文档库 最新最全的文档下载
当前位置:文档库 › AZ31B镁合金表面几个熔覆Al_Si基纳米Si3N4的试验研究_葛亚琼

AZ31B镁合金表面几个熔覆Al_Si基纳米Si3N4的试验研究_葛亚琼

AZ31B镁合金表面几个熔覆Al_Si基纳米Si3N4的试验研究_葛亚琼
AZ31B镁合金表面几个熔覆Al_Si基纳米Si3N4的试验研究_葛亚琼

收稿日期:2014-10-28; 收到修改稿日期:2014-12-

05基金项目:国家自然科学基金资助项目(项目编号:51075293,51405324);山西省回国留学人员科研资助项目(项目编号:2013-

029)作者简介:葛亚琼(1982-),女,讲师,博士生,主要从事金属材料的激光加工。E-mail:j

oan1028@163.com导师简介:王文先(1963-),男,教授,博士,主要从事材料连接及界面行为的研究。E-mail:wangwenxian@ty

ut.edu.cn 第35卷第2期 应 用 激 光Vol.35,No.22015年4月

APPLIED LASER 

Ap

ril 2015AZ31B镁合金表面几个熔覆Al-Si基纳米

Si3N4的试验研究

葛亚琼1,2, 王文先1,3, 崔泽琴1,3, 王鑫

1,3

(1太原理工大学材料科学与工程学院,山西太原030024; 2

太原科技大学材料科学与工程学院,

山西太原030024;3

新材料界面科学与工程教育部重点实验室,山西太原030024

)摘要 以变形镁合金AZ31B为试验基材,在其表面采用高功率CO2气体激光熔覆了Al-Si基纳米Si3N4粉末。采用金相观察、X射线衍射分析、能谱分析、硬度测试和腐蚀性能测试等手段,研究了激光熔覆层的微观组织结构及表面性能。研究结果表明,

激光熔覆层主要由上部的树枝晶、中部呈线性排列的黑色相和下部的粗大树枝晶组成。当纳米氮化硅含量为1%时,熔覆层主要由Al、AlN、Al9Si和Mg2Si组成。熔覆层的硬度最高达到235HV0.05,是镁合金基体的4~5倍。熔覆层的耐腐蚀性能得到了改善,其腐蚀电位为-1 204mV,比母材提高了382mV;腐蚀电流密度为0.070 5mA·cm-2,比母材降低了约一个数量级。

关键词 镁合金; 激光熔覆; 纳米Si3N4粉末;

 组织性能中图分类号:TG146.2 文献标识码:A doi:10.14128/j

.cnki.al.20153502.145Study on Al-Si Based Nano-Si3N4Composite Coating Prepared by Laser Cladding 

on AZ31BMagnesium AlloyGe Yaqiong1,

2, Wang Wenxian1,

3, Cui Zeqin1,

3, Wang 

Xin1,

(1 College of Materials Science and Engineering of Taiyuan University 

of Technology,Taiyuan,Shanxi 030024,China;2 College of Materials Science and Engineering of Taiyuan University 

of Science and Technology,Taiyuan,Shanxi 030024,China; 3 Key Laboratory of Interface Science and Engineering 

in Advanced Materials,Ministry 

of Education,Taiyuan,030024,China)Abstract In this paper,laser surface cladding Al-Si+nano-Si3N4composite coating on AZ31Bmagnesium alloy with a CO2la-ser.The microstructure and properties of the cladded layer were investigated with optical microscopy,X-ray diffraction,energydispersive spectrometer,and Vickers hardness and corrosion resistance test.The results showed that the cladding layer wasmainly composed of the upper dendrites,the central black phase which presenting a linear arrangement and the bottom thickbranches crystal microstructure.When nano-Si3N4content was 1%,the phase of cladding layer was Al,AlN,Al9Si and Mg2Si.Microhardness of the caldded layer was about 235HV0.05,which was 4~5times of the matrix’s.The corrosion resist-ance of magnesium alloy 

improved significantly.The corrosion potential of the cladded layer was-1 204mV,which raised 382mV compared the AZ31Bmagnesium alloy substrate,and the corrosion current density 

was 0.070 5mA·cm-2 

which reducedone order of magnitude comp

ared with the substrate.Key 

words magnesium alloy; laser cladding; nano-Si3N4powder; microstructure and properties0 引言

镁是地球上储量最丰富的轻金属元素之一,

镁合金具有高的比强度、比刚度等优点,是极具发展潜

力的节能环保材料。然而,由于镁合金的硬度、塑性等常温力学性能差,耐腐蚀及耐磨损等表面性能不理想等原因,

使得镁及镁合金在研究和应用方面滞—

541—

后于其它金属材料[1-2]。

激光表面改性由于其急热急冷的特点对材料表面性能的改善有明显的作用,特别是其中的激光熔覆技术。激光熔覆技术使熔覆材料与基体表面薄层同时熔化并快速凝固,可以显著改善基体表面的耐磨、耐蚀等特性,在镁合金表面处理上受到了极大的青睐[3]。

目前,镁合金表面激光熔覆采用的熔覆粉末主要有铝基粉末[4]、铜基粉末[5]、钴基粉末[6]、陶瓷粉末[7-8]、非晶粉末[9]等,对镁合金表面的耐磨和耐蚀性都一定的改善作用。

本文利用高功率CO

气体激光器对镁合金进行表面激光熔覆处理,选用与镁合金物化相容性较好且液态流动性好的Al-Si合金粉作为熔覆粉,同时加入与Al-Si粉具有相似元素且易于与其形成强化

相的纳米Si

3N4粉末作为混合熔覆粉,制备具有高

硬度、良好腐蚀性能的激光熔覆层。

1 试验材料及方法

1.1试验材料

选用10mm厚的轧制成形的AZ31B镁合金作为基体材料,表1是其化学成分,图1是其金相组织图。可见,基体材料AZ31B镁合金是由α-Mg和

β-Mg17Al12组成,晶粒大小不均匀,晶粒尺寸为50~200μm。

表1 AZ31B镁合金基材的化学成分(质量分数/%)

Tab.1 The chemical compositions of AZ31Bmagnesium

alloy(mass fraction%)

Al Mn Zn Ca Si Cu Ni Fe Mg

2.500~3.5000.200~

1.000

0.600~

1.400

0.040 0.100 0.010 0.001 0.005

其余图1 AZ31B镁合金基体的金相组织

Fig.1 Microstructures of AZ31Bmagnesium alloy

选用质量分数为99%的Al-Si合金粉与质量分数为1%的Si

3N4

粉末的混合粉末作为激光熔覆粉末,图2是粉末的形貌图,粉末粒度分别为1~20μm和30~50nm

图2 激光熔覆粉末

(a)Al-Si合金粉(b)纳米Si

3N4

粉末

Fig.2 Laser cladding powder

1.2试验方法

试验前,先用180#的砂纸往复均匀打磨AZ31B镁合金基体的工作表面,以去除其表面的氧化物和油污等杂志;接着,用丙酮清洗打磨后的工作面,自然晾干;最后,将混合后的Al-Si合金粉+1%

的纳米Si

3N4

陶瓷粉均匀平铺在镁合金的工作表面上,预置厚度约1mm。

试验时,将预置了熔覆粉末的镁合金板放置在激光头正下方,工作表面向上。试验所用激光器是HUST-JKT5170型横流CO2气体激光器,试验过程中,为防止激光熔覆产生的烟尘、飞溅等对激光头以及对熔覆层质量的影响,同时为避免空气侵入熔池中氧化熔池,采用纯度为99.99%的氩气进行保护。保持光斑直径为3mm,改变激光功率和激光扫描速度进行单道熔覆试验,考察激光熔覆过程中的稳定性、飞溅大小、熔覆层表面质量等。当激光功率P=3 500W、激光扫描速度v=240mm/min时,熔覆质量最好。多道熔覆时,每道熔覆结束后,待自然冷却至室温时再进行下一道的熔覆。激光熔覆示意图如图3所示。

图3 激光熔覆示意图

Fig.3 Sketch map of laser cladding

激光熔覆试样沿横截面剖开,打磨抛光后,用4%的草酸溶液进行腐蚀15~20s,利用X射线衍射仪(Y-2000型)分析熔覆层的物相;通过JSM-6700F型扫描电子显微镜对熔覆层的界面形貌、微观组织进行观察及成分分析;用HVS-1000A型显微硬度计测量试样横截面显微硬度值,载荷50g,加载时间15s;在CS350电化学工作站上进行腐蚀试验,质量分数为3.5%的NaCl溶液为腐蚀液,腐蚀试验的电位扫描范围和扫描速度分别为-2~+1V和2mV/s。

2 试验结果与讨论

2.1熔覆层的微观组织结构

图4是激光熔覆层横截面的宏观形貌及沿熔覆层至基体的线扫描分析图谱。由图4可见在激光热作用下,熔融的激光熔覆粉末与镁合金基体形成了良好的结合,在结合处未见裂纹、气孔等缺陷,只是在熔覆层中出现了少量的气孔。其次,成分分析发现激光熔覆层中,Al、Si为主要成分,且其在熔覆层中基本呈均匀分布。此外,熔覆层中存在一定量的N元素,此为纳米Si3N4中的N元素。在接近结合界面处,Mg元素由于在激光热输入的高温以及熔池的流动作用下,进入到熔覆层内部,主要集中在结合界面处。除了激光熔覆粉末中所固有的原子,空气中的少量C、O原子也混入其中,多集中在结合的过渡区附近

图4 激光熔覆层的宏观形貌及能谱

Fig.4 Macrograph and spectrum scanning image

of laser cladded layer

图5是熔覆层的显微组织。图5(a)是镁合金基体与熔覆层的结合界面,可见熔覆层和基体形成良好的冶金结合,界面处几乎没有气孔,裂纹等缺陷,而且由熔融的熔覆粉末形成的熔池是以未熔化的基体为生长表面,沿着垂直于固/液界面方向,即垂直于未熔基体/熔融的熔覆粉末的方向进行结晶生长。熔覆层的下部至中部再至上部,如图5(b)~5(d),以基体与熔覆层的结合界面形成的结晶组织(图5(a))继续向上生长,且结晶组织越来越细小。在熔覆层中形成了大量的不规则黑色颗粒。熔覆层下部(图5(b))、中部(图5(c))在热流的作用下,黑色相大都沿着垂直于熔池底部的方向生长。在熔覆层上部(图4(d)),黑色相的尺寸更小,且方向紊乱,因为在该熔池上部,即通过基体向周围环境散热,又由熔池的自由表面进行散热,形成不同凝固方向的结晶组织

图5 激光熔覆复合图层的显微组织

(a)结合界面(b)下部(c)中部(d)上部Fig.5 Microstructure of laser cladded lay

er 图6是熔覆层内部灰色基体和黑色颗粒的点扫

描能谱图,其数据见表2。在熔覆层的灰色基体上,以Al原子为主,Mg原子含量很低,没有N原子存在,说明激光高温加热后,Si3N4分解后形成的含N物不在灰色基体中。而黑色相以Mg、Si原子含量居多,推断黑色颗粒主要为Mg与Si的化合物,N原子的存在说明在黑色颗粒中含有含N物

图6 熔覆层的能谱分析位置

Fig.6 EDSscanning 

position of cladded layer 图7是熔覆层的X射线衍射图谱,

熔覆层的物相包括Al、AlN、Al9Si和Mg2Si,但未见Si3N4的衍射峰。纳米Si3N4的熔点为1

 900℃,激光表面熔覆的聚焦功率密度达到102~1

04 W/mm2,在如此高能量的激光辐照下,纳米Si3N4受热分解产生Si原子和N原子,它们与熔池中的其它原子在热作用下会发生化学反应及产生热效应。由于激光作用时间极短,而且N原子的半径比Si原子小,扩散能力强,所以在熔覆层中会出现N原子和Si原子的富集区。原子之间的相互作用形成了各种新的物质,如在N原子富集区内形成的AlN强化相,在熔覆层中大量存在强化相Al9Si和Mg2

Si等。表2 与图6对应的熔覆层的能谱分析

Tab.2 EDS of cladded layer corresponding to figure 6测试位置

元素质量分数/%

原子分数/%

谱图1

O 

3.30 5.46Mg 2.65 2.93Al 73.81 72.54Si 20.24 19.07谱图2

N 0.75 1.19O 

8.80 15.57Mg 36.75 40.59Al 15.53 12.82Si 

38.17 

29.8

图7 熔覆层的X射线衍射谱

Fig.7 X-Ray energy spectrum of laser cladding 

layer2.2熔覆层的表面性能

图8是熔覆层的显微硬度曲线。显微硬度曲线呈现出由熔覆层表面先上升,到距熔覆层表面

0.05mm处达到最高点,之后趋于稳定至0.1mm,然后曲线呈现下降趋势,降至基体约50HV0.05。显微硬度的最大值之所以不在最表层,是因为熔覆过程中在表面会发生杂质元素上浮及合金元素烧损的现象,使最表层出现缺陷降低了硬度。熔覆层整体硬度提高的原因是在激光温度场的作用下,细化了晶粒大小,同时生成了大量的固溶体和AlN、Al9Si及Mg2Si等的强化相。熔覆层的最高硬度达235HV0.05,

是基体的4~5倍。—

841—

图8 熔覆层的显微硬度

Fig.8 Microhardness of cladded lay

er 图9为原始镁合金和熔覆层的极化曲线图,

表3是相应的腐蚀电位与腐蚀电流。熔覆层的腐蚀电位比原始镁合金基体提高了377mV,腐蚀电流降低了大约一个数量级,综合腐蚀电位和腐蚀电流,经激光熔覆后,镁合金表面的耐蚀性都得到了改善

图9 母材和熔覆层的电化学腐蚀极化曲线Fig.9 Potentiody

namic polarization curves ofsubstrate and caldded layer表3 熔覆层和原始镁合金的腐蚀电位及电流Tab.3 Corrosion voltag

e and current of claddedlay

er and substrate样品Ecorr,mV icorr,

mA·cm-2熔覆层-1 204 0.070 5原始镁合金

-1 581 

0.521 

43 结论

(1)利用CO2气体激光器成功在AZ31B镁合金表面熔覆了预置的Al-Si合金粉末和质量分数为1%纳米Si3N4陶瓷粉的混合熔覆粉末,熔覆层与基体达到了良好的冶金结合。

(2

)熔覆层内部由方向紊乱的树枝晶和弥散分布的不规则黑色相组成,熔覆层主要的物相组成是Al、AlN、Al9Si及Mg2

Si。(3)熔覆层的最高硬度达235HV0.05,是基体的4~5倍。

(4

)熔覆层的腐蚀电位比原始镁合金提高了377mV,

腐蚀电流降低了大约一个数量级,熔覆层的耐腐蚀性能得到了改善。

参考文献

[1

]丁文江,吴玉娟,彭立明,等.高性能镁合金研究及应用的新进展[J].中国材料进展,2010,29(8):37-45.[2]孟树昆,吴秀铭,韩薇,等.发展中的中国镁业[J].

中国有色金属,2006(8):19-

21.[3

]曹亚男,张艳梅,揭晓华,等.镁合金激光表面熔覆的研究现状[J].材料导报(A),2011,25(5):99-102.[4]VOLOVITCH P,MASSE J E,FABRE A,et al.Micro-

structure and corrosion resistance of magnesium alloyZE41with laser surface cladding by Al-Si powder[J].Surface and Coating Technology,2008(202):4901-4914.[5]崔泽琴,吴宏亮,王文先,等.AZ31B镁合金表面激光熔

覆Cu-Ni合金层[J].中国有色金属学报,2010,20(9):1665-

1670.[6]颜瑞峰,郭亮,张庆茂,等.AZ91D镁合金表面激光熔覆

钴基合金涂层及性能分析[J].应用激光,2012,32(3):175-

179.[7]GAO YALI,WANG CUNSHAN,YAO MAN,et 

al.Theresistance to wear and corrosion of laser cladding Al2O3ceramic coating on Mg alloy[J].Applied Surface Sci-ence,2007(253):5306-

5311.[8

]郑必举,胡文.激光熔覆涂层对镁合金表面耐磨性能的改性[J].强激光与粒子束,2014,26(5):1-

5.[9]HUANG KAIJIN,YAN LI,WANG CUNSHAN,et 

al.Wear and corrosion properties of laser claddedCu47Ti34Zr11Ni8/SiC amorphous composite coatings onAZ91Dalloy[J].Transactions of Nonferrous Metals So-ciety 

of China,2010,20(7):1351-1355.—

941—

聚合物基复合材料的发展现状和最新进展

聚合物基复合材料的发展现状和最新进展 摘要聚合物基复合材料以聚合物为基体,玻璃纤维、碳纤维、芳纶等为增强材料复合而成。主要包括热固性复合材料和热塑性复合材料。本文先介绍聚合物基复合材料的最新性能研究,再简单介绍下最近几年的研究热点,最后从应用角度谈一谈聚合物基复合材料的发展现状和最近进展。 关键词聚合物基复合材料发展现状最近进展 一、引言 我国聚合物基复合材料的研究始于1958 年,第一个产品就是我们所熟知的玻璃钢。我国热塑性树脂基复合材料开始于20世纪80年代末期,近20年来取得了快速发展。迄今,我国已经成功将碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维增强高性能聚合物基复合材料实用化,其中高强度玻璃纤维增强复合材料已达到国际先进水平,形成了年产500t的规模[1]。随着科技的高速发展,传统聚合物基复合材料已不能满足使用需求,对高性能、耐高温、耐磨损、耐老化性能的研究不断深入。新型复合材料的出现也给该领域带来了更大的发展前景,进而在军事、航空航天、交通,乃至日常生活中的广泛运用也使得该领域具有巨大的发展空间和良好的市场前景[2]。 二、性能研究进展 常见的高性能耐高温聚合物材料有聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚酰亚胺(PI)等。研究发现液晶材料能很好的提高PTFE的耐磨损性能,将PEEK与其它聚合物共混或采用碳纤

维(CF)、玻璃纤维(GF)、无机纳米粒子等复合增强,已成为制备摩擦学性能和力学性能更优异的PEEK复合材料的首选[3]。美国一家PI复合材料供应商,主要生产不含MDA型PI/碳纤维、玻璃纤维、石英纤维单向带、织物以及预制品。该公司开发的900HT材料的瓦约为426℃,使用温度最高816℃,可采用热压罐、模压以及某些液体模塑工艺加工[4]。该材料还具有十分优异的热氧化稳定性,因此尤其适用于制造在高温氧气环境中长期工作的发动机以及机身部件[5]。 聚合物基复合材料在自然环境下使用,性能会受到许多环境因子(如紫外辐射、臭氧、氧、水、温度、湿度、微生物、化学介质等)的影响。这些环境因子通过不同的机制作用于复合材料,导致其性能下降、状态改变、直至损坏变质,通常称之为“腐蚀”或“老化”[6]。环境因素对复合材料性能的影响主要是通过树脂基体、增强纤维以及树脂/纤维粘接界面的破坏而引起性能的改变。陈跃良等分析了湿热老化、化学侵蚀和大气老化对复合材料的作用机理及对其力学性能的影响[7],也提出了复合材料老化寿命预测方法。 对于大多数聚合物材料而言,阻燃性能不佳,加入阻燃剂往往是必须的。从阻燃剂发展趋势来看,以高效、价廉、无卤素、无污染为特征的无机类阻燃剂符合世界各国发展环保型材料,推进可持续发展战略的政策要求。无机阻燃剂可以单独使用,也可以与有机阻燃剂复配使用,产生协同效应,起到很好的阻燃效果,是目前阻燃剂发展的主流。而其中的氢氧化物阻燃剂被认为是最有发展前途的、环境友好的无机阻燃剂, 成为近几年各国研究的热点[8]。Kazuki等研究发现了含

激光熔覆技术介绍

激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。 为推动激光熔覆技术的产业化,世界各国的研究人员针对激光熔覆涉及到的关键技术进行了系统的研究,已取得了重大的进展。国内外有大量的研究和会议论文、专利介绍激光熔覆技术及其最新的应用:包括激光熔覆设备、材料、工艺、监测与控制、质量检测、过程的模拟与仿真等研究内容。但到目前为止,激光熔覆技术还不能大面积工业化应用。分析其原因,这里有政府导向的因素、激光熔覆技术本身成熟程度的限制、社会各界对激光熔覆技术的认可程度等因素。因此,激光熔覆技术欲实现全面的工业化应用,必须加大宣传力度,以市场需求为导向,重点突破制约发展的关键因素,解决工程应用中涉及到的关键技术,相信在不远的将来,激光熔覆技术的应用领域及其强度将不断的扩大。下面介绍激光熔覆技术几个发展的动态,以飨读者。 激光熔覆的优势 激光束的聚焦功率密度可达1010~12W/cm2,作用于材料能获得高达1012K/s的冷却速度,这种综合特性不仅为材料科学新学科的生长提供了强有力的基础,同时也为新型材料或新型功能表面的实现提供了一种前所未有的工具。激光熔覆所创造的熔体在高温度梯度下远离平衡态的快速冷却条件,使凝固组织中形成大量过饱和固溶体、介稳相甚至新相,已经被大量研究所证实。它提供了制造功能梯度原位自生颗粒增强复合层全新的热力学和动力学条件。同时激光熔覆技术制备新材料是极端条件下失效零部件的修复与再制造、金属零部件的直接制造的重要基础,受到世界各国科学界和企业的高度重视和多方面的研究。 目前,利用激光熔覆技术可以制备铁基、镍基、钴基、铝基、钛基、镁基等金属基复合材料。从功能上分类:可以制备单一或同时兼备多种功能的涂层如:耐磨损、耐腐蚀、耐高温等以及特殊的功能性涂层。从构成涂层的材料体系看,从二元合金体系发展到多元体系。多元体系的合金成分设计以及多功能性是今后激光熔覆制备新材料的重要发展方向。 最新的研究表明,在我国工程应用中钢铁基的金属材料占主导地位。同时,

镁合金的发展及应用

1 / 8 镁合金的发展及应用 摘要:综述镁合金的特点及其在交通、航空航天、兵器方面的应用情况,并结合兵器零件的使用特点和性能要求,分析了镁合金在兵器装备中的应用前景, 展望 关键词:镁合金,特点,发展,应用 1 引言 镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。 镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏 蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、 2 镁合金的特点 (1)重量轻:镁合金的比强度要高于铝合金和钢/铁、但略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢/铁相当,但却远远高于纤维增强塑料。比强度(强度/密度之比值)、比耐力(耐力/密度之比值)则比铝、铁都要高。在实用金属结构材料中其比重最小(密度为铝的2/3,钢的1/4)。这一特性对于现代社会的手提类产品减轻重量、车辆减少能耗以及兵器装备的轻量化具有非常重要的意义。 (2)高的阻尼和吸震、减震性能:镁合金具有极好的吸收能量的能力,可吸收震动和噪音,保证设备能安静工作。镁合金的阻尼性比铝合金大数十倍,减震效果很显著,采用镁合金取代铝合金制作计算机硬盘的底座,可以大幅度减轻重量(约降低70%),大大增加硬盘的稳定性,非常有利于计算机的硬盘向高速、大容量的方向发展。 (3)良好的抗冲击和抗压缩能力:其抗冲击能力是塑料的20倍;当镁合金

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

镁基复合材料的性能及应用

镁基复合材料的性能及应用 罗文昌2013121532 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。本文将综述镁基复合材料的不同制备方法及其对复合材料组织、结构、性能的影响,并提出镁基复合材料的研究和发展方向。 关键词:镁基复合材料;基体镁合金;性能;应用;发展 1.引言 现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。复合材料是将两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。近年来,金属基复合材料在许多领域得到了应用。目前金属基复合材料的制备方法已有很多,并在铁基、镁基、铜基、铝基、钛基等金属基复合材料中取得了比较大的成功。镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。根据镁基复合材料的特点,结合原有的金属基复合材料的制备工艺,材料工作者尝试了多种新的适合制备镁基复合材料的方法与工艺,对研制、开发镁基复合材料起到了很好的促进作用。 2.镁基复合材料的组织与性能 相对于传统金属材料和铝基复合材料,有关镁基复合材料的组织与性能的研究目前虽然已经取得了一定的成果,但还不够全面深入,力学性能数据分散性也比较大,仍处于探索性研究阶段。材料工作者对镁基复合材料的耐磨性能和疲劳断裂机理进行了研究,并围绕镁基复合材料的力学性能及物理性能做了一些工作。力学性能主要集中于复合材料的拉伸与压缩性能,时效特性,以及低温与高温超塑性等方面;物理性能有阻尼性能和储氢性能等研究内容。储氢镁基复合材料一般采用球磨法制备。高能球磨后,颗粒活化,镁颗粒与增强相颗粒以及颗粒内部的大量相界、微观缺陷的存在是材料具有优异氢化性能的主要原因。通过机械合金化工艺可以制备出具有优良储氢性能的复合材料,典型体系:Mg—Mg2Ni,而且若在研磨过程中辅以某些有机添加剂对提高材料的储氢性能有很大帮助,但较高的脱氢温度以及相对较慢的吸放氢速度限制了镁基合金实际应用。另外非晶态镁基复合材料的优良性能更是引起了人们的普遍兴趣。在实际应用中,由于镁基复合材料过硬的性能,镁基复合材料在在各领域中被广泛应用。镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。另外,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能镁基复合材料具有良好的阻尼性能(减振性能)、电磁屏蔽性能和储氢特性,是良好的功能材料,还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等。 3.镁基复合材料的应用 从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。 美国TEXTRON、DOW 化学公司用SiC /Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽

高分子复合材料重点

高分子复合材料重点

“高分子复合材料”练习题 第1章绪论 2、简述复合材料的特性。 A 比强度和比模量,复合材料的突出特点是比强度与比模量高。 B 抗疲劳性能 C 减振性能 D 过载安全性 E 高温性能良好 F 具有可设计性 第2章基体材料 2、述不饱和聚酯树脂固化中交联剂的选择以及引发剂的结构特点; 交联剂的选择一般对交联剂有如下的要求:高沸点、低粘度,能溶解树脂呈均匀溶液,能溶解引发剂、促进剂及染料;无毒,反应活性大,能与树脂共聚成均匀的共聚物,共聚物反应能在室温或较低温度下进行。 引发剂的结构特点:引发剂一般为有机过氧化物4、简述酚醛树脂的种类及其常用固化剂; 酚醛树脂的种类:a.热固性酚醒树脂 b.热塑性酚醛树脂 c.其它类型酚醛树脂

(a)低压钡酚醛树脂。(b)硼酚醛树脂。(c)改性酚醛树脂。 常用固化剂:热固性塑料酚醛树脂一般采用酸类固化剂。常用的酸类固化剂有盐盐酸或磷酸,也可用对甲苯磺酸、苯酚磺酸或其它的磺酸。 5 简述热塑性树脂的特点及其常用产品; 热塑性树脂的特点:就是加热软化甚至熔融,冷却后硬化,这个过程是可以反复进行的,因此,热塑性树脂的加工成型是非常方便的。 常用的热塑性树脂:有聚乙烯、聚碳酸酌、聚甲醛、聚苯醚、聚矾、豪四氟乙烯等。 6、简述聚苯硫醚的结构及其物理特性。 聚苯硫醚是以硫化钠和对二氯苯为原料制备的,在其分子链中含有苯硫基,分子结构式为右方所 示。 聚苯硫醚为一种线型结构,当在空气中加热到345℃以上时,它就会发生部分交联。固化的聚合物是坚韧的,且是非常难溶的。聚苯疏醚具有优异的综合性能。表现为突出的热稳定性,优良的化学稳定性、耐蠕变性、刚性、电绝缘性及加工成型性。

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

高分子基复合材料

高分子基复合材料 Polymer Matrix Composite Materials 课程编号:07370380 学分:2 学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:材料科学导论、高分子化学、大学物理 适用专业:高分子材料与工程、复合材料与工程 教材:《聚合物复合材料》黄丽主编,中国轻工业出版社,2012.01 第二版开课学院:材料科学与工程学院 一、课程的性质与任务 高分子基复合材料是建立在数学、物理学、化学等课程知识的基础上,为材料科学与工程专业学生开设的一门专业方向课,其性质为选修。 通过本课程的学习,旨在让学生获得复合材料的有关基本理论和基本知识,为拓宽学科方向和今后从事相关研究和工作奠定必要的基础。其主要任务是使学生具备下列知识和能力: 1.熟悉复合材料的常用基体材料和常用增强材料结构与性能; 2.初步掌握聚合物基、碳基、纤维增强复合材料的种类和基本性能; 3.能够根据实际要求合理设计材料,从微观或亚微观水平上选定合适的基体和 增强体或功能体; 4.依靠复合材料设计知识,确定合适的表面处理技术和成型工艺; 5.了解先进复合材料的发展概况。 二、课程的基本内容及要求 第1章绪论 1. 教学内容 (1).复合材料的发展史 (2).复合材料的定义、命名及分类 (3).复合材料的特性 (4).对高性能复合材料的期望及开发现状 2. 学习要求 (1).了解复合材料的发展简史 (2).掌握复合材料的概念、分类及命名规则 (3).理解复合材料的特性及发展趋势 3. 重难点 掌握复合材料的定义及特性既是本章的重点,也是难点

第2章基体材料 1. 教学内容 (1).概述 (2).聚合物基体 (3).金属基体 (4).陶瓷基体 (5).碳基体 2. 学习要求 (1).理解基体的概念 (2).掌握基体在复合材料材料中的作用及对复合材料性能的影响(3).了解复合材料中常用的基体类型 (4).掌握聚合物基体的特性 3. 重难点 (1).重点是熟悉复合材料中基体的类型及各类基体的特性(2).难点是掌握几种常用聚合物基体的制备原理和工艺 第3章复合材料的增强材料 1. 教学内容 (1).玻璃纤维 (2).碳纤维 (3).有机高分子纤维 (4).陶瓷纤维 (5).金属纤维 (6).晶须 (7).粉体增强材料 2. 学习要求 (1).理解增强材料在复合材料中的作用 (2).理解各类增强材料增强原理 (3).掌握常用增强材料的制备工艺 3. 重难点 (1).重点是理解各类型增强材料的增强机制和特点 (2).难点是掌握几种常用增强材料的制备工艺 第4章纤维复合材料及其制造方法 1. 教学内容 (1).聚合物基复合材料

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

高速激光熔覆的加工成本是多少(1)

高速激光熔覆的加工成本是多少 高速激光熔覆近两年在金属表面处理行业博得很多的关注,相较传统表面处理工艺,高速激光熔覆技术从原理到应用有着诸多显著的优势。要想深入了解高速激光熔覆,那么激光熔覆是必然绕不开的话题。激光熔覆工艺已不算新鲜,与常见的电镀、热喷涂、堆焊、等离子焊等表面处理工艺类似,激光熔覆历经近15年的发展,设备技术及工业应用已经比较成熟。高速激光熔覆是在原有激光熔覆基础上发展而来,与普通激光熔覆相比具有熔覆加工效率高,熔覆表层平整以及熔覆成本低等优势。高速激光熔覆一经推出就刷新了人们对传统激光熔覆的认知,高速激光熔覆集成了电镀及热喷涂二者的优点,是最先进的绿色环保金属表面处理技术。 很多金属表面处理行业大型国企或领头企业纷纷开始引入该项技术,实现生产力的提高以及利润的提升。而对于一些还在观望的中小型企业甚至是个企,普遍关心的问题是高速激光熔覆工艺的生产成本问题,下面就这个问题做详细的介绍。以当前高速激光熔覆已广泛应用的煤矿液压支架行业为例,我们来计算高速熔覆修复一个平方面积的加工成本。 以目前市场占有率最多的中科中美6000高速激光熔覆设备为例,该台设备在客户现场实测加工修复液压支架时,熔覆层单边0.65mm厚度(简单抛磨后剩0.35mm),实际效率为0.8㎡/h。 高速激光熔覆设备生产加工成本主要包括电费、易损件、气体、人员工资以及材料粉末的消耗成本这几大块。 (1)电费消耗。以中科中美ZKZM-6000为例,全套(机床+水冷+除尘+激光器)耗电功率约为34KW,这样以单平方加工需要电能为42.5KWh,按照工业用电1元每度,则单平方熔覆加工耗电费用约为42.5元。 (2)易损件消耗。普通激光熔覆工作时需要定期更换保护镜片。中科中美高速激光熔覆目前所有易损件质保期内免费赠送,因此该项费用可忽略。 (3)气体费用。高速激光熔覆设备在加工过程中需要使用氮气或氩气作为送粉气和保护气,在保证合适气压情况下,单平方米的熔覆加工使用的氮气消耗约为20元。 (4)人员工资。以城市平均工资6000元起算,月工作22天,每天工作8小时,以0.8㎡/h效率计算,高速熔覆单位面积人员费用为42元。 (5)金属粉末费用。中科中美6000W设备采用中心送粉技术,粉末利用率可达90%,以金属表面修复比较常见金属粉末来算,粉末单价约为70元/kg,则熔覆1个平米面积的金属粉末费用约为400元。 从上述几大费用来看,ZKZM-6000W高速激光熔覆设备加工1个平方米的面积,其费用约为505元。其中金属粉末成本占了整个消耗费用近80%。而普通激光熔覆因为其效率

矿用机械易损部件激光熔覆再制造可行性研究报告3 - 副本

矿用机械易损部件激光熔覆再制造 可行性研究报告 2016年4月15日

前言 目前,国内已有矿用机械易损部件激光熔覆再制造技术的应用,再制造工程可以使得磨损表面得到修复,恢复零部件使用性能。也可在设备使用前将易损部位提前熔覆保护层,增强其耐磨性、耐腐蚀性,使设备的使用寿命更长。再制造工程和产业化可为企业带来巨大利润,成为新的经济增长点。通过再制造产业化方式,企业可以减少设备投资,修旧复用,降低生产成本,节省资金、节能、节材和保护环境,增强企业的市场竞争力,具有良好的经济效益和社会效益。 一、煤炭行业现状 目前,在多种因素的作用下,煤炭企业运行十分困难。全国煤企2015年亏损面已经超过八成,且因为产能过剩很严重,2016年仍旧不乐观。目前,相关部门多次强调,要加快对长期亏损、产能过剩严重的“僵尸”企业的重组整合或退出。煤炭行业也因此成为承受重压的行业。2015年以来,煤价已下跌三成,降到不如土豆的价格,坑口吨煤价格甚至卖不过一立方沙子。很多煤企更是巨亏,不得不通过降薪、甚至停薪留职、内部休假等手段来降本增效。但即便如此,煤炭“僵尸”企业为了维持现金流,宁愿亏损也不停产。但实际上,随着煤价不断降低,煤企的资金链已经快顶不住。数据显示,目前煤炭行业平均资产负债率已经达到67.7%,处于2000年以来最高水平。面对经营环境恶化日益严重,坚持可持续性发展已经成为所有煤炭企业的共识。循环经济突破传统观念的束缚,旨在对有限的资源进行高效的重复循环利用。经济发展是建立在维护自然生态系统良性运行的基础上,注重减少资源消耗、降低废弃物排放和提高资源使用率,最大限度地实现资源的有效利用。煤炭企业,作为典型的

高分子复合材料

高分子复合材料 高分子复合材料,从狭义上来说是指高分子与另外不同组成、不同形状、不同性质的物质复合而成的多相材料,大致可分为结构复合材料和功能复合材料两种。广义上的高分子复合材料则还包含了高分子共混体系,统称为“高分子合金”。当分散相为金属/无机物时,则称为有机/无机高分子复合材料;而当分散相为异种高分子材料时,则称为高分子共混物。自然界中有大量的高分子复合材料的例子,如树木、蜂巢、燕窝等。 高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。高分子功能复合材料也是由树脂类基体材料和具有某种特殊功能的材料构成,如某些电导、半导、磁性、发光、压电等性质的材料,与粘合剂复合而成,使之具有新的功能。如冰箱的磁性密封条即是这类复合材料。 高分子复合材料有以下优异特性:优异的附着力:高分子渗透形成分子之间的作用力,使其与修复部件形成范德华力和氢键链接。优异的机械性能:分析了机械设备在运行过程中所产生的各种复合力的要求,在材料的合成过程中实现了各种数据的均衡性,并具有良好的机械加工性能和延展性能。抗化学腐蚀性能:解决了大多数高温下的有机酸、无机酸及混合酸的腐蚀。材料的安全性:100%固体,材料没有挥发性;无毒无害,可以和皮肤直接接触。 所以它的应用范围比较广,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。高分子是生命存在的形式,所有的生命体都可以看作是高分子的集合。树枝、兽皮、稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸、树胶、丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 例如,将水泥砂浆与聚合物等材料以适当比例配制而形成的聚合物水泥砂浆,因其材料组成中有热塑性高分子化合物,在固化剂作用下可形成不溶、不熔硬质的复合材料,此复合材料具有包括抗冲耐磨性能在内的许多优良力学性能。因此,选择合适的材料组成成分并确定其配合比,是实现材料优良性能的先决条件。 上海复鑫分析技术中心研发团队在长期实验室分析经验的积累中,一直坚持专注于成分分析领域,产品种类涵盖:塑料、橡胶、钢材、胶粘剂、涂料、油墨、清洗剂、水处理助剂、表面处理剂、金属加工液、建筑类添加剂、油田助剂、脱模剂、助焊剂等八大行业的四十余个品类。依托复旦大学、上海交大等高校的国家重点实验室作为技术平台,并通过与上海有机化学研究所、上海材料研究所等机构的紧密合作,不断挖掘一线市场需求,服务长三角、全国乃至东南亚和北欧的客户。

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

激光熔覆技术工艺及案例分析

在很长一段时间内,传统的工业制造加工或者再修复,需要通过电镀技术,这一技术虽然曾一度在金属表面防护、装饰加工等方面发挥了很大的作用,但长期以来带来的污染问题让许多制造企业头疼不已,因此为减少污染,新的激光熔覆技术受到人们的欢迎。 激光表面熔覆具有能量密度高,熔覆质量致密,结合强度高,熔覆层组织的稀释率低、热影响区小等特点。激光表面熔覆为非接触式加工且输入热量可控,采用的规范激光修复方法可以解决其它焊接方法造成焊接残余应力和开裂倾向。因此可以先采用机械加工的方法去除牌坊表面的腐蚀层和磨损的疲劳层,然后选取耐腐蚀性和耐磨性都优于基材的粉末,采用激光熔覆的方法对牌坊进行修复,这样既避免了多次去除材料给牌坊造成的强度下降的缺陷,又避免了堆焊造成的因应力集中导致的变形问题,而且提高了牌坊的耐腐性和耐磨性。 激光熔覆技术是使用激光将金属粉末直接熔融,逐层沉积成型。激光熔覆技术完成的熔覆涂层冶金质量高、稀释率低、变形小、表面光洁度高,属于先进环保的再制造加工技术,在工业再制造领域极大地减少企业的后续机加工成本,能有效延长产品使用周期,在钢铁行业轧机牌坊修复中大受欢迎。

现场激光修复案例分析 1、修复加工方法 因为轧机机架体积及重量大,附属管路等多,拆卸、安装、运输繁杂,另外有大修时间限制。轧机牌坊材质是ZG25,设计使用寿命年限为40年,牌坊工作面腐蚀失效深度1~2.5mm。通过现场勘察及使用工况的调研,综上因素,在考虑满足使用要求的前提下,确定针对轧机牌坊现场修复方法为: 通过在线机械加工,去除牌坊失效工作面(四块衬板下面及两个轧机轴承座底面)表面腐蚀疲劳层,上半面腐蚀较轻,下半面较严重,平均铣去大约2或3mm的深度,为激光熔覆前基体表面处理做准备。在通过机械加工去除材料,清除牌坊表面腐蚀层过程中,要保证恢复失效工作面(和安装面)的垂直度、平面度及粗糙度要求。再通过激光熔覆技术将特殊耐腐蚀材料熔覆到前面加工的基体表面,彻底改变了牌坊表面的特性。预计熔覆涂层寿命在十年以上,避免了对牌坊表面频繁的机加工修复带来的危害,彻底解决轧机牌坊磨损腐蚀的难题。 另外对各工作面原有螺栓孔的处理方法是:清理各螺栓孔,清除断折的螺杆,损伤螺纹

高分子复合材料的性能特点

高分子复合材料的性能特点 陈金鹏 (河北工业大学材料科学与工程学院,材料物理与化学国家重点学科,天津)摘要:简单介绍了稀土/高分子复合材料,磁智能材料,聚合物基纳米复合材料,导电高分子复合材料,磁性纳米高分子复合材料等几种高分子复合材料的性能和特点,以及对它们的制作方法做了简单的介绍。 关键词:高分子复合材料,纳米材料,特性 The performance characteristics of polymer composite materials Chen jin peng (College of Materials Science and Engineering, Hebei University of Technology, Tianjin, China ) Abstract: Introduced several the performance and characteristics of the rare earth/polymer composite material l, magnetic intelligent materials, polymer nanocomposites, conductive polymer composite material, magnetic nano polymer composite macromolecule composite materials, and their production methods do briefly introduced. Key words:Polymer composite materials, Nano materials, characteristics 1.1稀土/高分子复合材料 在高分子材料科学发展过程中,兼备高分子材料质轻、高比强度、易加工、耐腐蚀的优点,同时又具有光、电、磁、声等性能的特种高分子复合材料备受推崇。稀土因其电子结构的特殊性而具有光、电、磁等特性,这些特性是人们制备稀土/高分子复合材料强烈的技术和应用的驱动力。在简单掺混型稀土/高分子复合材料的制备过程中,研

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

相关文档