文档库 最新最全的文档下载
当前位置:文档库 › MnO2 机理

MnO2 机理

MnO2 机理
MnO2 机理

Charge Storage Mechanism of MnO2Electrode Used in Aqueous Electrochemical Capacitor

Mathieu Toupin,?Thierry Brousse,*,?,?and Daniel Be′langer*,?De′partement de Chimie,Universite′du Que′bec a`Montre′al,Case Postale8888, succursale Centre-Ville,Montre′al,Que′bec H3C3P8,Canada,and Laboratoire de Ge′nie des Mate′riaux,Ecole Polytechnique de l’Universite′de Nantes,La Chantrerie,

rue Christian Pauc,BP50609,44306Nantes Cedex3,France

Received March2,2004.Revised Manuscript Received June2,2004

The charge storage mechanism in MnO2electrode,used in aqueous electrolyte,was investigated by cyclic voltammetry and X-ray photoelectron spectroscopy.Thin MnO2films deposited on a platinum substrate and thick MnO2composite electrodes were used.First, the cyclic voltammetry data established that only a thin layer of MnO2is involved in the redox process and electrochemically active.Second,the X-ray photoelectron spectroscopy data revealed that the manganese oxidation state was varying from III to IV for the reduced and oxidized forms of thin film electrodes,respectively,during the charge/discharge process. The X-ray photoelectron spectroscopy data also show that Na+cations from the electrolyte were involved in the charge storage process of MnO2thin film electrodes.However,the Na/ Mn ratio for the reduced electrode was much lower than what was anticipated for charge compensation dominated by Na+,thus suggesting the involvement of protons in the pseudofaradaic mechanism.An important finding of this work is that,unlike thin film electrodes,no change of the manganese oxidation state was detected for a thicker composite electrode because only a very thin layer is involved in the charge storage process.

Introduction

Electrochemical supercapacitors are currently inves-tigated in various academic and industrial laboratories because they can be used as complementary charge storage devices to conventional batteries in various applications that require peak power pulses.1,2In these electrochemical supercapacitors,the energy being stored is either capacitive or pseudocapacitive in nature.The capacitive or nonfaradaic process is based on charge separation at the electrode/solution interface,whereas the pseudocapacitive process consists of faradaic redox reactions that occur within the active electrode materi-als.The most widely used active electrode materials are carbon,3,4conducting polymers,5,6and both noble7-9and transition-metal oxides.10-29

The main motivation for the use of transition-metal oxides lies in their low cost compared to noble metal oxides such as ruthenium7,8and iridium9oxides.The initial studies were performed on nickel oxide10and cobalt oxide11but more recently iron12-15and manga-nese oxides14,16-29were investigated.The research ef-forts focused on compounds providing high cyclability and capacitance.On the other hand,the charge storage mechanism of MnO2has not been investigated in detail. Until now,two mechanisms were proposed to explain the MnO2charge storage behavior.The first one implies the intercalation of protons(H+)or alkali metal cations (C+)such as Li+in the bulk of the material upon reduction followed by deintercalation upon oxidation.17

or

The second mechanism is based on the surface adsorption of electrolyte cations(C+)on MnO216 where C+)Na+,K+,Li+.This mechanism was proposed following the observation of significant difference of the cyclic voltammogram and the capacitance of MnO2in the presence of various metal alkali cations in the electrolyte.16It should be noticed that both proposed

*To whom correspondence should be addressed.E-mail: thierry.brousse@polytech.univ-nantes.fr(T.B.)and belanger.daniel@ uqam.ca(D.B.).

?Universite′du Que′bec a`Montre′al.

?Ecole Polytechnique de l’Universite′de Nantes.

(1)Conway,B.E.Electrochemical Supercapacitors,Scientific Fun-damentals and Technological applications;Kluwer Academic/Plenum Press:New York,1999.

(2)Burke,A.J.Power Sources2000,91,37.

(3)Frackowiak,E.;Be′guin,F.Carbon2001,39,937.

(4)Lin,C.;Popov,B.N.;Ploehn,H.J.J.Electrochem.Soc.2002, 149,A167.

(5)Villers,D.;Jobin,D.;Soucy,C.;Cossement,D.;Chahine,R.; Breau,L.;Be′langer,D.J.Electrochem.Soc.2003,150,A747.

(6)Fusalba,F.;El Mehdi,N.;Breau,L.;Be′langer,D.Chem.Mater. 2000,12,2581.

(7)Zheng,J.P.;Jow,T.R.J.Electrochem.Soc.1995,142,L6.

(8)Soudan,P.;Gaudet,J.;Guay,D.;Be′langer,D.;Schulz,R.Chem. Mater.2002,14,1210.

(9)Conway,B.E.;Birss,V.;Wojtowicz,J.J.Power Sources1997, 66,1.

(10)Nelson,P.A.;Owen,J.R.J.Electrochem.Soc.2003,150, A1313.

MnO

2

+H++e-S MnOOH(1)

MnO

2

+C++e-S MnOOC(2)

(MnO

2

)

surface

+C++e-S(MnO

2

-C+)

surface

(3)

3184Chem.Mater.2004,16,3184-3190

10.1021/cm049649j CCC:$27.50?2004American Chemical Society

Published on Web07/16/2004

mechanisms involved a redox reaction between the III and IV oxidation states of Mn.

The mechanism based on the solid-state diffusion of protons in the bulk of the material is similar to that proposed for RuO2.7However,only a limited fraction of the MnO2composite is electrochemically active,thus suggesting that the protonic diffusion in the bulk of the MnO2compound might not be as fast as in the case of RuO2.21Subsequently,the charge storage might only involved the surface atoms of the MnO2crystallites or a very thin layer.Then it might be plausible to assume that ions from the electrolyte would participate in the charge compensation process.On the other hand,the reported capacitance ranging between150and200F/g for composite electrode cannot be only associated to the formation of the classical double layer.21Hence,the nature of the charge storage mechanism must be pseudocapacitive.

This work aimed at getting a better understanding of the charge storage mechanism in manganese dioxide electrodes when cycled in aqueous electrolyte.The electrodes were characterized by cyclic voltammetry and X-ray photoelectron spectroscopy in order to determine a change of the manganese valence upon charge/ discharge.Additionally,the experimental results were used to determine whether the charge storage process was limited to the surface of the oxide or if it occurred inside the bulk of the material.

Experimental Section

Preparation of the MnO2Powder.The MnO2powder was synthesized by coprecipitation.21Briefly,KMnO4and MnSO4?H2O were mixed in a2:3molar ratio,leading to a dark brown precipitate.The amorphous nature of the as-synthesized MnO2powder was confirmed by the X-ray diffraction(XRD) spectrum(Figure SI1),which shows broad peaks related to a poorly crystallized compound.From chemical analysis,the stoichiometry for the powder was determined to be K0.02-MnO2H0.33,0.53H2O.Thereafter,the compound will be named “MnO2”despite that it does not reflect the exact composition of the sample.

Scanning electron micrographs revealed that the as-synthesized R-MnO2powder is made of spherical grains (Figure SI2).The length scale is systematically indicated as a white bar on the bottom left corner of the micrographs.A statistical analysis of the grain diameter performed over more than100particles yielded a Gaussian distribution centered at420nm with a standard deviation of190nm.Each grain seems to result from the agglomeration of smaller particles (Figure SI3).Using the geometric surface of spherical grains (420nm diameter assuming a density of4.8g/cm3)the specific surface was estimated to a value close to3m2/g.The specific surface area determined from BET measurements(160(3 m2/g)is larger than this value thus indicating that pores and voids exist inside the grains examined by scanning electron microscopy.

Preparation of the Electrodes.To investigate the influ-ence of both the thickness and the composition of the elec-trodes,thick film(≈100μm)and thin film(<5μm)electrodes were prepared.For the thick film samples,a composite was typically prepared by mixing80%of active powder,7.5%of graphite(Alfa Aesar),7.5%of acetylene black(Alfa Aesar),and 5%of PTFE(poly(tetrafluoroethylene),Dupont)in ethanol (Fisher).Then,cold rolling of the obtained paste resulted in a black shiny film,which was pressed in a ply of a stainless steel mesh(Alfa Aesar,200mesh)current collector under a pressure of9metric tons(see Figure SI4a for a photomicrograph of these electrodes).Typically,a2mg square piece of film was used for the electrode,referred to as“composite”electrodes from now on.

Alternatively,thin films were prepared by dispersing an appropriate amount of MnO2in a solution of polyvinylidene difluoride-hexafluoropropylene(copolymer PVdF-HFP,Ky-narflex)in N-methyl pyrolydinone(NMP,Fisher)to obtain a final concentration of1mg(MnO2)/mL with10%w/w of polymer.The dispersion was left in a ultrasonic bath for30 min.A platinum foil(1.5×0.5cm;thickness0.1mm;Alfa Aesar)was used as the substrate(and current collector)and coated with the MnO2slurry by adding5μL drops of the dispersion with a micropipet(Eppendorf)(see Figure SI4b for a photomicrograph of these electrodes).The electrode was dried in a oven at65°C for30min between each drop.Typically the area of platinum covered with the slurry was0.75cm×0.5cm.The mass of the deposited material was deduced by weighing the electrode before and after the coating.Thereafter, these electrodes will be referred to as“thin film”electrodes. However,this denomination is not totally correct since the “film”is most likely seen as aggregates of MnO2particles (thickness is less than2μm)on the platinum substrate(see Figure SI4b).

Electrochemical Measurements.The cyclic voltammetry and polarization experiments were carried out with a1470 multipotentiostat(Solartron,Mobrey)using the Corrware software(Scribner Associates,version2.6).A beaker type cell containing a0.1M Na2SO4electrolyte solution was used for all the electrochemical measurements.The cyclic voltammetry experiments were performed between0and0.9V vs Ag/AgCl (3M NaCl)at a scan rate of5mV/s.

The specific capacitance,C cv,was calculated using the voltammetric charge integrated from the cyclic voltammogram according to the following equation

where C cv is the specific capacitance(in F/g),Q is the charge (in C),?E is the potential window(in V),and m is the mass of active material(in g).

Surface Characterization of the Electrodes.After polarization,the electrodes were dried out in a vacuum oven at ambient temperature for1hour.The XPS studies were conducted with a VG Escalab220i-XL instrument equipped with a hemispherical analyzer and using an aluminum anode (monochromatic K R X-rays at1486.6eV)as a source(at12-14kV and10-20mA).The XPS spectra were analyzed and fitted using CasaXPS software(version2.2.27).The C1s region

(11)Lin,C.;Ritter,J.A.;Popov,B.N.J.Electrochem.Soc.1998, 145,4097.

(12)Wu,N.-L.;Wang,S.-Y.;Han,C.-Y.;Wu,D.-S.;Shiue,L.-R.J. Power Sources2003,113,173.

(13)Wu,N.L.Mater.Chem.Phys.2002,75,6.

(14)Brousse,T.;Be′langer,D.Electrochem.Solid-State Lett.2003, 6,A244.

(15)Brousse,T.;Delahaye,T.;Be′langer,D.In preparation.

(16)Lee,H.Y.;Goodenough,J.B.J.Solid State Chem.1999,144, 220.See also a more detailed version of this study in the following: Lee,H.Y.;Manivannan,V.;Goodenough,J.B.C.R.Acad.Sci.Paris 1999,t.2,Se′rie II c,565.

(17)Pang,S.C.;Anderson,M.A.;Chapman,T.W.J.Electrochem. Soc.2000,147,444.

(18)Lee,H.Y.;Kim,S.W.;Lee,H.Y.Electrochem.Solid-State Lett.

2001,4,A19.

(19)Hu,C.C.;Tsou,https://www.wendangku.net/doc/278773351.html,m.2002,4,105.

(20)Chin,S.F.;Pang,S.C.;Anderson,M.A.J.Electrochem.Soc. 2002,149,A379.

(21)Toupin,M.;Brousse,T.;Be′langer,D.Chem.Mater.2002,14, 3946.

(22)Brousse,T.;Toupin,M.;Be′langer,D.J.Electrochem.Soc.2004, 151,A614.

(23)Jiang,J.;Kucernak,A.Electrochim.Acta2002,47,2381.

(24)Hu,C.C.;Tsou,T.W.Electrochim.Acta2002,47,3523.

(25)Jeong,Y.U.;Manthiram,A.J.Electrochem.Soc.2002,149, A1419.

(26)Broughton,J.N.;Brett,M.J.Electrochem.Solid-State Lett. 2002,5,A279.

(27)Kim,H.;Popov,B.N.J.Electrochem.Soc.2003,150,D56.

(28)Hu,C.-C.;Wang,C.-C.J.Electrochem.Soc.2003,150,A1079.

(29)Chang,J.-K.;Tsai,W.-T.J.Electrochem.Soc.2003,150,A1333.C

cv

)

Q

?E×m

(4)

Charge Storage Mechanism of MnO2Electrode Chem.Mater.,Vol.16,No.16,20043185

was used as a reference for surface charging and was set at 284.9eV.A mixture of Gaussian (70%)and Lorentzian (30%)functions was used for the least-squares curve fitting proce-dure.

The manganese oxidation state was determined from the Mn 3s and O 1s core level spectra.The procedure used to analyze the Mn 3s spectra has been described previously.21,30,31In the case of the O 1s data,the average manganese oxidation state for the three electrodes can be computed from the intensities of the Mn -O -Mn and Mn -OH components ac-cording to

where S stands for signal of the different components of the O 1s spectra.Since all manganese atoms are bonded to an oxygen atom,the Mn -O -Mn signal should represent the contribution of two species:MnOOH and MnO 2.Hence,the XPS signal related to the Mn(IV)species can be computed by subtracting the contribution of the hydroxyl group (Mn -OH)from the Mn -O -Mn signal.Binding energies and manganese oxidation states of authentic samples can be found in Table 1of ref 30.

Results and Discussion

Electrochemical Behavior of the MnO 2Compos-ite Electrode.Figure 1A shows a typical cyclic volta-mmogram for a composite film electrode in 0.1M Na 2SO 4at a scan rate of 5mV/s.The cyclic voltammetry response when the negative and positive potential limits are restricted to 0and 0.9V,respectively,is character-istic of a pseudocapacitive electrode material,but it is not perfectly rectangular due to polarization resistance.This effect is noticeably more significant at the less positive potential limit compared to the positive limit,and this specific point will be discussed later.The cyclic voltammogram is similar to that previously reported for MnO 2-based composite electrode,and a capacitance of 150F/g can be computed for this electrode.14,21,22

XPS Surface Analysis of the Composite Elec-trodes.To observe the change in oxidation state of manganese when the electrode is cycled between 0and 0.9V and if ionic species are involved in the charge storage mechanism,the composite electrodes were characterized by X-ray photoelectron spectroscopy (XPS).Prior to the XPS measurements,the composite elec-trodes were polarized at 0or 0.9V until the charge passed was equal to the charge integrated from the cyclic voltammogram.The survey spectra presented in Figure 2for oxidized and reduced MnO 2-based compos-ite electrodes show Mn 2p (642eV),Mn 3s (84eV),and O 1s (530eV)peaks attributed to manganese dioxide.The C 1s (285and 293eV)peaks and F 1s (685eV)are associated with the presence of acetylene black,graph-ite,and PTFE.The two spectra are almost identical with the exception of the Na 1s peak that is almost absent for the oxidized composite electrodes (vide infra).

The Mn 3s,Mn 2p,and O 1s core level spectra can be used to assess the change in oxidation state of manga-nese for the oxidized and reduced MnO 2electrodes (see Experimental Section).The Mn 3s core level spectra should usually show a peak splitting and a doublet due to the parallel spin coupling of the 3s electron with the 3d electron during the photoelectron ejection.30,33,34The energy separation between the two peaks is related to the mean manganese oxidation state.Since a lower valence implies more electrons in the 3d orbital,more interaction can occur upon photoelectron ejection.Con-sequently,the energy separation between the two components of the Mn 3s multiplet will increase.30The inverse trend will be observed when the manganese valency increases.

The Mn 3s core level spectra were recorded (Figure SI5)for oxidized and reduced MnO 2-based composite electrodes,and the relevant data are included in Table 1.The data of Table 1revealed that the peak splitting of the doublet of the Mn 3s core level spectra is almost

(30)Chigane,M.;Ishikawa,M.J.Electrochem.Soc.2000,147,2246.(31)Chigane,M.;Ishikawa,M.;Izaki,M.J.Electrochem.Soc.2001,148,D96.

(32)Long,J.W.;Young,A.L.;Rolison D.R.J.Electrochem.Soc.2003,150,A1161.

(33)Moulder,J.F.;Strickle,W.F.,Sobol,P.E.;Bomben,K.D.Handbook of X-ray Photoelectron Spectroscopy ;Perkin-Elmer Corpora-tion:Physical Electronics Division:Eden Prairie,MN,1992.

(34)Briggs,D.;Seah,M.P.Practical Surface Analysis ,2nd ed,;John Wiley &Sons:1996;Volume

1.

Figure 1.Cyclic voltamograms in 0.1M Na 2SO 4at 5mV/s of (A)a composite electrode composed of 80%MnO 2,7.5%graphite,7.5%acetylene black,and 5%Teflon and (B)a 90%MnO 2and 10%PVdF -HFP thin film electrode supported on a Pt

foil.

Figure 2.XPS survey for an oxidized and a reduced composite and thin film electrodes.

Ox ?State )

(IV*(S Mn -O -Mn -S Mn -OH ))+(III*S Mn -OH )

S Mn -O -Mn

(5)

3186Chem.Mater.,Vol.16,No.16,2004Toupin et al.

the same for all the electrodes.This value close to 5.00eV is compared to 5.79,5.50,5.41,and 4.78eV for reference sample of MnO,Mn 3O 4,Mn 2O 3,and MnO 2,respectively.30Hence,the manganese oxidation state remained at about 3.5.Similar findings were obtained for composite electrodes polarized at more positive (1.25V)and more negative (-0.65V)potential.The absence of a change of the manganese oxidation state is puzzling in light of previous reports on electrodeposited MnO 230,31and birnessite MnO x ambigel films 32in aqueous elec-trolytes.Even when the XPS measurements were performed with a takeoff angle of 30°or 45°,in condi-tions where a thinner surface layer is probed,33,34attempts to observe a change of the manganese oxida-tion state failed.Then,it was suspected that the oxidation state of the electrode changed during the drying step and exposure to air.The measurement of the open circuit potential (OCP)for both reduced or oxidized electrodes,monitored before and after the drying step,revealed a drift of the OCP to an average potential of 0.45V following the drying step.This observation suggests that only the surface MnO 2may be involved in the redox pseudocapacitive reaction.In this case,the surface of the film could be brought back very close to the oxidation state of OCP conditions by a redox reaction driven by the chemical potential between the surface and the bulk of the material.

Electrochemical Behavior of the MnO 2Thin Film Electrode.To avoid this phenomenon,thin film electrodes were used to ensure that a more significant fraction of the MnO 2film would be involved in the electrochemical reaction during the oxidation and re-duction steps.This was accomplished by using MnO 2thin film supported on platinum electrodes as described in the Experimental Section.First,experiments were performed with electrodes of different film thickness to estimate the electrochemically active fraction of the MnO 2film.The mass and thickness were controlled by adding between one and five drops of a MnO 2-PVdF -HFP mixture with a drying step between each addition (see Table 2).Figure 1B shows a representative cyclic voltammogram for the MnO 2powder supported on platinum foil,which displays the characteristic capaci-tive behavior between 0and 0.9V.The specific capaci-tance of 1380F/g obtained for this electrode is close to the theoretical value of 1370F/g expected for a redox process involving one electron per manganese atom.The larger polarization of the Pt -MnO 2electrode relative to the composite electrode (Figure 1A),demonstrated by the more pronounced curvature of the cyclic volta-mmogram near the potential limits,is due to the absence of the conductive carbon in the thin film electrode.Table 2shows the variation of the voltam-metric charge measured for each electrode as a function of the MnO 2mass.For the thinner film (electrode A),all the MnO 2material is taking part in the electro-chemical redox process,during the cyclic voltammetry experiment performed at 5mV/s,since the Coulombic efficiency is about 100%.The Coulombic efficiency is calculated from the measured voltammetric charge of the cyclic voltammogram and the theoretical calculated charge by assuming the transfer of one electron per Mn atom and that the whole MnO 2mass is electrochemi-cally active.Table 2indicates that the Coulombic

Table 1.Data Obtained from the XPS Spectra

Mn 3s (eV)Mn 2p (eV)

O 1s (eV)c

thin film E (V)peak 1peak 2?eV d 3/2?BE Mn -O a oxidation state

Mn 3s/O 1s b

BE (eV)

area %oxidized 0.90

88.8884.10 4.78642.6112.8 4.0/4.0Mn -O -Mn 529.880.6Mn -OH 531.3 2.9H -O -H 532.416.5as-prepared 88.7283.80 4.92642.4112.7 3.6/3.7Mn -O -Mn 529.764.8Mn -OH 531.020.7H -O -H 532.414.5reduced

088.98

83.65

5.33

642.3

112.4

2.9/

3.1

Mn -O -Mn 529.948.6Mn -OH 531.143.4H -O -H

532.68.0

Mn 3s (eV)Mn 2p (eV)

O 1s (eV)c

composite electrode E (V)peak 1peak 2?eV d 3/2?BE Mn -O a oxidation state

Mn 3s/O 1s b

BE (eV)

area %oxidized

1.25

88.74

83.65

5.09

642.4

112.7

3.5/3.5

Mn -O -Mn 530.250.0Mn -OH 531.024.9H -O -H 533.58.5SO 42-532.016.70.989.3984.41 4.98643.1112.7 3.5/3.5

Mn -O -Mn 530.353.2Mn -OH 531.026.9H -O -H 533.39.8SO 42-532.010.1reduced 088.5883.60 4.98643.0112.7 3.5/3.5

Mn -O -Mn 530.360.3Mn -OH 531.630.4H -O -H 533.8 6.5SO 42-532.0 2.8-0.6589.4184.39 5.02643.1112.7 3.5/3.5

Mn -O -Mn 530.249.9Mn -OH 531.025.3H -O -H 533.48.6SO 42-532.0

16.2

a

Difference in binding energy between the Mn 2p 3/2and O 1s [Mn -O -Mn]peaks.b The first entry is obtained by the Mn 3s peak shift and the second after the slash by the relative area calculation of the O 1s components.c For the composite electrode,the presence of sulfate was shown by a S 2p peak at 168.6eV).33Hence,a component at 532eV was added to fit the O 1s peak envelope in order to take into account the contribution oxygen atoms of the sulfate species when computing the Mn redox state.d Difference between the binding energies of peak 1and peak 2.

Charge Storage Mechanism of MnO 2Electrode Chem.Mater.,Vol.16,No.16,20043187

efficiency decreased when the film thickness increased and that it reached only 67%for 25μg of MnO 2.These results demonstrate clearly that a significant fraction of MnO 2was not electrochemically addressable when the film thickness increased.In contrast,in the case of a rapid protonic diffusion in the bulk of the active material,the charge would increase linearly with the mass of the electrode.17This suggests that slower ionic transport is occurring within the active material or that protons cannot diffuse freely across the thickness of the MnO 2particles (vide infra).This is supported by the relatively low diffusion coefficient (6×10-10cm 2/s)for protons in manganese dioxide.35

Some insight into the decrease of the Coulombic efficiency with an increase of the film thickness could be obtained by calculating the surface of the platinum current collector covered by MnO 2particules.By con-sidering spherical particles with a mean diameter of 420nm,the formation of a “monolayer”of these MnO 2particles will require 33μg.However,as depicted in Figure SI4b,the MnO 2particles tend to agglomerate rather than forming a monolayer.The MnO 2deposited on the platinum substrate leads to a larger number of clusters,which reduce the area of material exposed to the electrolyte.If the electrochemical process is taking place only at the surface of the MnO 2exposed to the electrolyte,the charge will decrease as the weight of MnO 2is increased.This can explain why thin films usually exhibit higher capacitance values than bulk composite electrodes.17In this study,the gravimetric charge of our composite electrodes (100μm thick)is limited to 135C/g.On the other hand,when the weight of MnO 2is much lower as for the Pt -MnO 2samples,the charge increased up to 1250C/g for very small amount of MnO 2.This Coulombic efficiency,close to 100%,implies that protons or alkali cations can diffuse through a “monolayer”of MnO 2particles.This is expected by considering the particle size (<420nm as can be seen in Figure SI3),the charge/discharge time (180s for a scan rate of 5mV/s),and the diffusion coefficient for protons in manganese dioxide.35When a larger amount is MnO 2or when a thicker film is used,the diffusion of active cations is clearly hindered.

XPS Surface Analysis of the MnO 2Thin Film Electrodes.The survey spectra for the oxidized and reduced thin film electrodes are depicted in Figure 2.These spectra differ slightly from those recorded for the corresponding composite electrode (also shown in Figure 2).These differences become more evident on the higher resolution spectra as it will be demonstrated below.

Figure 3depicts the Mn 3s core level spectra for the reduced,as-prepared,and oxidized MnO 2thin film electrodes.The separation of peak energies (?E b )of the Mn 3s components increased from 4.78eV for the oxidized film to 5.33eV for the reduced film (see also Table 1).In the case of the as-prepared thin film,an intermediate value of 4.91eV was found.The E b values are in agreement with those expected for Mn 4+and Mn 3+oxides,which should have a peak separation of about 4.7and 5.4eV,respectively.30,36In addition,it was previously shown that a linear relation exists between the energy separation of the Mn 3s peaks and the oxidation state of manganese in the oxide.21,30,31From this relationship,the mean manganese oxidation state can be established at 4.0,2.9,and 3.6for the

(35)Ruetschi,P.J.Electrochem.Soc.1984,131,2737.

(36)Audi,A.A.;Sherwood,M.A.Surf.Interface Anal.2002,33,274.

Table 2.Electrochemical and Composition Data for MnO 2Thin Film Electrodes with Different Loadings

electrode

mass (μg)amount of MnO 2(moles)voltammetric charge a (C)/(C/g)calculated charge (C)b coulombic efficiency (%)c

specific capacitance

(F/g)

A 5.0(0.3 5.75×10-80.0056/12500.00551011380

B 10.0(0.8 1.15×10-70.0106/11900.0111951320

C 15.0(1.5 1.73×10-70.0148/11000.0166891230

D 20.0(2.5 2.30×10-70.0156/8750.022270970E

25.0(3.8

2.88×10-7

0.0186/835

0.0277

67

930

a

Calculated by taking into account the mass of MnO 2in the sample (about 89.1%).The first value is in C,whereas the second is the specific voltammetric charge in C/g.b The calculated charge was obtained from the amount of MnO 2on the electrode by assuming the transfer of one electron per Mn atom.c Coulombic efficiency (%))(voltammetric charge/calculated charge)×

100.

Figure 3.Mn 3s core level spectra for reduced,as-prepared,and oxidized thin film electrodes.The peak separation between the two peaks is indicated and can be used to determine the oxidation state of manganese.The raw data are represented by the dots,and the fitted data are represented by the lines.

3188Chem.Mater.,Vol.16,No.16,2004Toupin et al.

oxidized,reduced,and as-prepared electrodes,respec-tively.Thus,in contrast to the thicker composite electrode,a change of the oxidation state of manganese can be observed for the thinner film electrode on platinum substrate.This change is also accompanied by a color change upon redox switching.

The O 1s core level spectra were also used to confirm the change of manganese oxidation state during redox switching.Figure 4shows a significant difference of the O 1s envelope between the reduced,as-prepared,and oxidized thin film electrodes.Indeed,the reduced film shows a distinct high-intensity shoulder on the higher binding side of the main peak.To get some insight into the chemical modification that are occurring upon redox switching,the O 1s spectra were analyzed by curve fitting.Figure 4(see also Table 1)shows that the spectra can be fitted with three components which are related to the Mn -O -Mn bond (529.8(0.1eV)for the tetravalent oxide,the Mn -OH bond (531.1(0.2eV)for an hydrated trivalent oxide,and finally to a H -O -H bond (532.5(0.1eV)for residual structure water.28,37,38So,the change of the shape of the O 1s envelope is caused by the variation of the Mn -O -Mn and Mn -OH contributions (Table 1).For the oxidized electrode,the Mn -O -Mn component contributes to about 81%of the O 1s peak,whereas for the reduced electrode,the intensity of the Mn -O -Mn and Mn -OH signals is almost identical.The variation of the relative intensity of the O1s components indicates a change of the manganese oxide oxidation state between the oxidized

and reduced states.Table 1indicates that the mean manganese oxidation state,obtained from eq 5,is equal to 4for the oxidized electrode,whereas,for the reduced electrode,an oxidation level of 3.1is found.In the case of the as-prepared electrode,an intermediate oxidation state of 3.7is determined.These values are in excellent agreement with those computed from the Mn 3s data (vide supra).

Figure 5shows Mn 2p spectra of thin film samples.Such Mn 2p core level spectra have been recently used to determine the contribution of various Mn species.28However,the evaluation of the Mn(II),Mn(III),and Mn-(IV)contributions rely on a curve fitting procedure,which can be arbitrary since the shape of the spectra of the electrodes does not appear to change drastically (Figure 5).Nevertheless,the binding energy separation (?E Mn -O )between the Mn 2p 3/2and O 1s [Mn -O -Mn]peaks has been found to change slightly when the electrode is oxidized or reduced.30,33As shown in Table 1,the ?E Mn -O values were found to be equal to 112.4and 112.8eV for the reduced and oxidized film elec-trodes,respectively.The larger ?E Mn -O for the oxidized thin film is in agreement with literature data 31despite the fact that the absolute reported value was slightly larger.Thus,all the XPS data are consistent with a change of manganese oxidation state upon switching between 0and 0.9V.The redox switching of MnO 2electrodes might involve ionic species from the electro-lyte solution (0.1M Na 2SO 4),and the appropriate XPS core level spectra (Na 1s and S 2p)were measured to further characterize the charge storage mechanism.Figure 6shows that the intensity of the Na 1s peak is larger for the reduced thin film (thin film,0V)in comparison to the oxidized electrode (thin film,0.9V).This is consistent with a charge compensation of MnOO -by Na +for the reduced film (eq 3).In addition,Figure 6demonstrates that the sulfate anions are not involved in the redox process,since the S 2p spectra are feature-less.This is to be contrasted with the significant

(37)Banerjee,D.;Nesbitt,H.W.Geochim.Cosmochim.Acta 1999,63,3025.

(38)Banerjee,D.;Nesbitt,H.W.Geochim.Cosmochim.Acta 2001,65,

1703.

Figure 4.O 1s core level spectra for reduced,as-prepared,and oxidized thin film electrodes.The raw data are represented by the dots,and the fitted data are represented by the

lines.

Figure 5.Mn 2p core level spectra for reduced,as-prepared and oxidized thin film electrodes.The raw data are represented by the dots,and the fitted data are represented by the lines.

Charge Storage Mechanism of MnO 2Electrode Chem.Mater.,Vol.16,No.16,20043189

difference in the variation of the Na 1s and S 2p spectra for the composite electrode.When the composite elec-trode is switched from 0to 0.9V,the Na 1s signal decreased,whereas the S 2p signal increased.Obviously,some salt seems to be trapped since both Na +and SO 42-are found in the electrodes.The oxidized composite electrode contains an excess of sulfate (ratio S/Mn )0.064),whereas the reduced electrode has an excess of Na +(ratio Na/Mn )0.105).The variation of the Na +and SO 42-concentrations for the composite electrode may appear puzzling considering that the valence of manganese does not appear to change between the oxidized and reduced states.The excess of Na +and SO 42-for the reduced and oxidized electrodes,respec-tively,can be attributed to the presence of carbon in the composite electrodes.Thus,this behavior is consis-tent with that expected for a classical double layer charge storage process.1The invariance of the manga-nese oxidation state for the composite electrodes which contrasts with the change observed for the thin film electrodes suggests that only a thin layer of MnO 2on the electrode is involved in the redox interconversion.This is also confirmed by the high capacitance recorded for the thinner films,which almost reached the theo-retical values (vide supra).

The variation of the Na/Mn ratio,for the thin film electrode,upon potential switching deserves some com-ments.As mentioned above,the higher Na/Mn ratio for the reduced electrode in comparison to the oxidized electrode is consistent with a charge compensation of MnOO -by Na +.On the other hand,the Na/Mn is much lower than that expected for a complete compensation by Na +.These results clearly demonstrate that protons are involved in the redox process of MnO 2.Despite these experimental XPS results,the exact mechanism for the uptake of Na +is unclear.Recent electrochemical mea-surements of the intercalation of alkali metal ions into birnessite manganese dioxide in aqueous media sug-gested that protons are directly intercalated but not the alkali metal cations.39The presence of the alkali metal

cations in the oxide matrix was explained by an ion-exchange reaction between the cations and H +.Accord-ingly,a similar mechanism cannot be ruled out com-pletely for our electrodes.

Conclusion

In this work,the charge storage mechanism in MnO 2electrode,used in aqueous electrolyte,was investigated by cyclic voltammetry and X-ray photoelectron spec-troscopy.The main objective was to determine whether the manganese oxidation state changed during potential switching between 0and 0.9V vs Ag/AgCl.To this end,thin MnO 2films deposited on a platinum substrate and thicker MnO 2composite electrodes were used.X-ray photoelectron spectroscopy (XPS)measurements (Mn 3s and O 1s)with the thick composite electrodes did not reveal any change that could be assigned to a variation of the manganese valency,and,at this point,the charge storage mechanism could be based on electrostatic effects only.In fact,the charge storage would be similar to that observed for carbon electrodes.1On the other hand,a completely different XPS behavior was noticed for the thin film electrodes.Both the Mn 3s and O 1s spectra were consistent with manganese oxidation states of +3and +4for the reduced and oxidized forms,respectively.The XPS data also show that Na +cations from the electrolyte are involved in the charge storage process of MnO 2thin film electrodes.The Na/Mn ratio for the reduced electrode is much lower than what is anticipated for charge compensation dominated by Na +and suggests the involvement of protons.The apparent discrepancy between the XPS data (Mn 3s and O 1s spectra)can be explained by the cyclic voltammetry data of the thin film electrodes which established that only a thin layer of MnO 2is involved in the redox process and is electrochemically active.Presumably,this thin surface layer cannot be probed for the composite elec-trode because this region is brought back to the chemical (oxidation)state of the bulk by internal redox intercon-version.

Acknowledgment.The financial support of the Natural Science and Engineering Research Council (NSERC)and the Canadian Foundation for Innovation (CFI)is acknowledged.One of the authors (T.B.)would like to thank “l’Universite ′de Nantes”for giving him the opportunity to work in UQAM and UQAM for welcom-ing him as a visiting professor.The “Ministe `re Franc ?ais des Affaires Etrange `res”and the “Ministe `re des Rela-tions Internationales du Que ′bec”are also greatly ac-knowledged for supporting this work within the frame-work of the “Commission Permanente de Coope ′ration Franco-Que ′be ′coise”(project #59-102).

Supporting Information Available:X-ray diffraction pattern of the as-synthesized MnO 2powder (Figure SI1),scanning electron micrograph of the as-synthesized MnO 2powder (Figures SI2and SI3),scanning electron micrographs of a MnO 2composite electrode (Figure SI4a),scanning electron micrograph of MnO 2powder -PVdF -HFP coated on Pt (Figure SI4b),and Mn 3s core level spectra (Figure SI5).This material is available free of charge via the Internet at https://www.wendangku.net/doc/278773351.html,.CM049649J

(39)Kanoh,H.;Tang,W.;Makita,Y.;Ooi,https://www.wendangku.net/doc/278773351.html,ngmuir 1997,13,

6845.

Figure 6.Na 1s and S 2p core level spectra for composite and thin film electrodes.

3190Chem.Mater.,Vol.16,No.16,2004Toupin et al.

地黄的研究综述

课程报告 学院:生命科学与技术学院 专业年级:2012级生物工程 题目:我国中药资源利用的文献综述 姓名:任泽文 学号: 20120479 指导教师:张少冰 2015年 1 月 9 日

地黄的研究综述 摘录 本文清楚的介绍了玄参科地黄属多年生草本植物地黄的形态特征,地理分布,有效成分,药用机理以及古代临床上的一些处方,向我们介绍了地黄的详细信息。地黄按照不同的炮制方法在中药学上分为不同的中药,有鲜地黄和熟地黄之分。 关键词地黄理化性质药理作用 1、植物形态特征 地黄(拉丁学名:Rehmannia glutinosa (Gaetn.) Libosch. ex Fisch. et Mey.),玄参科地黄属多年生草本植物,体高10-30厘米,密被灰白色多细胞长柔毛和腺毛。根茎肉质,鲜时黄色,在栽培条件下,直径可达5.5厘米,茎紫红色。叶通常在茎基部集成莲座状,向上则强烈缩小成苞片,或逐渐缩小而在茎上互生;叶片卵形至长椭圆形,上面绿色,下面略带紫色或成紫红色,长2-13厘米,宽1-6厘米,边缘具不规则圆齿或钝锯齿以至牙齿;基部渐狭成柄,叶脉在上面凹陷,下面隆起。花具长0.5-3厘米之梗,梗细弱,弯曲而后上升,在茎顶部略排列成总状花序,或几全部单生叶腋而分散在茎上;萼长1-1.5厘米,密被多细胞长柔毛和白色长毛,具10条隆起的脉;萼齿5枚,矩圆状披针形或卵状披针形抑或多少三角形,长0.5-0.6厘米,宽0.2-0.3厘米,稀前方2枚各又开裂而使萼齿总数达7枚之多;花冠长3-4.5厘米;花冠筒多少弓曲,外面紫红色,被多细胞长柔毛;花冠裂片,5枚,先端钝或微凹,内面黄紫色,外面紫红色,两面均被多细胞长柔毛,长5-7毫米,宽4-10毫米;雄蕊4枚;药室矩圆形,长2.5毫米,宽1.5毫米,基部叉开,而使两药室常排成一直线,子房幼时2室,老时因隔膜撕裂而成一室,无毛;花柱顶部扩大成2枚片状柱头。蒴果卵形至长卵形,长1-1.5厘米。花果期4-7月。 2、地理分布 分布于辽宁、河北、河南、山东、山西、陕西、甘肃、内蒙古、江苏、湖北等省区。生于海拔50-1100米之砂质壤土、荒山坡、山脚、墙边、路旁等处。此外,国内各地及国外均有栽培。 3、有效成分 到目前为止,已经明确地黄的主要成分为苷类、糖类及氨基酸,并以苷类为主,在苷类中又以环烯醚萜苷为主。目前已从地黄中分离出32种环烯醚萜类化合物,其中一梓醇含量最高。

光学作图类型注意事项及相关知识点

光学作图类型注意事项及相关知识点 光学作图的考查形式主要有以下五种: 1、光的反射 2、光的折射 3、平面镜成像 4、透镜的特殊光线 5、凸透镜成像 ★光学作图需注意以下几点: 1、要借助工具(铅笔和直尺),作图要规范; 2、实际光线画实线,不是实际光线(如法线、光线的反向延长线、平面镜所成的像、像与物之间的连线)要画虚线; 3、光线要标箭头,同时注意箭头的方向; 4、如光源、物点、像点有对应符号、字母的要标上; 5、法线与镜面或界面垂直,像与物之间的连线与镜面垂直,垂直要画垂足符号; 6、务必记住凸透镜的三条特殊光线,利用特殊光线可以画出凸透镜成像光路图。 相关知识点: ▲光线:用一条带箭头的直线表示(箭头代表传播方向;直线代表光沿直线传播) 光的传播:光在同种均匀介质中沿直线传播。 实像:是一个明亮的区域,因为实像是由实际光线汇聚而成的;影子:是一个阴暗的区域,因为光线透不过去,在不透明物体后面形成

的。 ▲实像与虚像 区别:1、能不能用光屏承接。实像能,虚像不能。 2、是不是由实际光线汇聚而成。实像是,虚像不是。(虚像只能用肉眼看到,它是由实际光线的反向延长线交汇而成) 3、像的特点是不是一定是倒立的。实像是,虚像不是。 ▲光的反射 反射现象中的术语: 一点:入射点O(是指光线射到反射面上的一点)两角:入射角(指入射光线与法线之间的夹角)反射角(指反射光线与法线之间的夹角)三线:入射光线(指射到物体表面的光线) 反射光线(指被物体反射出的光线)法线(指垂直于镜面的虚线) ★反射定律:三线同面,法线居中,两角相等。即:1.反射光线、入射光线和法线在同一平面上; 2.反射光线、入射光线分居法线的两侧; 3.反射角等于入射角。(注意因果关系,入射决定了反射,应把反射叙述在前面) ★关于光的反射定律,应掌握以下几点: 1)一条反射光射只对应一条入射光线 2)入射光线垂直于反射面时,入射角为0°,反射角为0°,三线重合,但方向相反。

GMP批生产记录管理制度

目的:规范批生产记录管理,使生产记录能全面地、准确地反映某批产品的生产历史及与质量有关的情况。 适用范围:批生产记录的管理。 责任:岗位操作人员、班组长负责执行,生产部负责人、QA质监员、质保部负责人负责监督本制度的实施。 内容: 1.批生产记录定义: 1.1批生产记录是为一个批次的产品生产所有完成的活动和达到的结果提供客观证据的文件。 它记录了一个批次的待包装品或成品的所有生产过程,提供该批产品的生产历史、以及与质量有关的情况。具有以下作用: 1.1.1为质量保证部进行批次质量审计,确定是否放行,提供真实、客观的依据,以便质量保 证部门做出正确判断; 1.1.2提供对有缺陷的产品或用户投拆产品进行调查与追溯的证据和信息,以便做出正确的处 理决定,确认是否应该迅速召回产品; 1.1.3用于对产品的回顾性评价。它以批记录为依据,以数理统计为手段,可以发现潜在的质 量问题以及批生产指令和批包装指令的不完善处,为标准的修订提供信息和依据; 1.1.4用于回顾性验证,提供设备与工艺管理改进的信息。 2.技术依据: 2.1产品工艺规程、岗位标准操作规程; 2.2原辅料质量标准、中间产品质量标准、成品质量标准、包材质量标准; 2.3相关药品法规要求。 3.批生产记录的制定: 3.1批生产记录由工艺员制定,生产部负责人审核,质保部负责人批准后执行。批生产记录的 制定、审核、批准、修改、收回、保存等,应遵循《GMP文件的制定、审批、颁发管理规

定》要求; 3.2批生产记录在下列情况下应进行修改: 3.2.1生产工艺或生产实际情况发生改变时; 3.2.2质量标准和包装设计发生变更时; 3.2.3国家相关法规要求变更时; 3.2.4新批生产记录下发时,应从各相应部门及时收回旧批生产记录,以保证工作现场只有现 行的批生产记录。 4.批生产记录主要内容: 4.1产品特征内容:产品名称、规格等; 4.2指令基本内容:批号、计划产量、生产操作方法、质量要求、作业顺序、SOP编号、生产 工序、设备及其编号等; 4.3记录表格内容:物料名称、生产加工数量、操作人与复核人签名、开始生产日期与时间、 炮制过程记录、生产结束日期与时间、生产过程控制记录、各相关生产阶段的产品数量、物料平衡的计算、退料记录、异常、偏差问题分析解释处理及结果记录、特殊问题记录、清场记录、原辅料编号及成品检验报告等; 5.批生产记录的填写、复核与审核: 5.1填写生产记录按《记录的填写规定》的要求进行填写; 5.2复核生产记录的注意事项: 5.2.1必须按每批岗位操作记录串联复核; 5.2.2必须将记录内容与生产工艺规程,岗位操作规程对照复核; 5.2.3上下工序及成品记录中的数量、质量、批号、容器号必须一致、正确; 5.2.4对生产记录中不符合要求的填写方法、必须由填写人更正并签字; 5.2.5若发现异常情况必须查明原因,做出合理的说明,并作详细的记录、经办人、复核人签 字。 5.3岗位操作记录由岗位操作人员填写并签字,车间质管员审核并签字; 5.4每批产品生产完毕后,车间质管员及时将批生产记录汇总,交生产部负责人审核、签字; 5.5车间质管员将生产部负责人审核签字后的批生产记录,于当批产品生产完毕后的第二天下

企业风险传导过程中的规律研究

※ 管理科学 ■ ManagementSciences 企业风险传导过程中的规律研究 (武汉理工大学管理学院,湖北武汉430070) [摘 要]主要从风险传导机理的研究角度出发,总结和分析了风险在企业内部的动态传导规律。文章从企业风险传导的阈值突变规律、混沌规律、跳跃规律和最小阻力规律四个方面深入分析了企业风险传导的途径、方向、强度等 特征,进而深化了对企业风险传导机理的认识。[关键词]风险;阈值;传导;最小阻力 [中图分类号]F270.7 [文献标识码]A[文章编号]1673-0461 (2006)05-0032-03※基金项目:国家自然科学基金项目(70472027)“企业风险传导机理研究”的部分研究成果。 引言 伴随着经济全球化的发展,企业生产经营的环境正发生着巨大的变化,企业风险也日益多样化,并严重地威胁着其生存和发展。企业风险是在企业生产、经营等一系列活动过程中产生和发展的,是一个动态的过程,并且具有很强的传导性。企业风险通过特定的传导机制积累、放大甚至突发,最后可能会引发企业危机。如何对企业风险进行防范,已成为风险管理研究的重要内容。笔者认为如果从企业风险的传导机制入手进行研究,将不失为抵御和防范企业风险的一种有效途径。通过对企业风险传导机理的研究,一方面可以预知和疏通已有的企业风险,另一方面可以隔断企业风险继续传导的渠道,缩小和控制企业风险的活动程度与范围。本文主要对企业风险传导进程中的若干规律进行了总结和分析,进而深化对企业风险传导机理的认识。 一、企业风险传导的阈值突变规律 所谓阈值是指系统由一种稳定状态演变过渡到另一种稳定状态瞬间发生时点的边界值。对于企业而言,某一时点企业的整体风险就是由影响该风险的各种因素在该时点上相互作用所表现出来的结果[1]。企业风险的阈值点即是指企业风险 程度由量变引起质变的临界点,也是企业所能承受风险的最大值。企业风险传导的阈值突变规律是指形成企业系统内各种风险的风险因子集成度耦合达到某一阈值时,即当风险流量、风险梯度压力、风险耦合集成度都同时达到一定的“临界值”时,企业将无力阻止和化解风险,风险的潜在能量将迸发释放和输出,依附于风险载体,通过利益链和传导链,在企业内部扩散和蔓延,从而形成风险在企业中的动态传导。此时企业的各风险因子由局部、静态风险逐渐转化为动态、可传导的风险。 企业作为一个完整的系统,本身具有自组织、自适应、自调节、风险集中释放等特点[2]。这些特点决定了企业存在的风险在一定的阈值内,可通过自组织、自适应、自调节来减弱和阻断企业内部各风险的耦合集成,使其不能达到阈值,使各风险因子仍处于独立、静止、局部的状态,从而掩盖或缓冲这些风险给企业带来的负面影响。然而,实质上这些风险及其带来的负面影响并没消失,只是暂处于隐身或缓慢释放状态。而当企业的风险因子不断堆积和加重,一旦冲过风险阈值或环境中出现诱因使阈值降到当时水平以下冲过了阈值(外界的诱发因素可以降低阈值)时,企业内部各风险因子开始由静态转向动态,其相互影响、相互作用的形式和强度不断增加,在风险梯度压力的驱使下,依附于各种风险载体,沿着传导链,以原有的风险表征或耦合突变后新的风险形态在企业内部扩散和蔓延。而此时风险阈值越高,不确定性的积累越高,冲过阈值后风险集中释放的杀伤力便越大。 企业风险阈值突变的形式主要存在着两种:一是当风险因子积累的量超过了企业这个系统初始时刻所能承担的风险临界点时,此时风险由静止转向传导;二是当企业所存在的环境发生变化, 夏 喆, 邓明然 [作者简介]夏 喆(1980-),男,湖北仙桃人,武汉理工大学管理学院博士生,研究方向:资本运营、风险管理;邓明然(1953-),男,湖北黄陂人,教授、博士生导师、武汉理工大学管理学院院长,研究方向:公司理财、资本运营和风险管理。 当代经济管理 CONTEMPORARYECONOMY&MANAGEMENT 2006年10月第28卷第5期 Oct.2006Vol.28No.5 32

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

葛根炮制机理的研究

葛根炮制机理的研究 目的研究温度对葛根中葛根素的影响。方法以条件甲醇:水(25:75)为流动相;检测波长为254nm,流速:1.0mL/min,用HPLC方法对其进行测定,对葛根生品及不同温度下处理的葛根进行测定和比较。结果所确定的含测方法稳定可行,实验表明温度对葛根中的葛根素有影响,随温度的升高葛根素会有所降低,提示葛根的炮制过程应注意对温度控制。 标签:葛根素;葛根;HPLC;烘制 葛根为豆科植物野葛Pueraria lobata (Wild.)Ohwi的干燥根。味甘、辛,凉。归脾、胃、肺经。具有解肌退热,生津止渴,透疹,升阳止泻等功效[1]。葛根临床应用生熟有别。本文以葛根素为指标,研究温度对葛根影响。 1 仪器与试剂 P230II大连依利特(UV230II紫外检测器,EC2006-色谱数据处理工作站),1100 Series高效液相色谱仪(Agilent,美国)KQ3200超声波清洗器(江苏昆山)等。葛根药材(购于开发区保健大药房,经鉴定符合药典要求);葛根素对照品(批号110721-201014,中国药品生物制品检定所);高效液相色谱用水为纯净水,甲醇为色谱纯;其他试剂为分析纯。 2 方法与结果 2.1葛根素的含量测定方法 2.1.1色谱条件与系统适用性试验用十八烷基硅烷键合硅胶为填充剂;甲醇:水(25:75)为流动相;检测波长为254nm,流速:1.0mL/min;柱温:30℃。理论板数按葛根素峰计算应不低于2000。 2.1.2供试品溶液的制备取本品粉末(过三号筛)约0.1g,精密称定,置具塞锥形瓶中,精密加入30%乙醇50ml,称定重量,加热回流30min,放冷,再称定重量,加30%乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。 2.1.3对照品溶液制备精密称取葛根素对照品,加甲醇制成每1ml含0.08mg,即得。 2.1.4 空白试验即溶剂。 2.1.5 测定结果分别精密吸取对照品、供试品和空白试验各20μL。依次进样,在上述色谱条件下测定,记录色谱图。 2.2含量测定方法学考察

中药炮制 知识点

中药炮制学的基本任务:在继承中药传统炮制技术和理论的基础上,应用现代科学技术探讨炮制机理i,改进炮制工艺,制定饮片质量标准,以提高中药饮片质量,保证临床用药的安全有效。2传统的制药原则:相反为制是指用药性相对立的辅料(包括药物)来制约中药的偏性喉改变药性。相资为制是指用药性相似的辅料或某种炮制方法来增强药效。相畏为制是指利用某种辅料来炮制药物,以制约该药物的毒副作用。相恶为制炮制时可利用某种辅料或某种方法来减弱药物的烈性。3炮制对性味的影响:通过炮制改变药物的过偏之性使药物的性味增强改变药物性味,扩大药物的用途。4中药炮制降低药物毒性的主要途径:使毒性成分发生改变如川乌,草乌。使毒性成分减少如巴豆,马钱子。利用辅料的解毒作用,白矾制天南星。5如何提高方剂疗效:增强方中药物的作用保证方中各药比例准确赠强对病变部位的作用突出临床需要的药效,提高全方的临床疗效。6如何消减某些药物的不良反应利于疗效:清除药物本身不利于治疗的因素。调整辅料药物的药性,制约方中主药对机体的不利影响。7中药炮制的目的:降低或消除药物的毒性或副作用改变或缓和药物的性能增强药物疗效改变或增强药物作用的趋向改变药物作用的部位或增强对某部 位的作用便于调剂和制剂洁净药物利于 贮藏保管利于服用8炮制对含生物碱类药 物的影响q净选加工的影响清除杂质,除 去非要用部位,分离不同的药用部位w水 制影响:可是小分子生物碱季铵碱流失, 有效成分易溶少泡多浸药透水浸;有毒成 分易溶控制水制程度达到去毒(乌头)e加 热制:使生物碱分解结构变化或转化成新 成分;有效成分易煎出,避免加热生用为 宜;有毒成分易煎出尽量加热减毒r药物酒 制后能提高生物碱的溶出率,从而提高药 物的疗效t生物碱的醋酸盐易被水溶出,曾 强水溶液中有效成分的含量,提高疗效。9 中药炮制品贮藏中的变异现象:发霉虫蛀 变色变味风化潮解粘连挥发腐烂 冲烧泛油。泛油又称走油:是指含挥发油, 脂肪油的药物在一定温度湿度的情况下, 造成油质外溢,质地反软,发粘颜色变深, 并发出油败味的现象。10重要炮制品变异 的原因:一基原因素;成分不稳定含害虫 可食成分微生物营养代谢成分。二环境因 素:光空气温度湿度。三生物因素。四 时间因素。11饮片切制的目的:便于有效 成分剪除利于炮炙利于调剂和制剂便 于鉴别利于贮存提高煎药质量12败片: 在中药切制过程中所有不符合切制规格, 片型标准的饮片,都称为败片13翘片:饮 片边缘卷曲而不平整。14伤水:系药材软 化时,内部含水分太过所致。15清炒法的 目的及举例:曾强疗效(王不留行,紫苏 子,牛蒡子等焦麦芽,焦山楂等)降低毒 性或副作用(莱菔子,瓜蒌仁,苍耳子, 白果)缓和药性(牵牛子,栀子,苍术) 曾强或产生止血作用(地榆,荆芥,牡丹 皮)保证疗效利于贮存(槐米,苦杏仁)注 意事项:药物必须大小分档,选择适当大 小。搅拌均匀,出锅要迅速。炒前锅要预 热。出锅后及时摊晾。16槐花:具有止血 凉血,清肝泻火的作用。生品以清肝泻火, 清热凉血见长。炒槐花苦寒之性缓和,由 杀菌保苷的作用,槐花炭的清热凉血作用 极弱,涩性曾强以凉血止血力胜。17芥子: 具有温肺豁痰利气,散结通络止痛的功能, 生芥子辛散之力强多外用善于通络止痛, 芥子炒后可缓和辛散走串之性,可避免耗 气伤阴,并善于顺气豁痰炮制后利于粉碎 和煎出,同时起到杀酶保苷的作用。18莱 菔子:具有消食除胀,降气化痰的功能, 生品能升能散长于涌吐风痰,莱菔子炒后 变升为降,改变了涌吐风痰的副作用,即 缓和了药 性又利于粉碎和煎出。19酸枣仁:具有补肝,宁心,敛汗,生津功能。尤其是其养心安神作用很好,炒后易于粉碎和煎出,同时炒制能起到杀酶保苷的作用。20槟榔:不能晒干原因:饮片直接暴晒小分子生物碱随水蒸气挥发掉;槟榔中的鞣质由结合状态发生缩合反应生成鞣酐,致使饮片变红,生物碱破坏,稳定性降低。炮制方法:槟榔除去杂质,用水浸泡3-5天,阴干,烘干。炮制作用:具有杀虫消积降气行水截疟的功能,炒后可缓和药性,并能减少服后恶心,腹泻,腹痛的副作用。21炒炭的目的;增强或产生止血作用;清减某些药物的毒副作用;改变药性,扩大用药范围;使某些药物的理化性质和药理作用发生改变。22炒炭存性:炒炭药物只能部分炭化,更不能灰化,未碳化部分应保留药物的固有气味,花叶草等可清晰辨别药物原形。23荆芥:具有解表散风的功能,一般多用于感冒头痛疮疡初起。炒荆芥具有祛风止血的作用。炒炭后辛一散作用极弱,具有止血的功效。24苍术:生苍术温燥而辛烈,燥湿祛风散寒力强,麸炒后辛味减弱,燥 性缓和,气变芳香,增强健脾和胃的作用, 焦苍术辛燥之性大减,以固肠止泻为主。 25斑蝥:生品多外用,毒性大,攻毒蚀疮 为主。米炒后,毒性降低,气味矫正,可 内服,以通经破散结为主,用于肝癌胃癌。 26白术:生品以健脾燥湿,利水消肿为主, 用于痰饮,水肿,以及风湿痹痛。土炒白 术补脾止泻力胜,麸炒白术缓和燥性,增 强健脾消胀得作用。27烫法分为砂炒蛤粉 炒和滑石粉炒。目的:一增强疗效,便于 调剂和制剂,如狗脊穿山甲;二降低毒性, 如马钱子;三便于洁净药物,如骨碎补; 四矫臭矫味,如鸡内金;五降低部分药物 滋腻之性,如鹿角胶;六蛤粉烫可增强药 物润肺止咳作用,如阿胶。28鳖甲:砂烫 酒淬,炮制作用具有滋阴潜阳,软坚散结, 退热除蒸的功能。鳖甲质地坚硬,有腥臭 味。养阴清热、潜阳熄风之力较强。砂炒 醋淬后,质变酥脆,易于粉碎及煎出有效 成分,并能矫臭矫味醋制还能增强药物入 肝消积,软件散结的作用。29龟甲:具阴 潜阳,益肾强骨,养血补心的功能。砂炒 醋淬后质地变酥易于粉碎和煎出有效成 分,并能矫臭矫味,补肾健骨,滋阴止血 力胜。30穿山甲:具有通经下乳,消肿排 脓,搜风通络的功能。砂炒醋淬后质变酥 脆,易于粉碎和煎出有效成分,矫臭矫味。 炮山甲善于消肿排脓,搜风通络,醋淬后 通经下乳力胜,用于经闭不通,乳汁不下。 31骨碎补:具有补肾强骨,续伤止痛的功 能。砂炒骨碎补,质地松脆,易于除去鳞 片,便于调剂制剂,有利于煎出有效成分 以补骨强骨续伤止痛。32狗脊:具有补肝 肾,强腰膝,祛风湿的功能,以祛风湿, 利关节为主,用于风寒湿痹,关节疼痛, 屈伸不利。33阿胶:炮制作用,补血滋阴, 炒制后降低滋腻之性,也矫正了不良之气 味。34酒炙法的目的:改变药性引药上行 (打黄黄连黄柏)增强活血通络作用(当 归)矫臭去腥(乌梢蛇紫河车)增强温补 肝肾作用(地黄黄精女贞子)使某些药 物便于粉碎35黄连:炮制方法,黄连,酒 黄连,,姜黄连,萸黄连:取吴茱萸加适量

地黄的炮制与应用

地黄的炮制与应用 发表时间:2010-08-10T16:21:19.793Z 来源:《中外健康文摘》2010年第11期供稿作者:孙永生 [导读] 地黄始载于《神农本草经》:“干地黄,味甘寒。主治折跌绝沥伤中,除寒热积聚,除痹,生者优良。” 孙永生(黑龙江省宾县中医院黑龙江宾县 150400) 【中图分类号】R285.6 【文献标识码】B 【文章编号】1672-5085 (2010)11-0347-02 地黄为玄参科植物地黄的新鲜或干燥块根。首见于《神农本草经》。明·陈嘉漠云:“江浙壤地种者,受南方阳气,质虽光润而力微,怀庆府产者,禀北方纯阴,皮有疙瘩而力大。”怀庆府即今河南省武陟、济源、原阳、修武、温县一带。为适应临床所需,历代对地黄的炮制方法很多。例如:酒熟地,干生地、熟地、焦生地、焦熟地、鲜生地、生地炭、姜汁制、砂仁制,量便拌制、醋制、盐水制、蜜水制、黄连制、红花制、蛤粉拌,黄酒砂仁制、黄酒砂仁陈皮制,白酒砂仁生姜制等散见于历代医方、本草及各炮制专著中。本文就其炮制历史沿革,传统及现代炮制方法与临床应用作一初步探讨。 一地黄炮制的历史沿革 地黄始载于《神农本草经》:“干地黄,味甘寒。主治折跌绝沥伤中,除寒热积聚,除痹,生者优良。”后《名医别录》云:“生地黄者,乃新掘鲜者,其性大寒,其熟乃后人复蒸晒者。”使炮制品有生熟之分。随着中医学发展,简单的炮制品已不能完全适应临床的需要,于是到汉代《金匮要略》中就出现了蒸制取汁的记载。后到南北朝,辅料炮制和蒸制又进一步扩大了地黄的医疗范围,《雷公炮炙论》记载:“采生地黄,去白皮,瓷锅上柳木甑蒸之,摊令气歇,拌酒再蒸,又出令干。”就是一例。唐朝《备急千金方》也提出了复蒸:“晴日早蒸之,暴于日中,夜置汁中以制盖之,明朝又蒸,古法九遍止,今但看汁尽色黑,熟、蒸三、五遍亦得。”宋《史载之方》也有“洒酒九蒸九暴”的记载。明清两代地黄的炮制辅料已由单纯的酒发展到姜、醋、盐、人乳、药汁、固体药物等,使地黄炮制得到空前的发展。解放后,随着各省市对炮制经验的整理和交流,陆续制定了一些炮制规范。《药典》中收载了生地黄、酒熟地黄、蒸熟地黄三个品种。而其它诸如姜汁制、盐制、醋制等因临床价值不大而被收录。 二炮制方法及应用 1、鲜生地。有两种制法,其一是拣去杂质,清水洗净捞出,切段1-1.5cm长;其二是取净鲜生地,捣烂榨取汁。此两种方法都做临时配方用。李时珍称鲜生地“其性大寒,治妇人崩中血不止,及产后血上薄心,闷绝伤身,胎动下血,胎不落,堕坠折,瘀血,留血,鼻衄,吐血,皆捣饮之。” 2、干生地。拣去杂质,清水洗净,捞出;润透后切2-3mm厚片,干燥。对热病烦燥,发斑发疹,阴虚低热,消渴,吐血,衄血疗效则更为显著。 3、熟地(清蒸,酒蒸)。生地味甘而性寒,对阴虚血虚的病人都不适宜。《本草衍义》曰:“经只言干生二种,不言熟者,如血虚劳热,产后虚热,老人中虚燥热,须用地黄者,生常虑大寒,如此之类,故后地改用蒸曝熟者。生熟之功效,不可不详。”《药典》对熟地的炮制做了以下要求,取净地黄,照酒炖法(或蒸法)炖至酒吸尽,取出,晒至外皮粘液稍干时,切厚片,干燥。酒性大热,生地性寒,以热制寒。加酒蒸制成熟地,可使其药性由寒转温,功能由清变补,同时熟地质厚味浓,滋腻碍脾,酒制又可借酒力行散,起到行药势,通血脉的作用,使熟地滋而不腻,适用于血虚和肾阳不足,精血亏损,目昏耳鸣,腰膝酸软,消渴,遗精,经闭,崩漏等。 目前还有一种用高压蒸制法制熟地的方法。将净生地浸泡至外表发软而内心无改变时捞出沥干,装入稀麻袋后缝好口入清毒柜,将消毒柜阀开至“消毒”处,在压力达0.7kg/cm2,温度90。C时进气30分钟,再将阀门开至“干燥”处,继续进气10分钟,然后关闭进气阀。放置1小时,待柜内压力温度均降至安全范围,开柜取出,立即切片,晾晒一天使外表不粘手后置适当容器中,按生地重量50%拌入黄酒闷二十四小时(待酒尽药透),仍装入柜蒸制。将阀门开至“消毒”处,压力达1.2kg/cm2温度110℃时蒸40分钟,然后开阀门至“干燥”处进气10分钟压力(0.7kg/m2,温度80℃)方可停止进气,放置90分钟后取出。摊晒即可。这样高压蒸制既可缩短时间,提高效率又可达到“色黑如漆,味甘如饴”的要求。 4、生地炭,熟地炭。炮制方法:取生地片(或熟地片)大小分档,用武火炒至外焦黑色喷洒清水,灭尽火星,取出放凉。血见黑而止,生地炭入血可凉血止血;熟地炭止血,补脾胃,治崩漏出血等证。 以上是目前较常使用的几个炮制品的炮制方法,如若临证治疗时,也可辨证使用其它炮制品,以保证更好的发挥药物疗效。

光学相关的计量单位

☆光学相关的计量单位☆ 光强度——坎德拉(cd),光亮度——cd/m2,光通量——流明(lm),光照度——勒克斯(lux、lx), 1967年法国第十三届国际计量大会规定了以“坎德拉”、“坎德拉/平方米(cd/m2)”、“流明”、“勒克斯(lux、lx)”分别作为发光强度、光亮度、光通量、光照度等的单位为统一工程技术中使用的光学度量单位。 光强度——坎德拉(Candela)-cd 。1=F/Ω即光源在指定方向的单位立体角内发出的光通量。 光通量——流明(lumen)-lm 。F单位时间里通过某一面积的光能,称为通过这一面积的辐射能通量。绝对黑体在铂的凝固温度下,从5.305×10cm面积上辐射出来的光通量为1lm。 为表示光强和光通量的关系,发光强度为1cd的点光源在单位立体角(1球面度)内发出的光通量为1lm。 光亮度——坎德拉/平方米(cd/㎡)是表示发光面明亮程度的。即指发光表面在制定方向的发光强度为垂直且制定方向的发光面的面积之比。 光照度——勒克斯(Lux)-lx 。被光均匀照射的物体,距离该光源1m处在1㎡的面积上得到的光通量是1lm时其照度为1lux,习惯称之为“烛光米”。 1、烛光、国际烛光、坎德拉(Candela):定义在每平方米101325牛

顿的标准大气压下,面积等于1/60平方厘米的绝对“黑体”(即能够吸收全部外来光线而毫无反射的理想物体),在纯铂(Pt)凝固温度(约2042K或1769℃)时,沿垂直方向的发光强度为1坎德拉。并且,烛光、国际烛光、坎德拉的三个概念是有区别的,不宜等同。从数量上看,60坎德拉德育58.8国际烛光,亥夫钠灯的1烛光等于0.885国际烛光或者0.919坎德拉。 2、发光强度与光亮度:发光强度简称光强,国际单位是Candela(坎德拉)简写cd。Lcd是指光源在指定方向的单位立体角度内发出的光通量。光源辐射是均匀时,则光强度为l=f/Ω,Ω为立体角,单位为球面度(SR),F为光通量,单位为流明(lm),对于点光源由l=F/4。光亮度是标示发光面明亮程度的,指发光表面在制定的发光强度与垂直且制定方向的发光面的面积之比,单位是坎德拉/平方米。对于一个漫散射面,尽管各个方向的光强和光通量不同,但各个方向的亮度都是相等的。电视机的荧光屏基本上就是这样一个漫反射面,所以从各个角度去观看图像都有相同的亮度感。以下是部分光源的亮度值:(单位cd/㎡)黑白电视机120左右,彩色电视机80左右。 3、光通量与流明:光源所发出的光能是向所有方向辐射的,对于在单位时间里通过某一面积的光能称之为通过这一面积的辐射能通量。各色光的频率不同,眼睛对各色光的敏感度也有所不同,即使各色光的辐射能通量相等,在视觉上并不能产生相同的明亮程度,在各色光中黄、绿色光能激起最大的明亮感觉。如用绿色光做水准,令其光通量等于辐射能通量,则对其他色光来说,激起明亮感觉的本两碧绿色

企业财务风险传导机理分析

龙源期刊网 https://www.wendangku.net/doc/278773351.html, 企业财务风险传导机理分析 作者:张健刚 来源:《现代经济信息》2017年第10期 摘要:近年来我国的经济水平得到迅速提升,在日益激励的市场竞争中,企业的发展正处于转型时期,在企业进行财务活动和获取信息的过程中存在相应的困难,这会导致整体的企业财务管理存在风险,导致企业在发展中的不稳定因素增多。由此可见开展企业财务风险传导机理的研究和分析是至关重要的,要通过分析和制定正确的财务风险传导机制,提高我国企业的财务风险管理水平,为企业的发展最大程度上降低风险。本文首先分析了企业财务风险传导的含义,并且从实际情况出发,做到具体问题具体分析,明确企业进行财务风险传导机理分析的对象和意义,并且掌握影响企业财务风险传导发展的因素,完善我国企业财务风险传导体系的建设,提升企业进行财务风险管理的水平。 关键词:企业;财务风险;传导机理 中图分类号:F275 文献识别码:A 文章编号:1001-828X(2017)010-0-01 引言 近年来我国企业的发展逐渐迈向多样化的方向,并且随着市场经济体制的不断完善,金融活动也实现了创新发展,给企业进行财务风险管理和经营带来了一定的影响,并且企业财务风险的种类也不断增加,这都在一定程度上对企业的经营发展造成影响。在企业财务管理中,财务风险具有传导性,会影响到企业各个部门的发展,对企业整体的发展和经营造成影响。企业进行财务风险控制的措施通过投资风险、营运资金风险筹资风险等方面进行,进行财务风险控制的关键在于传导方式的控制,要不断提升财务风险的分析水平,要及时的掌握和预见财务风险,把企业中可能存在的风险降到最低,促进企业的可持续发展。 一、企业财务风险传导机理的基本概述 1.企业财务风险传导机理的含义 目前在我国相关传导机制的含义没有明确的正式规定,其自身是来自于物理学的理念,在金融行业和各个行业都得到了普遍的发展。通常情况下企业风险传导的含义被分为两种,首先企业的发展离不开整体的经济形势,其在自身的发展过程中一定会受到经济环境和外部因素,以及自身因素的影响,这就会给企业在开展生产经营活动中带来相关的风险,并且这种风险会影响企业中各种相关的经营活动,导致整体的企业经营预期目标发生变化,给企业的发展带来巨大的经济损失。总而言之,企业财务风险传导主要是指企业受到不稳定因素的影响导致企业中经营生产活动受到风险制约,并且这种风险具有传导性质会对企业的其他环节造成影响。其次,这种风险传导不仅仅只在于企业内部的各个环节,也会影响企业之间的经营生产活动。通

中药炮制过程的化学机理应用研究

中药炮制过程的化学机理应用研究 中药在中医临床中的作用是无可替代的,中药炮制更是一门综合性和实践性都很强的学科,但同时又因为其相关理论进展较快,所以也属于一门新兴学科。中药炮制的前提是必须要对其炮制原理具有足够的了解,而若想进一步发展这门学科,更需要不断研究相关理论及不断改进炮制工艺,以制定出更加科学的饮片质量标准,进而进一步提高中药饮片的质量和保障其疗效。由于中药在炮制过程中会发生明显的化学变化,所以首先我们需要掌握这种变化规律,这样才能够提高炮制效率。该文主要对中药炮制过程的化学机理应用进行研究,以期能够使中药药效得到最大发挥和利用。 标签:中药;中药炮制;化学机理;反应 Study on the Chemical Mechanism of the Processing of Traditional Chinese Medicine SUN Pei-ye Shengli Petroleum Administration Island Hospital,Dongying,Shandong Province,257000 China [Abstract] Traditional Chinese medicine in Chinese medicine plays an irreplaceable role and processing of traditional Chinese medicine is a comprehensive and practical subject,but at the same time because of its related theory is progressing rapidly,so it belongs to a new subject.The premise of Chinese traditional medicine processing is to have a sufficient understanding of its processing principle,and to further develop this discipline,but also need to continue to study the relevant theory and continuously improve processing technology,to develop a more scientific quality standards,and further improve the quality of Chinese medicine and to protect its efficacy. Because of the obvious chemical changes in the processing of traditional Chinese medicine,we need to master the law of the change,so as to improve the processing efficiency.This paper mainly focuses on the research of the chemical mechanism of the processing of Chinese traditional medicine,which can make the best use of the effect of Chinese herbal medicine. [Key words] Traditional Chinese medicine;Processing;Chemical mechanism;Reaction 区别于天然药物,中药在使用之前需要先进行炮制,中药炮制是我国的一项传统制药技术。中药材在炮制之后发生了复杂的化学变化,而这些化学变化会使得中药在炮制前后呈现出不同的性味和功能。所以,研究中药炮制机理的首要内容就是要研究中药在炮制过程中所发生的化学变化。随着近年来医学科技的不断发展及人们对中医药理论研究的不断深入,人们已经初步了解了多味中药在炮制

地黄炮制规程

一. 目的:建立一个规范的地黄炮制规程。 二. 范围:本规程适用于地黄的炮制和质量管理,及相应的物料供应。 三. 职责:生产管理部、质量管理部、前处理车间对本规程实施负责。 1. 产品概述: 1.1. 别名:生地、生地黄。 1.2. 来源:本品为玄参科植物地黄的干燥块茎。主产于河南、陕西、浙江等地,秋季采挖,除去芦头、须根及泥沙,将地黄缓缓烘焙至八成干。药材以块大、体重断面乌黑者为佳。 1.3. 炮制:除去杂质,洗净,闷润,切厚片,干燥。 1.4. 性状:不规则类圆形厚片,切面棕黑色或乌黑色,有光泽,油润具粘性,中间隐现菊花心纹理。周边灰黑色或棕灰色,皱缩。质柔软。气特异,味微甜。 1.5. 性味归经:苦、酸,微寒。归肝、脾经。 1.6. 功能主治:清热凉血,养阴,生津。用于热病舌绛烦渴,阴需内热,骨蒸劳热,内热消渴,吐血,衄血,发斑发疹。 1.7. 用法用量:9~15g 。 1.8. 贮藏:置通风干燥处。 2. 操作流程图:

3. 炮制过程和工艺条件: 3.1. 挑选:将309㎏地黄放入筛选机去除杂质。筛网目数:10目。 3.2. 洗药:将地黄放入洗药机加入2/3清洗槽的水中淘洗干净。清洗时间: 30分钟。 3.3. 润药:放入润药机加水40㎏闷润。时间:15分钟。真空度:0.07mpa 。 3. 4. 切药:在切药机中切厚片。片厚:2~4㎜ 3. 5. 干燥:于烘箱中烘干。温度:50℃,速度:25.00。 3.6. 包装:每40㎏装一塑料袋外套一编织袋,两层袋口缝好,标明品名、编码、重量、日期、操作者,交净料库。 4. 质量监控 4.1 质量监控点 按照工艺过程和影响质量的关键因素加以设置:(1)挑选(2)洗药(3)润药(4)切药(5)干燥(6)包装(7)入库 4.2 监控频次 质量监督员每天均应在生产前、生产过程中、生产结束后,对各工序生产现场进行监控。生产过程中根据工艺要求进行重点监控或全过程监控。 4.3 监控方法和标准 4.3.1 生产前 应检查各生产工序是否具备开工条件。 1) 清场合格 确认无上一品种残留,清洁合格;并且不存在与上批品种有关的物料和

光学类期刊投稿排行

1光学学报2中国激光(属于超一流中文光学杂志),与COL一起是中国激光杂志社旗下的三大王牌杂志,也是国内光学杂志的皇帝,每篇文章有3位审稿人审稿,文章严谨程度非常高,其中COL已经被SCI收录(SCI最新影响因子0.8左右),光学学报与中国激光是中文SCI期刊的候选期刊。 3光谱与光谱学分析【SCI(次等)】:由于自引率太高,已经多次被JCR警告,但俗话说瘦死的骆驼比马大,任然属于光学顶尖级杂志。 4光电子.激光(2009年之前分EI核心和EI 非核心,光电子激光是最早的EI核心期刊之一,每篇文章均被EI compendex收录),在光电子学方面报到的论文最多,属于一流杂志的代表,也是唯一一本由大学主办的学术期刊(前10名中),相当的不容易。 5光学精密工程(同光电子.激光实力相当,排名也可定为第四),由于期刊报道的内容没有光电子激光报道的内容专业性和新颖性强,暂定于第5吧。 6强激光与粒子束(工程科学院举办),影响因子0.9左右,发展迅速,现加入到了中国光学期刊网,推广了知名度,属于一流杂志,此杂志与中国激光杂志的研究内容很像,是中国激光杂志的小弟,如果投稿中国激光或者光学学报被退,这个杂志则是您稿件去的最佳方向。 7光子学报(在09年以前属于EI非核心),在西安光机所得率领下不断发展,10年后一直被EI核心检索,近几年凭着自己的地位和努力,经常举办或者参加会议文章的出版,在陕西地方区域具有相当的影响力,属于二流杂志的领导。 8发光学报:在中科院长春光机所领导下,终于从10年开始被EI收录,并从双月刊转为月刊,发展迅速,在11年被评为百种杰出学术期刊,不过后门开的较大。9光电工程:老牌子光电期刊,这几年走了点下坡路,但任然是光电期刊类的中流

白术炮制规程

一. 目的:建立一个规范的白术炮制规程。 二. 范围:本规程适用于白术的炮制和质量管理,及相应的物料供应。 三. 职责:生产管理部、质量管理部、前处理车间对本规程实施负责。 1. 产品概述: 1.1. 来源:本品为菊科植物白术的干燥根茎。主产于浙江、湖北、湖南、江西等地。冬季下部叶枯黄、上部叶变脆时采挖,除去泥沙,烘干或晒干,再除去须根。药材以个大、质坚实、表面灰黄色、断面黄白色、香气浓者为佳。 1. 2. 炮制: 白术:取原药材,除去杂质,洗净,润透,切厚片,干燥。 炒白术:将麸皮撒入热锅内,待冒烟时加入白术片,炒至黄棕色、逸出焦香气,取出,筛去麸皮。每100kg 白术片,用麸皮10kg 。 1.3. 性状: 白术:为不规则厚片,表面黄白色或淡黄棕色,粗糙不平,中间色较深,有放射状纹理和棕色小点;周边灰棕色或灰黄色,有皱纹或瘤状突起,质坚实。气清香,味甘微辛。 炒白术:形如白术片,表面黄棕色或棕褐色,偶见焦班,质坚硬,有焦香气。 1.4. 性味归经:苦、甘,温。归脾、胃经。 1.5. 功能主治:健脾益气,燥湿利水,止汗,安胎。用于脾虚食少,腹涨泄泻,痰饮眩悸,水肿、自汗,胎动不安。 1.6. 用法用量:6~12g 。 1.7. 贮藏:置干燥处,防蛀,防泛油。 2. 操作流程图:

3. 炮制过程和工艺条件: 3.1筛选:将白术于SX800型筛选机进行筛选,去除杂质。 3.2淋洗:将白术放入XT-720洗药机机槽中加水2/3清洗。 3.3润药:放入CT 7C 5-3润药机闷润。真空度:<0.07Mpa ,加压≤0.3 Mpa 。闷润时间:1小时。 3.4切制:在240-2往复式切药机中切厚片。片厚2~4㎜。 3.5干燥:于DW1.2-8B 带式干燥机中烘干。速度:30.00,烘干温度:80℃ 3.6麸炒:将麸皮撒入CY-640型炒药机内,待冒烟时加入白术片炒制,炒至黄棕色、逸出焦香气。取出,筛去麸皮,放凉。每100kg 白术片,用麸皮2kg 。温度:中火105℃,时间:30分钟。 3.7包装:每25㎏装一塑料袋外套一编织袋,两层袋口缝好,标明品名、编码、重量、日期、操作者等,交净料库。 4.质量监控 4.1质量监控点 按照工艺过程和影响质量的关键因素加以设置:(1)挑选(2)淋洗(3)润药(4)切

相关文档