料砌筑,也有上部用硅质材料的。

(2)蓄热室的形式为了提高蓄热室的蓄热性能以及使用寿命,国内外蓄热室有很多形式,但就国内浮法玻璃熔窑而言,最常见的有连通式结构、分隔式结构、半分隔式结构、两小炉连通式结构、两段式结构、全连通式结构等等。

连通式结构是熔窑一侧小炉下面的空气蓄热室为连通的一个室,煤气蓄热室也为连通的一个室。这种形式由于气流发布不均,容易形成局部过热使格子砖很快烧坏,目前已很少使用。

分隔式结构是将蓄热室以各个炉为分隔单元,各个室的气体不能串通,气体分配各个室的分支烟道上的闸板来调节。这种结构形式的优点是,气体分配调节比较便利,热修格子体比较方便,但由于隔墙较多,减少了格子体的体积,格子体的热交换面积较小,热效率不高。

半分隔式结构是指将蓄热室炉条以上的烟道以每个小炉分隔,蓄热室本身不分隔,气体分配调节闸板仍然在分支烟道上。

两小炉连通式结构是将每两个小炉分隔成一个室,而一个小炉一个分支烟道,来调节每个小炉的气体分配,这种结构较分隔式结构,减少了隔墙数量,增加了格子体的热交换面积,提高了热效率。但由于减少了隔墙数量,侧墙稳定性会差一些。另外,由于两两连通,给热修格子体带来了一定的困难,必须两个小炉一起修,会严重影响生产。这种形式的蓄热室目前在大型浮法玻璃熔窑上应用较多。

两段式结构是指将一个单一的蓄热室分成两个蓄热室,其间用隔墙分开,用一个垂直通道连接,即将蓄热室分成高温区和低温区的两部分。采用这种结构主要是防止硫酸钠的气、液、固态转化对格子砖的侵蚀,使这个转化在连接通道内进行,以延长格子砖的使用期限。由于这种形式的结构复杂,目前已很少使用。

全连通式结构形式是指将熔窑一侧的整个蓄热室连通为一个室,而分支烟道又按每个小炉一个来调节各个小炉的气体分配。这种结构的蓄热室最大限度地增加了格子体的热交换面积,热效率较高。但由于没有隔墙,侧墙的稳定性较差,如果局部格子砖倒塌、堵塞,将无法进行热修。目前,这种结构形式的蓄热室在大型浮法玻璃熔窑上也有使用。

(3)炉条炉条是承受格子体质量的耐火材料结构,实际上它也是一个拱碹结构,只不过是由单一的碹砖砌成的一条一条拱碹,条与条之间留有空隙以便通气,所以称之为炉条碹。

由于炉条碹是承受格子体重量的拱碹(上面码放格子砖),因此拱碹上面必须找平。找平的方法与两种,一是在拱碹的弧形上面用爬碴砖砌平,另一种是直接用上面平直而下面成弧形的碹砖砌筑。

炉条碹的宽度高高度,要根据炉条所承受的格子体质量计算来确定,一般宽度不小150mm,高度不小于300mm,每条炉条间距不小于150mm。为了使意单一的炉条稳定性增

加、整体性增强,通常在炉条碹上加两道加强筋碹砖。炉条部位耐火材料一般用低气孔黏土砖砌筑。

(4)格子体格子体是蓄热室的传热部分,是蓄热室结构中最重要的组成部分。格子体的结构是否合理,不仅影响蓄热室的使用寿命,而且直接影响蓄热室的蓄热效能,进而影响整个熔窑的热效率。因此要求组成格子体的耐火材料能耐高温、耐侵蚀、蓄积热量多、传热快、热振稳定性好,并要求整个格子体具有很好的结构稳定性。

五烟道

(1)烟道的作用及分类

烟道是气体的通道,这就是烟道的作用。燃料在窑内燃烧后的废气从小炉下行到蓄热室,再经烟道和烟囱排入大气。烟道除了用于排烟供气以外,还可以通过设置闸板调节气体流量和窑内压力;烟道的作用是利用它的高度产生一定的抽力,来克服窑炉系统,包括烟囱本身的阻力,使空气能以一定的速度喷入窑内,并可将燃烧后的产物排出窑外。

烟道系统中包括空气烟道、煤气烟道、空气支烟道、煤气支烟道、中间烟道、总烟道及通向余热锅炉的烟道。

(2)烟道的结构形式

烟道上面是拱碹结构,碹的中心角一般为90°,碹厚为230㎜下面为矩形断面,一般高度要稍微大于或等于宽度。烟道的结构形式如图1-13所示,由于经过烟道的废气温度较高(500~600℃),内墙用耐火粘土砖砌筑,外墙用红砖砌筑,底部用混凝土做基础。为了避免混凝土温度过高,一般铺设硅藻土保温砖。地上烟道或室外烟道碹顶和侧墙一般加有保温层,以防止温降过大。

(3)烟道的布置

①烧重油或天然气烧重油或天然气的浮法玻璃熔窑烟道布置比较简单,烟道布置在蓄热室内侧即窑池下方,其基本布置形式如图1-14所示,由总烟道、支烟道和分支烟道组成。在分支烟道上设有烟气闸板和助燃风进口,在支烟道上设有空(烟)气交换机闸板(俗称大闸板或换向闸板),在总烟道上设有转动闸板以调节窑压。在烟囱根设有一道闸板以调节抽力。

图1-13 烟道横剖面示意图图1-14 燃油浮法玻璃熔窑烟道布置

1-废热锅炉闸板; 2-蓄热室炉条下部; 3-支烟道; 4-

空(烟)气交换机闸板;5-助燃风支管; 6-分支烟道闸板;

7-烟囱大闸板; 8-转动闸板; 9-总烟道; 10-大烟囱; 11-

分支烟道

②烧煤气烧煤气的浮法玻璃熔窑由于有空气和煤气两条烟道,并且有煤气换向跳罩,其烟道布置就较复杂,目前采用的基本布置方式如图1-15所示。

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

浮法玻璃熔窑天然气和重油燃烧系统的比较

浮法玻璃熔窑天然气和重油燃烧系统的比较 诸葛勤美王曙华王伟峰(中国新型建材设计研究院杭州市310003) 摘要 从天然气和重油的组成与性能,两种燃烧系统的燃料用量及成本,工艺及设备材料费和烟气等方面对天然气和重油燃烧系统进行比较,从而得出天然气燃烧系统比重油燃烧系统更优越。 关键词天然气重油燃烧浮法玻璃熔窑 中图分类号:TQ171 文献标识码:A 文章编号:1003-1987(2013)07-0003-03 Comparison of Natural Gas with Heavy Oil for Float Glass Furnace Zhuge Qinmei, Wang Shuhua, Wang Weifeng (China New Building Materials Design and Research Institute, Hangzhou, 310003)Abstract: This article compared the natural gas and heavy oil from the compositions and properties of natural gas and heavy oil, fuel consumption and cost of the two kinds combustion system, technology and equipment material fee, as well as flue gas and other aspects, and concluded that the natural gas combustion system is more superior than heavy oil combustion system. Key Words: natural gas combustion system,heavy oil combustion system 0 引言浮法玻璃生产所用的燃料主要有重油、柴油、煤焦油、天然气、焦炉煤气、发生炉煤气和石油焦等,综合考虑熔窑寿命、环境保护、生产规模、生产成本、产品品质等各方面因素,应首选天然气或者重油。 1 燃料的组成与性能比较 1.1 天然气的组成与性能天然气是指通过生物化学作用与地质变质作用,在不同的地质条件下生存迁移,并于一定压力下储集在地质构造中的可燃气体。通常根据形成条件不同,分为油田伴生气、气田气及凝析气田气。天然气是一种混合气体,其组成随气田和产气层不同而异。根据天然气公司提供的资料,西气东输的天然气组分见表1。 表1 西气东输的天然气组分/% 组分 C1 C2 C3 C4 C5 C6+ CO2 N2 100 96.1 1.74 0.58 0.28 0.03 0.09 0.62 0.56 西气东输的天然气低位热值约34.81 MJ/Nm 3 (8 320 kcal/ Nm 3 ),高位热值约38.62 MJ/Nm 3 (9 230 kcal/ Nm 3 )。天然气热值稍低于重油,但比焦炉煤气、发生炉煤气高很多,属高热值燃料。天然气燃烧后几乎不含硫、粉尘和其它有害物质,是一种洁净环保的优质能源。天然气也是较为安全的燃气之一,比空气轻,一旦泄漏,会立即向上扩散,不易积聚形成爆炸性气体,安全性较高。 1.2 重油的组成与性能重油又称渣油,是原油提取汽油、柴油等后的剩余重质油,其特点是分子量大、黏度高,密度一般在0.82~0.95 g/cm 。重油的发热量很高,一般为40~42 MJ/kg(9 560~10 038 kcal/kg)。重油的燃烧温度高,火焰的辐射能力强,是玻璃、钢铁等生产的优质燃料。重油的化学组成比较复杂,但一般都是碳链在16 以上的烷属烃、环烷烃(如环己烷、环戊烷的衍生物)及芳香烃(如苯、甲苯)。重油中的可燃成分较多,含碳86%~89%,含氢10%~12%,同时含有少量的氮、氧、硫等。重油中的硫虽然含量不大,但危害甚大,作为燃料用时,必须严格控制。重油中的水分是在运输和贮存过程中混进去的。重油含水多时,不仅降低了重油的发热量和燃烧温度,而且还容易由于水分的汽化影响供油设备的正常运行,甚至影响火焰的稳定。水分太多应设法去掉,目前一般都是在贮油罐中用自然沉淀的方法使油水分离。 3.1 工艺比较 (1)天然气燃烧系统工艺流程 天然气管:安全放散天然气调压站分成7 根支管过滤安全切断调压总管计量天然气喷枪支管换向流量调节支管计量 2 燃料用量及成本的比较冷却气:以600 t/d 浮法玻璃熔窑为例,重油和天然气用量计算如表2。空压站总管换向天然气喷枪 (2)重油燃烧系统工艺流程重油管:表2 重油和天然气用量泄压回油稳压回油油站初级加热粗过

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

浮法玻璃熔制技术

浮法玻璃熔制技术 1、浮法玻璃熔制技术工艺流程 浮法玻璃的熔制过程是将合格的配合料经过高温加热形成均匀、纯净、透明并符合成型要求的玻璃液的过程,是浮法玻璃制造过程中的主要过程之一。熔制速度和熔制的合理性对玻璃的产量、质量、合格率、生产成本、燃料消耗和池窑寿命等影响很大。 浮法玻璃熔制技术工艺流程示意图: 2、玻璃熔制工艺原理 浮法玻璃的熔制过程是一个很复杂的过程,包括一系列的物理、化学、物理化学反应,而这些反应的进行与玻璃的产量和质量有密切关系。各种不同配合料在熔制过程中发生的反应见下表: 各种不同配合料在熔制过程中发生的反应

根据熔制过程中的不同特点,从加热配合料到最终成为符合成型要求玻璃液的过程,可分为五个阶段,即硅酸盐形成阶段、玻璃液形成阶段、玻璃液澄清阶段、玻璃液均化阶段和玻璃液冷却阶段。直观地,也可分为配合料堆的反应烧结阶段;硅酸盐形成及其熔化物熔化阶段,主要是残余石英砂溶解于已形成的硅酸盐中;澄清消除气泡阶段,主要是降低各种气体在玻璃液中的过饱和程度;逐渐冷却至成型温度阶段。 (1)硅酸盐形成阶段配合料入窑后,在800~1000℃温度范围发生一系列物理的、化学的和物理-化学的反应,如粉料受热、水分蒸发、盐类分解、多晶转变、组分熔化以及石英砂与其他组分之间进行的固相反应。这个阶段结束时,大部分气态产物从配合料中逸出,配合料最后变成由硅酸盐和二氧化硅组成的不透明烧结物。硅酸盐形成速度取决于配合料性质和加料方式。 (2)玻璃形成阶段当温度升到1200℃时,烧结物中的低共熔物开始熔化,出现了一些熔融体,同时硅酸盐与未反应的石英砂粒

反应,相互熔解。伴随着温度的继续升高,硅酸盐和石英砂粒完全熔解于熔融体中,成为含大量可见气泡、条纹、在温度上和化学成分上不够均匀的透明的玻璃液。 在浮法玻璃生产过程中,硅酸盐形成阶段与玻璃形成阶段之间没有明显的界限,即在硅酸盐阶段尚未结束时,玻璃液形成阶段已经开始,并且硅酸盐形成进行得极为迅速,而玻璃液形成却很缓慢。这是由于在实际生产中,配合料被直接投入到1300℃左右的投料池中,硅酸盐形成极快(约3~5min ),而玻璃液的形成必须等待石英砂粒的完全熔解。因此要划分这两个阶段很困难,所以生产上把这两个阶段视作一个阶段,称为配合料熔化阶段。 (3)玻璃液澄清阶段随着温度继续升高,达到1400~1500℃时,玻璃液的粘度约为10Pa·s ,玻璃液在形成阶段存在的可见气泡和溶解气体,由于温度升高,体积增大,玻璃液粘度降低而大量逸出,直到气泡全部排出。 (4)玻璃液均化阶段当玻璃液长时间处于高温下,由于对流、扩散、溶解等作用,玻璃液中的条纹逐渐消除,化学组成和温度逐渐趋向均一。此阶段结束时的温度略低于澄清温度。 玻璃液的均化过程早在玻璃液形成阶段时已开始,然而主要的还是在澄清后期进行。它与澄清过程混在一起,没有明显的界限,可以看作一面澄清,一面均化,且澄清加速了均化的进程,均化的结束在澄清之后,并一直延续到冷却阶段。此外,搅拌是提高均匀性的一个很好的方法。

关于浮法玻璃熔窑改进的几项措施

关于浮法玻璃熔窑改进的几项措施 3唐春桥1,孙兴银2,袁建平2,戴玖凤2 (1.深圳南玻浮法玻璃有限公司,广东 深圳 518067; 2.江苏华尔润集团有限公司,江苏 张家港 215600) 摘要:目前,我国的浮法玻璃熔窑结构设计技术有了较大的发展,使熔窑的熔化能力和熔制质量不断提高,熔窑寿命不断延长,熔窑能耗不断降低。但随着新技术的不断涌现,熔窑的结构设计仍有值得改进和完善的地方。本文就浮法玻璃熔窑改进的几项措施进行探讨,以供同仁参考。 关键词:浮法玻璃熔窑;结构;改进措施 中图分类号:T Q171.6+23.1 文献标识码:B 文章编号:1000-2871(2005)05-0023-02 So m e Acti on s Taken for I m prove m en t of Floa t Gl a ssM elti n g Furnace TAN G Chun -qiao,SUN X ing -y in,YUAN J ian -ping,DA I J iu -feng 1 概述 20世纪90年代初期,随着托利多熔窑技术的引进,国内平板玻璃熔窑在设计水平、熔化能力、窑炉寿命、能耗热效、玻璃熔制质量等方面均取得了跨越式的发展,走出了一条引进、消化、创新的路子。如今,国内设计的浮法熔窑,熔化能力从400t/d,向500t/d 、600t/d 、900t/d 稳步发展;窑龄也从5年向8年和10年迈进;熔制缺陷如气泡、结石等的大量减少,使玻璃质量从普通建筑级提高到汽车级和制镜级。 目前,国内针对浮法玻璃熔窑又进行了多方面的设计创新,如采用全等宽投料池、加长1# 小炉到前脸的间距、加长澄清带长度、大碹保温采用复合保温结构、全连通蓄热室改为“全分隔式”或“分组式”蓄热室、集中式烟道布置、采用水平搅拌和垂直搅拌混合的卡脖结构等等。但是浮法熔窑结构设计仍有改进和完善的空间,下面就浮法玻璃熔窑改进的几项措施进行探讨。2 浮法玻璃熔窑改进措施探讨 2.1 设置辅助电助熔装置 目前,在浮法玻璃熔窑上采用辅助电熔装置熔制玻璃的企业为数不多,主要集中在少数合资或外资企业和极少数国内的浮法玻璃企业中,其好处是:⑴在配合料料区采用电助熔,可大幅度提高料层下面的玻璃液温度,使料层获得更多的热量,提高料层的熔化能力,这样可大幅度增加浮法玻璃产量。而在热点区域采用电助熔,可强化热点、突出热点,从而提高玻璃液质量。⑵生产着色玻璃时,开启电加热可提高熔窑的池底温度,加强池底玻璃液对流,减少不动层厚度,同时,玻璃液可获得更多的热量,通过对流传递到配合料层,从而加快配合料的熔化,在一定程度上补偿空间热量的投入,降低熔窑的火焰空间热负荷,延长窑炉寿命。 第33卷第5期2005年10月玻璃与搪瓷G LASS &E NAMEL Vol .33No .5Oct .2005 3收稿日期:2004-10-10

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构 浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。 一投料池 投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。 1.投料池的尺寸 图1-1 浮法玻璃熔窑平面图 1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室 图1-2 浮法玻璃熔窑立面图 1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。 (1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。 (2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使

《玻璃专业熔制车间毕业设计》指导书分析

玻璃专业熔制车间毕业设计指导书 一、说明书 1.总论: 内容:生产方法概况、特点、设计指导思想以及设计原则。 2.玻璃的成分设计 内容:设计原则、成分确定及性质计算(熔化温度、温度-粘度曲线、退火温度和密度)3.总工艺计算 内容:(1)主要技术经济指标的确定; ①年工作日:冷修年,310~320天;非冷修年365天。 ③玻璃原板宽度:2.5~4.5m。 ④机组利用率:96~98%。 ⑤总成品率:72~75%。可达90~95%。 ⑥碎玻璃损失率:0.5%。 (2)工艺平衡计算; ①玻璃成品产量的计算: 计算出各种规格产品的产量;各种规格产品的全年平均生产天数。 ②玻璃液熔化量: ③配合料需要量: 4.熔窑设计 内容:(1)熔窑种类的确定; (2)熔窑结构设计; ①熔化部设计: 熔化率的初步确定: 平板池窑:熔化率K=2.0~3.0(t/m2d); 500吨窑,K=2.35(t/m2d);700吨窑,K=2.78(t/m2d);

熔化部面积的初步确定: 熔化面积:F m = Q k(m 2) 式中:Q —熔窑的产量(t/d) 熔化部窑池的长度和宽度的确定: 熔化区宽度的确定: 平板池窑:B m = 0.75Х10-2Q + 6.75 (m) TOLETO公司的经验公式: B m = 95002.5 Q/400 (m) 熔化区长度的确定:l m = K1ХB m (m)式中:K1—熔化区的长宽比,一般为1.8~2.4。 l m = d1 + d2(n-1)+ 1.0 式中:d1—1#小炉中心线到前脸墙的距离,一般为3~4m, 900吨窑达6.8mm。 d2—小炉中心线间距,一般为2.8~3.5m。 n—小炉对数。 澄清区长度的确定:一般在8.3~19m。 熔化部窑池深度的确定:熔化部窑池深度为1.2m。 熔化部面积的调整和复核: 熔化率的复核: 熔化部窑池大碹股跨比的确定:大型窑为1 7.5~ 1 8,中小型窑为 1 8~ 1 9。 大碹的厚度确定: 熔化部胸墙的高度和厚度的确定: 熔化部胸墙的高度:由燃料的种类、喷嘴的安装方式确定。平板池窑:烧煤气时,为0.8 ~ 0.9m; 烧油时,为1.5 ~ 2.0m。 熔化部胸墙的厚度:450 ~ 500mm; 熔化部火焰空间的高度和宽度的确定: 火焰空间的宽度:比窑池宽400 ~ 500mm;

浮法玻璃基础知识

浮法玻璃基础知识汇总 浮法玻璃是我国上世纪70年代末,由洛阳玻璃厂率先引进英国皇家浮法玻璃生产线。 它是在锡槽里,玻璃浮在锡液的表面上出来的。因此,这种玻璃首先是平度好,没有水波纹。用于制镜、汽车玻璃。不发脸,不走形,这是它的一大优点。其次是浮法玻璃选用的矿石石英砂,原料好。生产出来的玻璃纯净、透明度好。明亮、无色。没有玻璃疔,气泡之类。第三是结构紧密、重,手感平滑,同样厚度每平方米比平板比重大,好切割,不易破损。全国30多条生产线都严格按照国家标准生产,这种玻璃是民用建筑的最好玻璃。它的价格,同等厚度相比,仅比平板玻璃每平方米高4元左右。 生产工艺: 浮法玻璃生产的成型过程是在通入保护气体(N2及H2)的锡槽中完成的。熔融玻璃从池窑中连续流入并漂浮在相对密度大的锡液表面上,在重力和表面张力的作用下,玻璃液在锡液面上铺开、摊平、形成上下表面平整、硬化、冷却后被引上过渡辊台。辊台的辊子转动,把玻璃带拉出锡槽进入退火窑,经退火、切裁,就得到平板玻璃产品。浮法与其他成型方法比较,其优点是:适合于高效率制造优质平板玻璃,如没有波筋、厚度均匀、上下表面平整、互相平行;生产线的规模不受成形方法的限制,单位产品的能耗低;成品利用率高;易于科学化管理和实现全线机械化、自动化,劳动生产率高;连续作业周期可长达几年,有利于稳定地生产;可为在线生产一些新品种提供适合条件,如电浮法反射玻璃、退火时喷涂膜玻璃、冷端表面处理等。 普通平板玻璃与浮法玻璃有什么不同 A:普通平板玻璃与浮法玻璃都是平板玻璃。只是生产工艺、品质上不同。 普通平板玻璃是用石英砂岩粉、硅砂、钾化石、纯碱、芒硝等原料,按一定比例配制,经熔窑高温熔融,通过垂直引上法或平拉法、压延法生产出来的透明五色的平板玻璃。普通平板

浮法玻璃熔窑设计的改进

浮法玻璃熔窑设计的改进 宋 庆 余 (蚌埠玻璃工业设计研究院 蚌埠市 233018) 近些年来,我国浮法玻璃熔窑的设计技术取得了长足的发展,20年前中国只有一座浮法玻璃熔窑,当时的熔化能力只有230t/d,窑炉的寿命只有3年,熔化率为1.13t/m2?d,热耗11675kJ/kg玻璃液,玻璃质量仅能达到当时厂标的二、三等品,总成品率为65%。现在我国已有浮法窑61座,我国自己设计的最大吨位为600t/d的窑已投产2年,与20年前相比,熔化能力增加了2.6倍,熔化率达到2.26t/m2?d,提高了近一倍,热耗为6688kJ/ kg玻璃液,降低了43%,产品质量大幅度提高,制镜级和加工级玻璃达到90%,总成品率大于80%。以上的浮法玻璃熔窑技术指标,我国只有少数生产线可以达到,多数浮法玻璃熔窑达不到。这少数的浮法玻璃熔窑与国外先进的相比还有不小的差距。本文主要讨论目前我国浮法玻璃熔窑应如何改进。1 投料池设计的改进 投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的位置、泡界线的稳定,最终会影响到产品的质量和产量。 1.1 应设计与熔化部等宽的投料池 投料池越宽,配合料的覆盖面积就越大,配合料的吸热是与覆盖面积大小成正比的。因此采用与熔化部等宽或接近等宽的投料池,有利于提高热效率,有利于节能,有利于提高熔化率。 1.2 采用无水包的45度“L”型吊墙 传统的“L”型吊墙都有水包,由于水包的寿命短、易损坏、漏水,造成吊墙砖的炸裂,吊墙砖实际上在热工作状态下无法更换,这样就影响窑炉的寿命。所谓无水包吊墙,就是水包被一排吊砖所代替,这就解决了因水包漏水所造成的吊墙砖炸裂问题,同时也解决了更换损坏水包对生产的影响。1.3 投料口采用全密封结构 投料池内的压力一般是正压,所以由窑内向外部的溢流和辐射热损失较大。采用全密封结构,构成预熔池,将减少这部分热损失,使配合料进入熔化池之前能吸收一定的热量,将其中的水分蒸发并进行预熔,这样料堆进入熔化池后很快就会熔化摊平,因此加速了熔化过程。同时,由于料堆表面被预熔,就减少了粉料被烟气带入蓄热室的量,也减轻了飞料对熔窑上部结构的化学侵蚀。投料池采用全密封结构,可以防止外界的干扰,保证窑内压力制度、温度制度的稳定,保证泡界线的稳定。特别是保证玻璃对流的稳定,有利于减少生料对池壁砖的侵蚀,延长窑炉寿命,是一条宝贵的经验。 2 熔化部设计的改进 2.1 加长1#小炉至前脸墙的距离 加长1#小炉至前脸墙的距离,可开大1#小炉,提高熔化效率和热效率。从辐射传热公式可以清楚地看出这个问题。 Q=C? T1 100 4 - T2 100 4 ?F 式中:Q——配合料吸收的热量,kJ; T1——火焰的温度,K; T2——配合料的温度,K;

第二章 玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下: 目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响

玻璃窑炉设计技术之单元窑

玻璃窑炉设计技术之单元窑 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧,通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。 单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650~850℃。大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。 配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计

浮法玻璃池窑毕业设计(理工类)

第1章绪论 1.1 本设计的意义、目的及设计任务 浮法玻璃池窑是浮法玻璃生产的重要热工设备,设计合理与否直接关系到浮法玻璃的质量等级。我国许多的池窑工作者积累了大量的宝贵经验并且吸取国外一些先进的设计理念将之应用到池窑设计当中,取得了很大的进步,但在浮法玻璃池窑的寿命、玻璃质量能耗等技术指标方面与先进的浮法玻璃池窑仍然还有一定的差距。因此,本设计可以让学生很好的了解浮法玻璃池窑的结构及各部分工作原理,使学生对浮法玻璃池窑生产工艺流程有一个全面的了解。同时,可以培养学生严谨的工作作风和求真务实的科学态度,弄清浮法玻璃池窑工艺制度的设计方法,进一步培养学生独立思考、综合运用已学理论知识及其它途径分析和解决实际问题的工作能力、锻炼学生理论结合实际的能力、制图和看图的能力、设计和科研的能力。 本设计要求设计日产600吨平板玻璃工厂浮法玻璃池窑结构。需要依次进行玻璃成分设计,配料计算、浮法总工艺计算;玻璃工厂储库、堆场及堆棚设计计算;玻璃池窑结构设计计算;绘制池窑结构图及耐火材料排布图;绘制全厂总平面布置图。 1.2 目前国内外浮法玻璃发展状况 1、国外浮法玻璃发展状况 自1959年2月,英国Pilkington玻璃兄弟有限公司宣布浮法工艺成功以来,浮法玻璃技术得到了迅速推广。截止2001年末,世界各地区已建成投产的浮法玻璃生产线约280条,其中亚洲约130条,欧洲79条,北美洲56条,南美洲10条,非洲和大洋洲5条,280条浮法线日熔化总能力约为13万吨,年生产能力可达3600万吨以上[1]。其中,西欧占27%,约894万吨;东欧占5%,约165万吨;北美占23%,约761万吨;中国占30.8%,约1020万吨(2.04亿重量箱);日本占11%,约364万吨;非洲及中东地区占3%,约99万吨[2]。截至2003年底,全世界已有36个国家和地区(不包括中国内地)建成了140多条浮法玻璃生产线,总产量达到3亿吨左右,并占到平板玻璃总量的80%以上。截至2010年,世界浮法玻璃生产利用效率已经高达94%,库存约小于6%,其中市场消耗优质浮法玻璃已经超过了10亿重量箱以上。目前,国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5~25mm之间各种厚度不等的浮法玻璃,其玻璃

浮法玻璃成型技术

浮法玻璃成型技术 1、浮法玻璃成型的定义 浮法玻璃成型工艺过程为熔化、澄清、冷却的优质玻璃液在调节闸板的控制下经流道平稳连续地流入锡槽,在锡槽中漂浮在熔融锡液表面,在自身重力的作用下摊平、在表面张力作用下抛光、在主传动拉引力作用下向前漂浮,通过挡边轮控制玻璃带的中心偏移,在拉边机的作用下实现玻璃带的展薄或积厚并冷却、固型等过程,成为优于磨光玻璃的高质量的平板玻璃。 玻璃液在前进的过程中经历了在锡液面上的摊开、达到平衡厚度、自然抛光以及拉薄或积厚四个过程。 浮法玻璃的成型设备因为是盛满熔融锡液的槽形容器而被称作 锡槽,它是浮法玻璃成型工艺的核心,被看作为浮法玻璃生产过程的三大热工设备之一。 2、浮法玻璃成型工艺过程 池窑中熔化好的玻璃液,在1100℃左右的温度下,沿流道流入 锡槽,由于玻璃的密度只有锡液密度的1/ 3 左右,因而漂浮在锡液面上,完成玻璃的平整化过程,然后逐渐降温,在外力的作用下冷却成板。玻璃带冷却到600~620℃时,被过渡辊台抬起,在输送辊道牵引力作用下,离开锡槽,进入退火窑,消除应力,再经质量检测,纵横切割,装箱入库。为了防止锡液在高温下的氧化,通常通入弱还原性的保护气体,以提高玻璃质量。 玻璃带成型时的作用力有两种,即表面张力和自身重力,前者阻

止玻璃液无限摊开,对玻璃表面的光洁度影响极大;后者则促使玻璃液摊开。当表面张力与自身重力平衡时,漂浮在锡液面上的玻璃带就获得自然厚度。 3、浮法玻璃成型工艺因素 对浮法玻璃成型起决定作用的因素有玻璃的粘度、表面张力和自身的重力。在这3 个因素中,粘度主要起定型的作用,表面张力主要起抛光的作用,重力则主要起摊平作用。但是三者对摊平、抛光和展薄都有一定作用,这三者结合才能很好的进行浮法玻璃的生产。 玻璃液刚流入锡槽时,处于自身重力和液-液-气三相系统表面张力的作用下。随着玻璃液的不断流入,在自身重力影响下,玻璃液沿锡液表面摊开,并在锡液面上形成了玻璃液的流体静压,作为玻璃带成型的源流。在1025℃左右的温度范围内,在自身重力和表面张力的作用下,玻璃液以自然厚度(7mm 左右)向四周流动摊开,此过程称为玻璃的摊平过程。 在玻璃的摊平过程中,主要涉及玻璃液的平整化,亦即摊得平不平,这是生产优质浮法玻璃之关键。生产实践证明,欲得到平整的玻璃带,必须具备下述条件。 (1)适于平整化的均匀的温度场。玻璃液在锡液面上摊平必须有适于平整化的温度范围。适于浮法玻璃自身摊平的温度范围为1065~996℃。只有在此范围内,才能使玻璃带摊得厚度均匀、表面平整。 (2)足够的摊平时间。玻璃的平整化除必须有一定的温度范围,以达到一定的表面张力外,还必须具备足够的摊平时间,以保证表面

玻璃浮法熔窑毕业设计开题报告

玻璃浮法熔窑毕业设计开题报告 毕业设计(论文)开题报告 系(部): 材料科学与工程 2012年3月9日课题名称日产600吨天然气浮法熔窑及锡槽初步设计—普通玻璃 毕业设计 B080106 学生姓名丁博专业班级课题类型 指导教师陈文娟职称副教授课题来源教学 1. 综述本课题国内外研究动态,说明选题的依据和意义 1.1选题背景 自1959年2月,英国Pilkington玻璃兄弟有限公司宣布浮法工艺成功以来,浮法玻璃技术得到迅速推广。2010年世界浮法玻璃生产利用率高达94%,库存约小于6%,其中市场消耗优质浮法玻璃已经超过了10亿重量箱以上。目前,国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5,25mm之间各种厚度的浮法玻璃,其玻璃熔窑拉引规模也在150,1000t/d之间不等。 1981年中国“洛阳浮法”诞生,从此我国玻璃工业进入了一个快速发展时期。浮法玻璃技术被迅速推广,一批采用“洛阳浮法”技术的浮法玻璃生产线陆续建成,目前我国已成为世界上生产规模最大的平板玻璃生产国。截止2011年,全国共有242条浮法玻璃生产线,2010年平板玻璃总产量达7.07亿重量箱,约占全球总产量的50%以上。 由于玻璃产量日益扩大,再加上玻璃多元化的发展,玻璃的价格越来越低,质量方面也要求越来越高。我国玻璃厂技术水平不高,产品比较单一,质量普遍不高,在市场上处于不利的位置。因此,我们迫切需要提高自己的技术水平,扩大规模,完善管理制度,向多元化高质量方面发展。

在平板玻璃原片制造技术上,目前国际上还没有新的更好的方法能取代浮法成型工艺,但浮法技术如超薄技术、在线镀膜技术、一窑多线技术仍需继续提高和完善。 本设计主要是针对浮法玻璃熔窑及锡槽方面进行的,综合目前国内外的先进技术,对600万吨浮法玻璃熔窑及锡槽部分进行设计。 1.2选题的目的及意义 了解浮法玻璃熔窑及锡槽的结构,对浮法玻璃的熔窑及锡槽工艺有一个全面的了解。培养学生严谨的工作作风和求实努力的科学态度,弄清浮法玻璃熔窑及锡槽工艺制度的设计方法,进一步培养学生独立思考、综合运用已学理论知识及其它途径分析和解决实际问题的工作能力、锻炼学生理论结合实际的能力、看图和制图的能力、设计和科研的能力,提高学生的工厂设计能力。 1.3选题的可行性在校期间,本人已经系统的学习了浮法玻璃工艺,硅酸盐热工基础及其设备等相关专业课程,还参加过玻璃厂参观实习的实践课程,将理论与实践很好的结合,对玻璃生产工艺有了直观的认识和了解,这些都为本科设计奠定了良好的理论和实践基础。此外学校也为我们提供了良好的设计环境。 国内外的浮法玻璃工艺技术经过半个多世纪的发展已日益成熟,熔窑及锡槽的结构更加合理和稳定。洛阳作为我国浮法玻璃工艺技术的诞生地也为本次设计提供了更好的条件和环境。同时国家的节能减排及产业结构调整政策也给我们的设计提出更高的要求。 2. 研究的基本内容,拟解决的主要问题 2.1设计的主要内容 1参考国内同类产品的组成,确定玻璃的组成; 2选择原料,并进行料方计算; 3对浮法玻璃熔窑及锡槽工艺做整体的了解;

玻璃熔窑设计-2---副本

目录 目录...........................................................................................................................................I (一)原始资料 .. (1) 1.产品:机制啤酒瓶 (1) 2.出料量: (1) 3.玻璃成分(设计)(%): (1) 4.料方及原料组成 (1) 5.碎玻璃数量: (1) 6.配合料水分: (1) 7.玻璃熔化温度: (1) 8.工作部玻璃液平均温度: (1) 9.重油。 (1) 10.雾化介质: (1) 11.喷嘴砖孔吸入的空气量: (1) 12.助燃空气预热温度: (1) 13.空气过剩系数α: (1) 14.火焰空间表面温度: (1) 15.窑体外表面平均温度(℃) (1) 16.熔化池玻璃液温度(℃) (1) 17.熔化部窑顶处压力: (1) 18.窑总体简图见图。 (1) (二)玻璃形成过程耗热量计算 (1) 1.生成硅酸盐耗热(以1公斤湿粉料计,单位是千卡/公斤) (1) 2.配合料用量计算 (1) 3.玻璃形成过程的热平衡(以1公斤玻璃液计,单位是千卡/公斤,从0℃算起) (1) (四)熔化部面积计算 (1) 1.各尺寸的确定 (1) 2.确定火焰空间尺寸: (1) 3.熔化带火焰空间容积与面积计算 (1) 4.火焰气体黑度(ε气)计算 (1) 5.火焰温度计算 (1) (五)燃料消耗量及窑热效率计算 (1) 1.理论燃料消耗量计算: (1) (1)熔化部收入的热量 (1) (2)熔化部支出的热量 (1) 2.近似燃料消耗计算 (1)

550t-d浮法玻璃熔窖工艺设计

课程设计(论文) 题目 550t/d浮法玻璃熔窑工艺设计 学院材料科学与工程学院 专业班级无机非金属材料工程 学生姓名 指导教师 成绩

摘要 本设计简要介绍了玻璃原料的组成及配料过程,并对玻璃窑炉各部分耐火材料及主要设备进行了选择,根据上述原则对日产550吨的浮法玻璃熔窑工厂的窑炉工艺进行了初步设计。本设计讨论了玻璃池炉工艺设计,对窑炉各部分工艺计算、设备选型及探索研究。玻璃熔窑工厂的关键设备之一是熔窑,根据最新的文献资料对工艺中涉及到的生产设备进行了设备选型。工艺计算中进行了熔化部、冷却部、投料池、卡脖、蓄热室的尺寸及烟囱的截面的设计,重点计算和选择了横火焰窑。根据计算结果绘制了横火焰窑的三视图。 关键词玻璃窑炉;设计尺寸;设备选型

摘要…………………………………………………………………………………错误!未定义书签。 目录 一、绪论 (1) 二、玻璃的化学成分及原料 (1) 2.1 浮法玻璃化学成分设计的一般原则 (1) 2.2 配料流程 (2) 三、玻璃池窑各部及主要设备 (2) 3.1加料口 (3) 3.1.1窑池的基本尺寸 (4) 3.2熔化部 (4) 3.3冷却部 (7) 3.3.1冷却部的作用与基本尺寸 (7) 3.3.2冷却部的结构 (7) 3.4分隔装置 (8) 3.4.1气体空间分隔设备 (8) 3.4.2玻璃液分隔设备 (9) 3.5 格字体的结构特性及排列方式 (10) 3.6 烟道系统设计 (12) 3.6.1 烟道的基本结构 (12) 3.6.2 烟道的布置 (12) 3.6.3 烟道的基本结构 (12) 四、窑炉各部工艺计算 (12) 4.1 熔化部尺寸 (13) 4.2冷却部尺寸 (14) 4.3投料池尺寸 (14) 4.4卡脖尺寸 (14) 4.5小炉蓄热室尺寸 (15) 4.6烟道截面积设计 (16) 五、熔窑部位的耐火材料的选择 (18) 5.1熔化部材料的选择 (18) 5.2卡脖 (18) 5.3冷却部 (18) 5.4蓄热室 (19) 5.5小炉 (19) 六、熔窑热修 (20) 6.1日常维修 (20) 6.1.1日常巡回检查 (20) 6.1.2日常维护 (20) 6.2热修补 (20) 6.3熔窑热修 (20)

浮法玻璃毕业设计

前言 浮法玻璃因熔融玻璃液漂浮在熔融的锡液表面成型为平板玻璃而得名。这种生产方法由于无需克服玻璃本身重力,可使玻璃原板板面宽度加大,拉引速度大大提高,产量和生产规模增大;由于玻璃成型是在熔融锡液表面进行,因此可以获得双面抛光的优质镜面,其表面平整度、平行度可以与机械磨光玻璃相媲美,而机械性能和化学稳定性又优于机械磨光玻璃;到目前为止,采用该方法可以生产出厚度在0.3~25mm之间多种品种、规格的优质浮法玻璃,以满足不同用途的需求;另外,浮法工艺还可以在线生产多种颜色玻璃和Low-E玻璃,大大丰富了平板玻璃的范畴,扩大了平板玻璃在各个领域的应用。 中国玻璃工作者自从在洛阳研制出中国浮法后,浮法玻璃在中国迅速得到了发展。经过我国玻璃工作者的不断努力,我国先后在熔窑日熔化量、玻璃生产技术装备、节能降耗、环境保护、多功能玻璃开发以及超薄、超厚品种研制与产业化等方面取得了重大突破。 据统计,至2009年末我国日熔化能力500 t以上熔窑占浮法玻璃总熔化能力的75.4% , 600 t以上占54.48% , 700 t以上占28.83%。600 t以上熔窑占浮法玻璃总熔化能力比重首次超过50% ,成为我国浮法玻璃主力窑型。浮法玻璃生产线规模结构的提高,提高了我国浮法玻璃生产的能源利用效率,降低了污染物和二氧化碳排放水平。从产能上看, 700 t以上36条的能力占28.83% , 600~620 t 的42条能力占25. 65% , 500~550 t的40条能力占20.92% , 400~480 t的38条能力占16.51% , 400 t以下26条能力占8.08%。 大吨位低单位产品能耗和小吨位高产品价值是今后平板玻璃熔窑的发展方向,没有地缘优势,产品无技术特点,小吨位、高能耗的普通浮法玻璃将在市场上没有立足之地。 在技术领域,采用中国浮法玻璃技术建设的生产线,技术装备与实物质量已达到国际先进水平。通过对原料配料称量,熔窑、锡槽、退火窑三大热工设备及自动控制系统成套软件的一系列科技攻关,进而对各关键技术进行系统集成和工程转化,形成了具有自主知识产权并全面达到国际先进水平的新一代中国浮法玻璃技术。 还有像我国自主开发的余热发电技术与装备、烟气脱硫技术与装备、石英尾砂提纯及综合利用技术,全氧燃烧技术与装备也逐渐应用到到浮法熔窑。 目前国际玻璃新技术均向能源、材料、环保、信息、生物等五大领域发展。在材料方面,主要指玻璃原片的生产向大片、薄片、厚片、白片四个方向发展。在研发新技术方面,通过对玻璃产品进行表面和内在改性处理,使其更具备强度、节能、隔热、耐火、安全、阳光控制、隔声、自洁、环保等优异功能。 本次设计遵循以下原则: (1)认真总结国外同级别浮法熔窑的经验和教训,结合国内生产线的实际情况、操作特点,围绕生产优质玻璃液这个重点来进行设计。 (2)着重节能降耗,采用国际先进的节能措施和节能产品,降低生产成本。 (3)全窑工艺尺寸确定既要注重以往的经验数据,同时要有理论创新,要在总结以往经验数据的基础上对新结构确立理论依据。 (4)本熔窑出现的超出国内设计手册的结构设计,必须确保结构安全,此类

相关文档
相关文档 最新文档