文档库 最新最全的文档下载
当前位置:文档库 › 智能柱塞-优化计算

智能柱塞-优化计算

智能柱塞-优化计算
智能柱塞-优化计算

智能优化算法答案

一、什么是P问题,什么是NP问题?智能优化算法主要是针对什么问题而提出的? 解:(1)P问题 (2)NP问题 (3)NP-C问题和NP-Hard问题 (4)智能优化算法主要是针对组合优化问题而提出的。当最优化问题中的可行域D是一个由有限个元素组成的集合时,该最优化问题称为组合优化问题。通常组合优化问题可表示为min f(x) s.t. g(x)≥0, x∈D. 典型的组合优化问题有旅行商问题,背包问题,并行排序问题等,

二、描述组合优化问题中的一个典型例子,并建立其数学模型。解:(1)旅行商问题(Traveling Salesman Problem,TSP) (2)背包问题 (3)并行机排序问题

三、描述模拟退火算法中的接收准则。 步骤:1、初始化可行解和温度;2,根据Boltzmann 概念退火;3,重复第二步直到稳定状态;4,降温;5,重复第二步至第四步直到满足终止条件或直到给定步数。6,输出最好的解作为最优解。 退火接收准则:在一给定温度下,由一个状态变到另一个状态,每一个状态到达的次数服从一个概率分布,即基于Metropolis 接受准则的过程,该过程达到平衡时停止。在状态s i 时,产生的状态s j 被接受的概率为: 1, ()()()exp(),()()i j ij ij i j if f s f s A t f if f s f s t ≥?? =??-

四、写出遗传算法中的两种交叉运算方法,并分别举例说明。 步骤:1、随机初始化pop size个染色体;2、用交叉算法更新染色体;3、用变异算法更新染色体;4,计算所有染色体的目标值;5,根据目标值计算每个染色体的适应度;6,通过轮盘赌的方法选择染色体。7、重复第二至第六步直到终止条件满足;8、输出最好的染色体作为最优解。 评价函数:Eval(V)是根据每个染色体V的适应函数fitness(V)而得到与其他染色体的比例关系,可用它来决定该染色体被选为种群的概率如: 轮盘赌选择过程: 交叉运算方法:双亲双子法(两父代交叉位之后的全部基因互换)、变化交叉法(从不相同的基因开始选取交叉位,之后的方法同双亲双子法)、多交叉位法(间隔交换)、双亲单子法(2选1)、显性遗传法(按位或)、单亲遗传法(2-opt)等。 双亲双子交叉方法例子:

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述 学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 (1) 1 概述 (3) 2 定义及原理 (3) 2.1 定义 (3) 2.2 群集智能算法原理 (4) 3 主要群智能算法 (4) 3.1 蚁群算法 (4) 3.2 粒子群算法 (5) 3.3 其他算法 (6) 4 应用研究 (7) 5 发展前景 (7) 6 总结 (8) 参考文献 (9)

1 概述 优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2.1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中, i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的 可行域。

河北工业大学_计算方法_期末考试试卷_C卷

2012 年(秋)季学期 课程名称:计算方法 C卷(闭卷)

2012 年(秋)季学期

2012 年(秋)季学期

2012 年(秋)季学期

2012 年 秋 季 (计算方法) (C) 卷标准答案及评分细则 一、 填空题 (每题2分,共20分) 1、 截断 舍入 ; 2、则 ()0n k k l x =∑= 1 ,()0 n k j k k x l x =∑= j x , 4、 12 。 4、 2.5 。 5、10 次。 6、A 的各阶顺序主子式均不为零。 7 、1A ρ=+() ,则6 A ∞ =。 二、综合题(共80分) 1. (本题10分)已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解: )12)(12() 1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+? --+-+?+------? =x x x x x x x L (6分) )1)(1(34 )2)(1(23)2)(1(32-+--+---= x x x x x x (2分) 04167.024 1 )5.1()5.1(2≈= ≈L f (2分) 2. (本题10分)用复化Simpson 公式计算积分()?=1 0sin dx x x I 的近似值,要求误差限为5105.0-?。 ()()0.9461458812140611=???? ??+??? ??+= f f f S (3分) ()()0.94608693143421241401212=???? ??+??? ??+??? ??+??? ??+= f f f f f S (4分) 5-12210933.0151 ?=-≈ -S S S I 94608693.02=≈S I (3分) 或利用余项:()() -+-+-==!9!7!5!31sin 8 642x x x x x x x f () -?+?-=!49!275142) 4(x x x f ()51 )4(≤ x f

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

智能优化算法

智能计算读书报告(二) 智能优化算法 姓名:XX 学号:XXXX 班级:XXXX 联系方式:XXXXXX

一、引言 智能优化算法又称为现代启发式算法,是一种具有全局优化性能、通用性强、且适用于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家的经验,理论上可以在一定时间内找到最优解或者近似最优解。所以,智能优化算法是一数学为基础的,用于求解各种工程问题优化解的应用科学,其应用非常广泛,在系统控制、人工智能、模式识别、生产调度、VLSI技术和计算机工程等各个方面都可以看到它的踪影。 最优化的核心是模型,最优化方法也是随着模型的变化不断发展起来的,最优化问题就是在约束条件的限制下,利用优化方法达到某个优化目标的最优。线性规划、非线性规划、动态规划等优化模型使最优化方法进入飞速发展的时代。 20世纪80年代以来,涌现出了大量的智能优化算法,这些新颖的智能优化算法被提出来解决一系列的复杂实际应用问题。这些智能优化算法主要包括:遗传算法,粒子群优化算法,和声搜索算法,差分进化算法,人工神经网络、模拟退火算法等等。这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,并且在很多领域得到了成功地应用。 二、模拟退火算法(SA) 1. 退火和模拟退火 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法就是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化就是智能优化的一个重要分支,它与人工生命,特别就是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互与合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 0 1 概述 (2) 2 定义及原理 (2) 2、1 定义 (2) 2、2 群集智能算法原理 (3) 3 主要群智能算法 (3) 3、1 蚁群算法 (3) 3、2 粒子群算法 (4) 3、3 其她算法 (5) 4 应用研究 (6) 5 发展前景 (6) 6 总结 (7) 参考文献 (8)

1 概述 优化就是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 与粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2、1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索与优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索与优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,就是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都就是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中,i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的可行

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

群体智能优化算法-群体智能总结

第十六章群体智能优化算法总结 总结一下最近一段时间关于群体智能优化算法的文章,这方面的文章目前一共发表了13篇,涉及粒子群(鸟)、人工蜂群、蜘蛛猴、蚁群、布谷鸟、萤火虫群、萤火虫、蝙蝠、鱼群、蟑螂、猫群、细菌觅食和烟花算法,虽然这都是些五花八门的小东西,但也不是无规律可循,这里需要注意的是,群体智能一般是指具有生命的种群(鸟、鱼等),但也有像烟花这样的无生命个体,这里我们将所有这些个体统称为智能体,认为它们具有一定的能动性,可以在解空间中进行搜索。图1为各主要优化算法的提出时间和提出者,可以看出大多数算法诞生于2000~2010年这十年左右,随着计算机计算能力的提升,人们开始依赖于这种既能得到较优的结果又不会消耗太多计算时间的元启发式算法。 图1 群体智能优化算法发展历程 下面总结一下这些算法的共同点: 1、都有多个粒子,代表每种智能体; 2、每个个体通过一定的机制进行位置的变化或者移动,来对解的空间进行搜索; 3、个体之间具有一定的独立性,利用局部信息和全局信息进行交互;

4、群体在演变过程中都引入了随机数,以便进行充分地探索。 其实人群也算是一种特殊的群体,只不过他不像其他的群体那样,仅仅是觅食,人作为一种高级动物,除了吃饱肚子以外,还有其他很多精神方面的需求,比如幸福度、快乐度和舒适度等等各个方面,并且人类具有的最大优势是语言沟通和学习能力,因此,基于这样的特性也可以提出基于人群的优化算法,只不过可能需要结合更多的组织行为学和行为心理学等相关的知识,对人的群集行为进行理论解释,同时可以采用更多以机器学习或人工智能为基础的高级策略,并应用于多目标优化问题。不过好像在2006年就已经有类似的算法了,至于为什么没有普及开来,可能还是人的行为太复杂了吧。 对于群体智能优化方面的更新将暂时告一段落,接下来将更多的关注另一种元启发式算法-进化计算,这类算法主要是基于生物的进化理论,包括遗传算法、进化策略、进化规划等,都将在后续的内容中逐渐详细讲解。

一种新型的智能优化方法—人工鱼群算法

浙江大学 博士学位论文 一种新型的智能优化方法—人工鱼群算法 姓名:李晓磊 申请学位级别:博士 专业:控制科学与工程 指导教师:钱积新 2003.1.1

加,,Z掌博士学位论文一III- 摘要 (优化命题的解决存在于许多领域,对于国民经济的发展也有着巨大的应用前景。随着优化对象在复杂化和规模化等方面的提高,基于严格机理模型的传统优化方法在实施方面变得越来越困难。厂吖 本文将基于行为的人工智能思想通过动物自治体的模式引入优化命题的解决中,构造了一种解决问题的架构一鱼群模式,并由此产生了一种高效的智能优化算法一人工鱼群算法。 文中给出了人工鱼群算法的原理和详细描述,并对算法的收敛性能和算法中各参数对收敛性的影响等因素进行了分析;针对组合优化问题,给出了人工鱼群算法在其中的距离、邻域和中心等概念,并给出了算法在组合优化问题中的描述;针对大规模系统的优化问题,给出了基于分解协调思想的人工鱼群算法;给出了人工鱼群算法中常用的一些改进方法;给出了人工鱼群算法在时变系统的在线辨识和鲁棒PID的参数整定中两个应用实例j最后指出了鱼群模式和算法的发展方向。 f在应用中发现,人工鱼群算法具有以下主要特点: ?算法只需要比较目标函数值,对目标函数的性质要求不高; ?算法对初值的要求不高,初值随机产生或设定为固定值均可以; ?算法对参数设定的要求不高,有较大的容许范围; ?算法具备并行处理的能力,寻优速度较快; ?算法具备全局寻优的能力; 鱼群模式和鱼群算法从具体的实施算法到总体的设计理念,都不同于传统的设计和解决方法,同时它又具有与传统方法相融合的基础,相信鱼群模式和鱼群算法有着良好的应用前景。∥ / 关键词人工智能,集群智能,动物自治体,人工鱼群算法,f优∥ ,l/。7

群智能优化算法_萤火虫算法

2012年第32 期 群智能算法是人们受自然界或生物界种群规律的启发,根据其原理,仿生模拟其规律而设计求解问题的算法。近几十年来,人们通过模拟自然生态系统机制以求解复杂优化问题的仿生智能算法相继被提出和研究。群智能算法有遗传算法、模拟退火算法、蚁群算法、粒子群算法等。 萤火虫算法是一种新颖的仿生群智能算法,是受自然界中的萤火虫通过荧光进行信息交流这种群体行为的启发演变而来的。萤火虫算法目前有两种版本:a)由印度学者Krishnanand等人[1]提出,称为GSO(glowworm swarm optimization);b)由剑桥学者Yang[2]提出,称为FA( firefly algorithm)。两种算法的仿生原理相同,但在具体实现方面有一定差异。 本文分析了萤火虫算法的仿生原理,并从数学角度对两种版本的算法实现优化过程进行定义。 1.GSO算法 1.1算法的数学描述与分析 在基本GSO中,把n个萤火虫个体随机分布在一个D维目标搜索空间中,每个萤火虫都携带了萤光素li。萤火虫个体都发出一定量的萤光相互影响周围的萤火虫个体,并且拥有各自的决策域r i d(0<r i d ≤r s)。萤火虫个体的萤光素大小与自己所在位置的目标函数有关,荧光素越大,越亮的萤火虫表示它所在的位置越好,即有较好的目标值,反之则目标值较差。决策域半径的大小会受到邻域内个体的数量的影响,邻域内萤火虫密度越小,萤火虫的决策域半径会加大,以便找到更多的邻居;反之,则萤火虫的决策域半径会缩小。最后,大部分萤火虫会聚集在多个位置上。初始萤火虫时,每个萤火虫个体都携带了相同的萤光素浓度l0和感知半径r0。 定义1萤光素更新 l i(t)=(1-ρ)l i(t-1)+γJ(x i(t))(1) 其中,J(x i(t))为每只萤火虫i在t迭代的位置x i(t)对应的目标函数值;l i(t)为荧光素值转化为荧光素值;γ为荧光素更新率。 定义2概率选择选择移向邻域集N i(t)内个体j的概率p ij(t): p ij(t)=l j(t)-l i(t) k∈N i (t) Σ(l k(t)-l i(t)) (2) 其中,邻域集N i(t)={j:d ij(t)

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

统计学期末考试试题(含答案)

西安交大统计学考试试卷 一、单项选择题(每小题2分,共20分) 1.在企业统计中,下列统计标志中属于数量标志的是(C) A、文化程度 B、职业 C、月工资 D、行业 2.下列属于相对数的综合指标有(B ) A、国民收入 B、人均国民收入 C、国内生产净值 D、设备台数 3.有三个企业的年利润额分别是5000万元、8000万元和3900万元,则这句话中有(B)个变量? A、0个 B、两个 C、1个 D、3个 4.下列变量中属于连续型变量的是(A ) A、身高 B、产品件数 C、企业人数 D、产品品种 5.下列各项中,属于时点指标的有(A ) A、库存额 B、总收入 C、平均收入 D、人均收入 6.典型调查是(B )确定调查单位的 A、随机 B、主观 C、随意D盲目 7.总体标准差未知时总体均值的假设检验要用到(A ): A、Z统计量 B、t统计量 C、统计量 D、X统计量 8. 把样本总体中全部单位数的集合称为(A ) A、样本 B、小总体 C、样本容量 D、总体容量 9.概率的取值范围是p(D ) A、大于1 B、大于-1 C、小于1 D、在0与1之间 10. 算术平均数的离差之和等于(A ) A、零 B、1 C、-1 D、2 二、多项选择题(每小题2分,共10分。每题全部答对才给分,否则不计分) 1.数据的计量尺度包括(ABCD ): A、定类尺度 B、定序尺度 C、定距尺度 D、定比尺度 E、测量尺度 2.下列属于连续型变量的有(BE ): A、工人人数 B、商品销售额 C、商品库存额 D、商品库存量 E、总产值 3.测量变量离中趋势的指标有(ABE ) A、极差 B、平均差 C、几何平均数 D、众数 E、标准差 4.在工业企业的设备调查中(BDE ) A、工业企业是调查对象 B、工业企业的所有设备是调查对象 C、每台设备是 填报单位D、每台设备是调查单位E、每个工业企业是填报单位 5.下列平均数中,容易受数列中极端值影响的平均数有(ABC ) A、算术平均数 B、调和平均数 C、几何平均数 D、中位数 E、众数 三、判断题(在正确答案后写“对”,在错误答案后写“错”。每小题1分,共10分) 1、“性别”是品质标志。(对) 2、方差是离差平方和与相应的自由度之比。(错) 3、标准差系数是标准差与均值之比。(对) 4、算术平均数的离差平方和是一个最大值。(错)

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . () 00l x =0, ()111 l x = C .() 00l x =1,()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方 程( ). A . 232 x x -+= B . 232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=-

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C ===,那么() 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区 间有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 0,1,2

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111 l x = C .() 00l x =1,()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 已知函数21 1y x = +的一组 数据: 求分段线性插值函数, 并计算 () 1.5f 的近似值. 计算题1.答案

群体智能方法在最优化问题的应用和未来

群体智能方法在最优化问题的应用和发展前景 姓名:曾燕亭学号:201110510133 班级:11计科1班 摘要:将遗传算法解决最优化问题,即将最优化问题转化为求解目标函数的最优解问题。关键词:遗传算法;最优化 1.定义 1.1定义及原理 顾名思义,群体智能即群其实质是将物理问题数字化,体产生的智能,与集体智慧类似。我们可以从两个方面来理解群体智能的含义。一方面,群体智能是自然界广泛存在的一种现象,指大量简单个体构成的群体按照简单的交互规则相互协作,完成了其中任何一个个体不可能单独完成的复杂任务。以蚁群为例,正如斯坦福大学生物学家D.Gordon的概括:蚂蚁很笨,但蚁群很聪明。另一方面,人们通过对这些群体行为的研究,逐步形成了群体智能理论,即研究大量个体的简单行动如何成为群体的高智能行为的理论。群体智能理论自20世纪80年代出现以来便吸引了众多研究者的关注,是人工智能及经济、社会、生物等交叉学科的热点和前沿领域,因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法和粒子群优化算法。 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求:

期末考试数值计算方法15道程序题详解

//用辛普森公式计算p199页的例题-7 #include#includedouble f(double x) {return pow(x,0.5);} void main() { double x0,x1, m;x0=0.5;x1=1.0; printf("利用辛普森公式计算的结果为:"); printf("\n"); m=((x1-x0)*(f(x0)+f(x1)+4*f((x0+x1)/2)))/6; printf("%lf",m);printf("\n"); } /用牛顿迭代法求x等于e的-x次方在.5附近的根。#include"stdio.h"#include"math.h" #define E 2.71828182#define fn(x) x*pow(E,x)-1#define fn_(x)pow(E,x)+x*pow(E,x )#define N 10#define F 1e-8 void main() {double x0=0;double x_=0;double x = 0; double tempx=0;int k=1; printf("键入x0的初值:\nx0="); scanf("%lf",&x0);while(1) {x_=fn_(x0);//导数x =fn(x0);//函数值 if(x_ == 0) { printf("newton iteration fail!");break;}else{tempx=x0- ( x/x_ ); if( fabs(x0-tempx) < F){printf("newton iteration success!\nx=%.8lf\n\n",tempx); break;}else{if(k == N){printf("newton iteration fail!");break;}else{k++; x0=tempx;}}}}} //牛顿插入法#include#define N 6 #define M 4 double x[N]={0.4,0.55,0.65,0.8,0.9,1.05}; Double y[N]={0.41075,0.57815,0.69675,0.88811 ,1.02652,1.25382};double _w(int k,int i,int j){double sum=1;int ii=i;while(ii<=j){ if(k!=ii)sum*=(x[k]-x[ii]);ii++;} return sum;}double D_value(int i,int j) {double sum=0;int k=i;while(k<=j){ sum+=y[k]/_w(k,i,j);k++;}return sum;} double _Poly(double x0,int n){ double sum=1;int i=0;while(i<=n){ sum*=(x0-x[i]);i++;}return sum;} double Polynomial(double x0,int n) {if(n==0)return y[0];else return Polynomial(x0,n-1)+D_value(0,n)*_Poly(x0,n-1);}void main(){double x0,y0;printf("x0="); scanf("%lf",&x0);getchar();y0=Polynomial(x0 ,M);printf("y=%lf\n",y0);} //拉格朗日差值法,三次差值 #includedouble L0(double x0,double x1,double x2,double x){return ((x-x1)*(x-x2))/((x0-x1)*(x0-x2));} double L1(double x0,double x1,double x2,double x){return ((x-x0)*(x-x2))/((x1-x0)*(x1-x2));} double L2(double x0,double x1,double x2,double x){return ((x-x0)*(x-x1))/((x2-x0)*(x2-x1));} void main(){ double x=0,x0=0,x1=0,x2=0;double y0=0,y1=0,y2=0;printf("输入各项x的 值:\n");scanf("%lf,%lf,%lf",&x0,&x1,&x2); printf("输入各项y的值:\n"); scanf("%lf,%lf,%lf",&y0,&y1,&y2);getchar(); printf("输入x的值:\n");scanf("%lf",&x); getchar();printf("结果 为:%lf\n",L0(x0,x1,x2,x)*y0+L1(x0,x1,x2,x)* y1+L2(x0,x1,x2,x)*y2); } //高斯消去法#include#define size 3 double a[size][size+2];void guass() {int i,j;int n;for(n=1;n#include

相关文档
相关文档 最新文档