文档库 最新最全的文档下载
当前位置:文档库 › 物理(上)习题

物理(上)习题

物理(上)习题
物理(上)习题

习 题 课(一)

1-1 某物体的运动规律为t k dt d 2v v -=,式中k 为常数。当t = 0时,初速度为v 0,则速度v 与时间t 的函数关系是

(A )0221v v +=

kt (B )022

1

v v +-=kt (C )021

21v v +=kt (D )0

2121v v +-=kt

1-2 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿X 轴正向,B 船沿Y 轴

正向。今在A 船上设置与静止坐标系方向相同的坐标系,那么在A 船上的坐标系中,B 船的速度为(以m/s 为单位)

(A )j i 22+ (B )j i

22+- (C )j i 22-- (D )j i 22-

1-3一质量为M 的质点沿x 轴正向运动,假设该质点通过坐标为x

,则此时作用于该质点上的力F = ,该质点从x = x 0

? t = 。

1-4 如图所示,小球沿固定的光滑41圆弧从A 点由静 止开始下滑,圆弧半径为R ,则小球在A 点处的切向加速度

a t = ,小球在B 点处的法向加速度a n = 。

1-5 一条轻绳跨过摩擦可被忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2

的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?

1-6质点P 在水平面内沿一半径为R =1m 的圆轨道转动,转动的角速度ω与时间t 的函数关系为ω=kt 2

,已知t =2s 时,质点P 的速率为16m/s ,试求t =1s 时,质点P 的速率与加速度的大小。

1-7如图所示系统置于加速度a =g /2的上升的升降机内,A 、B 两物体的质量相等,均为m 。若滑轮与绳的质量不计,而A 与水平桌面间的滑动摩擦系数为μ,求绳中张力的值为。

a

1-8一根长为L ,质量为M 的均匀柔软的链条,开始时链条静止,长为L -l 的一段放在光滑桌面上,长为 l 的另一段铅直下垂。

(1)求整个链条刚离开桌面时的速度。

(2)求链条由开始运动到完全离开桌面需要的时间。

习 题 课(二)

2-1 质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动。质点越过A 角时,轨道作用于质点的冲量的大小为

(A )mv (B )2mv (C )3mv (D )2 mv

2-2 质量为m =

0.5 kg 的质点在xoy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2

(SI),从t =2s 到t =4s 这段时间内,外力对质点作的功为:

(A )1.5J (B )3J (C )4.5J (D ) 1.5J

2-3 在以加速度a 向上运动的电梯内,挂着一根倔强系数为k ,质量不计的弹簧,弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零。当电梯的加速度突然变为零后,电梯内的观察者看到物体的最大速度为

(A )k M a (B )M k a (C ) k M a 2 (D )

k M a 2

1

2-4 有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功为 。

2-5 两个质量分别为m 1和m 2的木块A 和B ,用一个质量忽略不计、倔强系数为k 的弹簧连接起来,放置在光滑水平面上,使A 紧靠墙壁,如图所示。用力推木块B 使弹簧压缩x 0,然后释放。已知m 1= m ,m 2=3 m ,求

(1)释放后,A 、B 两木块速度相等时的瞬时速度的大小; (2)释放后,弹簧的最大伸长量。

1m 2

m k

A B

C

2-6 一质量为2kg 的物体,由圆周轨道上A 点自静止开始下滑,到达B 点时的速度为4m/s 。A 、B 间的轨道是1/4圆周,其半径R =1m ,如图所示。自B 点以后,此物体又沿水平方向向前滑动了3m 到C 点停止,问:(1)水平部分的滑动摩擦系数是多少?(2)当物体自A 点滑动到B 点时,克服摩擦力作了多少功?

2-7 劲度系数为k 的轻弹簧上端固定,下端挂一质量为m 的球。先用手托住球,使弹簧为原长,而后突然松手,并给以向上的初速度v 0,求

(1) 从松手位置算起,小球所能下落的最大距离。 (2) 小球下落过程中的最大速率。

习 题 课(三)

3-1 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1< m 2),如图所示。绳与轮之间无相对滑动。若某时刻滑轮沿逆时针方向转动,则绳中的张力

(A )处处相等。 (B )左边大于右边。

(C )右边大于左边。 (D )无法判断。

3-2 光滑的水平桌面上,有一长为2L 、质量为m

的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固 定轴o 自由转动,其转动惯量为1/3mL 2

, 起初杆静止。

桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端以相同的速率v 相向运动,如图所示。当两小球同时与杆的两端发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度为

(A )

L

32v (B )L 54v (C )L 76v

(D )L 98v (E )L 712v

3-3 在某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A )54c (B )53 c (C )51

c (D )5

2c

3-4 一飞轮的转动惯量为I ,在t = 0时角速度为ω 0,此后飞轮经历制动过程,阻力矩M 的大小与角速度 ω 的平方成正比,比例系数k > 0。当 ω

=1/3ω 0时,飞轮的角加速度α = 。从开始制动到ω =1/3ω0所经过的时间t = 。

3-5 S 和S

'是两个平行的惯性系,S

'系相对S 系以0.6c (c 为真空中光速)的速率沿Ox 轴运动。在S 系中某点发生一事件,S 系上测其所经历的时间为8.0s ,而在S

'系上测其所经历的时间为 s 。

3-6一质量为M = 15kg 、半径R = 0.30m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量22

1

MR I =

。现用一根不能伸长的轻绳绕于柱面,而绳的下端悬一质量m = 8.0kg 的物体。不计圆柱体与轴之间的摩擦,求:

(1)物体自静止下落,5s 内下降的距离;(2)绳中的张力。

3-7 长为l ,质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为 ,开始时杆竖直下垂。有一质量为m 的子弹以水平速度v 射入杆上A 点,并嵌在杆中,OA=l 3

2

,则子弹射入后瞬间杆的角速度ω为多大?

3-8 火箭相对于地面以 v = 0.6c 的匀速度向上飞离地球。在火箭发射Δt '=10s 钟后(火箭上的钟),该火箭向地面发射一导弹,其速度相对于地面为v 1=0.3c ,问火箭发射后多长时间(地球上的钟),导弹到达地球?计算中假设地面不动。

4-1一质点在 OX 轴上作简谐振动,振幅 A =4cm ,周期 T =2s ,其平衡位置取作坐标原点。若 t = 0时

刻质点第一次通过 x = -2cm 处,且向 X 轴负方向运动,则质点第二次通过 x = -2cm 处的时刻为

(A ) 1 s (B )(2 / 3) s (C )(4 / 3)s (D ) 2 s 4-2一横波沿绳子传播时,波的表达式为 0.05cos(410)y x t ππ=- (SI),则 (A )其波长为0.5 m (B ) 波速为5 m/s (C )波速为25 m/s (D ) 频率为2 Hz

4-3 一平面简谐波沿 OX 轴负方向传播。已知 x = b 处质点的振动方程为 y = A cos (ω t +? 0),波速为 u , 则波动方程为

(A )??????+??? ??++=0cos ?ωu x b t A y (B )??????+??? ??+-=0cos ?ωu x b t A y (C )??????+??? ??-+=0cos ?ωu x b t A y (D )??

????+??? ??--=0cos ?ωu x b t A y 4-4 上面放有物体的平台,以每秒5周的频率沿竖直方向作简谐振动,若平台振幅超过________ m ,物体将会脱离平台。(设 g = 9.8 m/s 2

4-5 两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为

x 1=A cos (ω

t +θ )。当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在正向最大位移处,则第二个质点的振动方程为 。

4-6 一平面简谐波的周期为2.0s ,在波的传播路径上有相距为2.0cm 的M 、N 两点,如果N 点的位相比M 点位相落后π/6,那么该波的波长为 ,波速为 。 4-7 一弹簧振子沿 X 轴作简谐振动,已知振动物体最大位移为X m = 0.4m 时,最大恢复力为

F m = 0.8N ,最大速度为v m = 0.8π m/s ,又知 t = 0的初位移为0.2 m ,且初速度与所选 X 轴方向相反。求

(1) 振动能量; (2) 此振动的表达式 。

4-8 某质点作简谐振动,周期为2s ,振幅为0.06m ,开始计时时,质点恰好处在负向最大位移处,求: (1)该质点的振动方程;

(2)此振动以速度 u =2 m/ s 沿 x 轴正方向传播时,形成的一维简谐波的波动方程; (3)该波的波长。

222O 2

1

H O H +→ 5-1 容积V = 4×10–3 m 3

的容器中,装有压强p =5×102

Pa 的理想气体,则容器气体分子的平动动能总和为 (A )2 J (B )3 J (C )5 J (D )9 J

5-2 一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞次数 Z 和平均自由程λ的变化情况是

(A )Z 增大,λ不变。 (B )Z 不变,λ增大。

(C )Z 和λ都增大。 (D )Z 和λ都不变。

5-3 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界所吸收的热量之比为

(A )1/3 (B )1/4 (C )2/5 (D )2/7 5-4 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则两者的大小关系是

(A )S 1> S 2 (B )S 1= S 2

(C )S 1< S 2 (D )无法确定

5-5 水蒸气分解为相同温度T 的氢气和氧气,即

(1mol 水蒸气分解成同温度的1mol 氢气和

2

1

mol 氧气) 不计振动自由度,则此过程中内能的增量为 。

5-6 某理想气体等温压缩到给定体积时外界对气体作功|A 1|,又经绝热膨胀返回原来体积时气体对外作功|A 2|,则整个过程中:

(1)从外界吸收的热量Q 为 。 (2)内能增加了 。

5-7 一定量的单原子分子理想气体装在封闭气缸里,气缸有活动的活塞(活塞与缸壁之间无摩擦,无漏气)。已知气体初压强p 1=1.013×105

Pa ,体积V 1=1L. 现将该气体在等压下加热直到体积为原来的2倍,然后在等体下加热到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,试在p-V 图上将整个过程表示出来,并求出:

(1) 在整个过程中气体内能的改变; (2) 在整个过程中气体所吸收的热量; (3) 在整个过程中气体所作的功。

5-8 一定量理想气体,开始时压强、体积、温度分别为p 0=1.2×106

Pa,V 0= 8.31×10–3 m 3

,T 0=300K ,

后经过一等体过程,温度升高到T 1 = 450K ,再经过一等温过程,压强降到p = p 0。已知该理想气体的定压

摩尔热容与定容摩尔热容之比C p /C V = 5/3。求该理想气体:

(1) 定压摩尔热容C p 和定容摩尔热容C V 。 (2) 从初态到末态全过程中从外界吸收的热量。

综 合 测 试 题

一、选择题

1. 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量2M

m =。若人相对于绳以加速度0a 向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A )(20a +g )/3 (B )-(3g -a 0) (C )- ( 20a +g )/3 (D )0a

2. 质量为 m 的质点在外力作用下,其运动方程为r

=i A cos ω t +j B sin ω t 。 式中A 、B 、ω 都

是正的常数。则力在 t 1= 0到t 2=

ω

π2

这段时间内所作的功为 (A )2

1 m ω2

(A 2

+B 2

) (B ) m ω2

(A 2

+B 2

)

(C )21 m ω2 (A 2–B 2) (D )2

1 m ω

2 (B 2-A 2

)

3. 一质量为m 的人,站在以速度v 前进的小船上,船的质量为M 。突然发现船的前方有人落水,此

人即以相对船为u 的速度,从船的前方跳入水中救人,此人跳离船后,船的速度为

(A )

()m M mu M +-v (B )mu m M + (C )()m M mu m M +++v (D )()m M mu

m M

+-+v

4. A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如

图所示。若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为

(A)

21

(B) 2/2

(C) 2 (D) 2

5. 坐标轴相互平行的两惯性系S 、S'中,S' 相对S 沿着ox 轴正向以速度v 运动,在S' 中有一根

静止的刚性尺,测得它与ox ' 轴成 30o 角,与ox 轴成45o

角,则v 应为

(A )c 32 (B )c 31 (C )c 2132??? ?? (D )c 3

1

31??

? ??

6. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速

度为

(A )φωsin A - (B )φωsin A (C )φωcos A - (D )φωcos A

7. 已知分子总数为N ,它们的速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A )

2

1()d f ?v v v v v (B )21

()d f ?v v v v v /2

1

()d f ?v v v v

(C )

2

1

()d N f ?

v v v v v (D )2

1

()d f ?v v v v v /N

8. 一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分,两边分别装入质量相等、温度相同的H 2气和O 2气。开始时绝热板P 固定,然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:

(A) H 2气比O 2气温度高; (B) O 2气比H 2气温度高;

(C) 两边温度相等且等于原来的温度; (D) 两边温度相等但比原来的温度降低了。

m A

m

B

二、填空题

1.在x 轴上作变加速直线运动的质点,已知其初速度为v0,初始位置为x0,加速度a=ct2(其中c为常量),则其速度与时间的关系为v= ,运动方程为x= 。

2.设作用在质量为 1 kg 的物体上的力F=6t+3(SI)。如果物体在此力的作用下,由静止开始沿直线运动,在 0 到 2.0s 的时间间隔内,这个力作用在物体上的冲量大小I= 。

3. 质量为m=1kg的物体,从静止出发在水平面内沿X轴运动,其所受合力方向与运动方向相同,合力大小为F = 3+ 2x (SI),那么,物体在开始运动的3m内,合力所作的功W= ,x = 3m时,其速率v = 。

4. 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m2,现加一恒定的制动力矩,飞轮在1s 内停止转动,该恒定力矩大小M = 。

5.一门宽为a,今有一固有长度为l0(l0>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率至少为。

6. 一质点作简谐振动,速度最大值v m=5cm/s,振幅A=2cm。若令速度具有正最大值的那一刻为t=0,则振动表达式为。

7. 设容器内盛有质量为M1和质量为M2的两种不同单原子分子理想气体,并处于平衡态,其内能均为E,则此两种气体分子的平均速率之比为。

8. 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相同,现将3J热量传给氦气,使之升高到一定温度。若使氢气也升高同样温度,则应向氢气传递热量为。

三、计算题

1. 轻型飞机连同驾驶员总质量为1.0?103kg。飞机以55.0 m/s的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α= 5.0?102 N/s,求:

(1)10s后飞机的速率;

(2)飞机着陆后10s内滑行的距离。

2.一轻弹簧在60N的拉力下伸长30cm,现把质量为4kg的物体悬挂在该弹簧的下端并使之静止,再把物体向下拉10cm,然后由静止释放并开始计时。求:

(1)物体的振动方程;

(2)物体在平衡位置上方5 cm时弹簧对物体的拉力;

(3)物体从第一次越过平衡位置时刻起到它运动到上方5 cm处所需要的最短时间。

3. 一平面简谐波在介质中以速度u =20m/s 沿x 轴负方向传播, 已知a 点的振动表式为

t y a π4cos 3=(SI )

。 (1)以a 为坐标原点写出波动表式。 (2)以距a 点5m 处的b 点为坐标原点,写出波动表式。 4. 两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体。现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须做多少功?

u

b

a

大学物理选择题

时间 空间与运动学 1 下列哪一种说法是正确的( ) (A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小 (C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快 2 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量), 则该质点作( ) (A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动 3 一个气球以1 s m 5-?速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( ) (A )6s (B )s 30 (C )5. 5s (D )8s 4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( ) (A )匀加速运动 (B )匀减速运动 (C )变加速运动 (D )变减速运动 5 已知质点的运动方程j i r 33)s m 4()3(t m -?+=,则质点在2s 末时的速度 和加速度为( ) (A )j a j i v )s m 48( , )s m 48()s m 3(211---?=?+?= (B )j a j v )s m 48( , )s m 48(21--?=?= (C ) j a j i v )s m 32( , )s m 32()s m 3(211---?=?+?= (D )j a j v )s m 32( , )s m 32(21--?=?= 6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理学上下册公式(整合版)

大学物理公式集1 1概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置:θ 2.速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3.加速度:dt V d a =或 2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a = τ(=rβ),r V n a 2 = (=r 2 ω) 4.力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5.动量:V m p =,角动量:V m r L ?=(大小:L=rmvsin θ方向:右手螺旋法则) 6.冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势 能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tS I S F P 3 2= ?== 11. 分子平均平动能:kT 23=ω;理想气体内能:RT s r t M E )2(2 ++=μ 12. 麦克斯韦速率分布函数:NdV dN V f =)((意义:在V 附近单位速度间隔内的分子 数所占比率) 13. 平均速率:πμ RT N dN dV V Vf V V 80 )(= = ? ?∞ mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 - (万有引力) →r Mm G - =E p r r Qq ?420πε(静电力) →r Qq 04πε

大学物理习题集(上)

质点运动学 1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内 位移和平均速度; (2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度. 1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为2 2(1)(1)n s a n t -= +,并由上述数据求出量值. 1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长? (2)他在东边落地时的速度?速度与水平面的夹角? 1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为0 11 kt v v =+; (2)试证在时间t 内,船行驶的距离为01 ln(1)x v kt k =+. 图1.3

1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下, 此后飞机的加速度为a m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? 1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度. 1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算: (1)螺帽从天花板落到底面所需的时间; (2)螺帽相对于升降机外固定柱子的下降距离. v 图1.7

大学物理上下册常用公式

大学物理第一学期公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ;222z y x r 角位置:θ 2.速度:dt r d V 平均速度:t r V 速率:dt ds V ( V V )角速度:dt d 角速度与速度的关系:V=rω 3.加速度:dt V d a 或 2 2dt r d a 平均加速度:t V a 角加速度:dt d 在自然坐标系中n a a a n 其中dt dV a (=rβ),r V n a 2 (=r 2 ω) 4.力:F =ma (或F =dt p d ) 力矩:F r M (大小:M=rFcos θ方向:右手螺旋法则) 5.动量:V m p ,角动量:V m r L (大小:L=rmvcos θ方向:右手螺旋法则) 6.冲量: dt F I (=F Δt);功: r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势能形式不同 且零点选择不同其形式不同,在默认势能零点的 情况下: 机械能:E=E K +E P 9.热量:CRT M Q 其中:摩尔热容量C 与过程 有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: n tS I S F P 3 2 11. 分子平均平动能:kT 23 ;理想气体内能:RT s r t M E )2(2 12. 麦克斯韦速率分布函数:NdV dN V f )((意义:在V 附近单位速度间隔内的分子数所占比率) 13. 平均速率: RT N dN dV V Vf V V 80 )( 方均根速率: RT V 22 ;最可几速率: RT p V 3 14. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数) 15. 电场强度:E =F /q 0 (对点电荷:r r q E ?42 ) 16. 电势: a a r d E U (对点电荷r q U 04 );电势能:W a =qU a (A= –ΔW) 17. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 18. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。 mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 (万有引力) →r Mm G =E p r r Qq ?420 (静电力) →r Qq 04

大学物理上选择题

时间空间与运动学 1 下列哪一种说法就是正确得(D ) (A)运动物体加速度越大,速度越快 (B)作直线运动得物体,加速度越来越小,速度也越来越小 (C)切向加速度为正值时,质点运动加快 (D)法向加速度越大,质点运动得法向速度变化越快 2 一质点在平面上运动,已知质点得位置矢量得表示式为(其中a、b为常量),则该质点作( B ) (A)匀速直线运动 (B)变速直线运动 (C)抛物线运动 (D)一般曲线运动 3 一个气球以速度由地面上升,经过30s后从气球上自行脱离一个重物,该物体从脱落到落回地面得所需时间为( B) (A)6s(B) (C)5、 5s (D)8s 4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处得定滑轮拉湖上得船向岸边运动,设该人以匀速率收绳,绳长不变,湖水静止,则小船得运动就是( D ) (A)匀加速运动 (B)匀减速运动 (C)变加速运动 (D变减速运动 5 已知质点得运动方程,则质点在2s末时得速 度与加速度为( ) (A) (B) (C) (D) 6 一质点作竖直上抛运动,下列得图中哪一幅基本上反映了该质点得速度变化情况( B )

7 有四个质点A、B、C、D沿轴作互不相关得直线运动,在时,各质点都在处,下列各图分别表示四个质点得图,试从图上判别,当时,离坐标原点最远处得质点( ) 8 一质点在时刻从原点出发,以速度沿轴运动,其加速度与速度得关系为,为正常数,这质点得速度与所经历得路程得关系就是( ) (A) (B) (C) (D)条件不足,无地确定 9 气球正在上升,气球下系有一重物,当气球上升到离地面100m高处,系绳突然断裂,重物下落,这重物下落到地面得运动与另一个物体从100m高处自由落到地面得运动相比,下列哪一个结论就是正确得() (A)下落得时间相同(B)下落得路程相同 (C)下落得位移相同(D)落地时得速度相同 10 质点以速度作直线运动,沿直线作轴,已知时质点位于处,则该质点得运动方程为( ) (A)

大学物理选择题大全

第一章 质点运动学 习题(1) 1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数; (B )在任意运动过程中,平均速度 2/)(0t V V V +=; (C )任何情况下,;v v ?=? r r ?=? ; (D )瞬时速度等于位置矢量对时间的一阶导数。 2、一质点作直线运动,某时刻的瞬时速度 m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为: ( ) (A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。 3、 一物体从某一确定高度以 0V 的速度水平抛出(不考虑空气阻力),落地时的速 度为t V ,那么它运动的时间是: ( ) (A) g V V t 0 -或g V V t 2 02- ; (B) g V V t 0 -或 g V V t 2202- ; (C ) g V V t 0 - 或g V V t 202- ; (D) g V V t 0 - 或g V V t 2202- 。 4、一质点在平面上作一般曲线运动,其瞬 时速度为 V ,瞬时速率为v ,某一段时间内的平均速度为V ,平均速率为V , 它们之间的关系必定是 ( ) (A) V V V V == ,;(B) V V V V =≠ ,;(C)V V V V ≠= ,;(D) V V V V ≠≠ ,。 5、下列说法正确的是: ( ) (A )轨迹为抛物线的运动加速度必为恒 量; (B )加速度为恒量的运动轨迹

可能是抛物线; (C )直线运动的加速度与速度的方向一 致; (D )曲线运动的加速度必为变量。 第一章 质点运动学 习题(2) 1、 下列说法中,正确的叙述是: ( ) a) 物体做曲线运动时,只要速度大小 不变,物体就没有加速度; b) 做斜上抛运动的物体,到达最高点 处时的速度最小,加速度最大; (C )物体做曲线运动时,有可能在某时刻法向加速度为0; (D )做圆周运动的物体,其加速度方向一定指向圆心。 2、质点沿半径为R 的圆周的运动,在自然 坐标系中运动方程为 22 t c bt s -=,其中 b 、 c 是常数且大于0,Rc b >。其切向加速度和法向加速度大小达到相等所用 最短时间为: ( ) (A) c R c b + ; (B) c R c b - ; (C) 2cR c b -; (D) 22cR cR c b +。 3、 质点做半径为R 的变速圆周运动时的加 速度大小为(v 表示任一时刻质点的速率) ( ) (A ) t v d d ; (B )R v 2 ; (C ) R v t v 2 +d d ; (D ) 2 22)d d (??? ? ??+R v t v 。 第二章 牛顿定律 习题 1、水平面上放有一质量m 的物体,物体与水平面间的滑动摩擦系数为μ,物体在图示 恒力F 作用下向右运动,为使物体具有最大的加速度,力F 与水平面的夹角θ应满 足 : ( ) (A )cosθ=1 ; (B )sinθ=μ ; (C ) tan θ=μ; (D) cot θ=μ。

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

大学物理上课后选择题

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx + (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均 速度大小和平均速率大小分别为 (A) t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小 是 ;经过的路程是 。 (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的 速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。 (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。 如人相对于岸静止,则1V 、2V 和3V 的关系是 。 1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还

大学物理(上)课后习题答案1

1-1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1-2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自 然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1-3 分析与解 t d d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述); t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为 22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t l l t x -== v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θ l h l cos /0 220v v v = -= ,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C). 1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理考试常考题选择填空部分含答案详解

质 点 运 动 学 一.选择题: 1、质点作匀速圆周运动,其半径为R ,从A 点出发,经过半圆周到达B 点,则在下列各 表达式中,不正确的是 (A ) (A )速度增量 0=?v ,速率增量 0=?v ; (B )速度增量 j v v 2-=?,速率增量 0=?v ; (C )位移大小 R r 2||=? ,路程 R s π=; (D )位移 i R r 2-=?,路程 R s π=。 2、质点在平面上运动,已知质点位置矢量的表达式为j bt i at r 22+=(其中a 、b 为常量) 则该质点作 ( D ) (A )匀速直线运动; (B )一般曲线运动; (C )抛物线运动; (D )变速直线运动。 3、质点作曲线运动,r 表示位置矢量,s 表示路程,v 表示速度, a 表示加速度。下列表达式中, 正确的表达式为 ( B ) (A )r r ?=?|| ; (B) υ==dt s d dt r d ; (C ) a dt d =υ ; (D )υυd d =|| 。 4、一个质点在做圆周运动时,则有 ( B ) (A )切向加速度一定改变,法向加速度也改变; (B )切向加速度可能不变,法向加速度一定改变; (C )切向加速度可能不变,法向加速度不变; (D )切向加速度一定改变,法向加速度不变。 5、质点作匀变速圆周运动,则:( C ) (A )角速度不变; (B )线速度不变; (C )角加速度不变; (D )总加速度大小不变。 二.填空题: 1、已知质点的运动方程为x = 2 t -4 t 2(SI ),则质点在第一秒内的平均速度 =v -2 m/s ; 第一秒末的加速度大小 a = -8 m/s 2 ;第一秒内走过的路程 S = 2.5 m 。

大学物理学上练习题(供参考)

一. 选择题 1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作[ ]。 (A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向。 2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[ ]。 (1) a t = d /d v , (2) v =t /r d d , (3) v =t S d /d , (4) t a t =d /d v 。 (A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的; (D) 只有(3)是对的。 3. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]。 (A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。 4. 一小球沿斜面向上运动,其运动方程为s=5+4t -t 2 (SI), 则小球运动到最高点的时刻是 [ ]。 (A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。 5. 一质点在xy 平面内运动,其位置矢量为j t i t r ?)210(?42-+= (SI ),则该质点的位置 矢量与速度矢量恰好垂直的时刻为[ ]。 (A) s t 2=; (B )s t 5=; (C )s t 4=; (D )s t 3=。 6. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。当0=t 时,初速 为v 0,则速度v 与时间t 的函数关系是[ ]。 (A) 0221v v +=kt ; (B) 022 1v v +-=kt ; (C) 02121v v +=kt ; (D) 0 2121v v +-=kt 。 [ ] 7. 一质点在0=t 时刻从原点出发,以速度0v 沿x 轴运动,其加速度与速度的关系为 2a k =-v ,k 为正常数,这质点的速度v 与所经路程x 的关系是[ ]。 (A) 0kx e -=v v ; (B) 02 012x =-v v ()v ;

大学物理下主要公式(含文字)

毕奥-沙伐尔定律:20 04r r l Id B d ??=πμ 磁场叠加原理:??=L r r l Id B 20 04 πμ 运动电荷的磁场:2004r r v q B ??=πμ 磁场的高斯定理:0=???S S d B 磁通量:???= S m S d B Φ 安培环路定理:∑?=?I l d B L 0μ 载流直导线:()120sin sin 4ββπμ-=a I B 圆电流轴线上任一点: () 2 32 22 03 2 022R x IR r IR B += = μμ 载流螺线管轴线上任一点: ()120cos cos 2 ββμ-= nI B 安培力:B l Id f d ?=, ??=L B l Id f 载流线圈在均匀磁场中所受的磁力矩: B P M m ?= 洛仑兹力:B v q f ?= 磁力的功:?ΦΦΦΦ I A Id A I =??→?= =?恒量 2 1 b IB R U H AA =',nq R H 1= 法拉第电磁感应定律:dt d i Φ ε- = 动生电动势:???=a b ab l d )B v ( ε 感生电动势,涡旋电场: S d t B l d E L k i ???-=?=???ε 自感:I N L Φ=, dt dI L L -=ε,2 21LI W m = 互感:212112I N M Φ= ,1 21221I N M Φ = 2112M M = dt dI M 212 12-=ε, dt dI M 12121-=ε 磁场的能量: μω2212 B BH m = =,?=V m m dV W ω 麦克斯韦方程组的积分形式: i S q S d D ∑=??? (1) 0=???S S d B (2) ??????-=?S L S d t B l d E (3) ??????+=?S L S d )t D (l d H δ (4) E D ε=, H B μ=, E γδ= 平面简谐波方程: )] u r t (cos[H H )]u r t (cos[E E { -=- =ωω00 坡印廷矢量:H E S ?= 相长干涉和相消干涉的条件: π π ??)k (k { 122+±±= 3210,,, k = 减弱,相消干涉) 加强,相长干涉) ((2/)12({ λλδ+±±=k k , (21??=) 杨氏双缝干涉: (暗纹) (明纹) 3,2,12,1,0)4/()12()2/({ ==-±±=k k a D k a kD x λλ 薄膜反射的干涉: 2/)12({ 2 sin 222122λλ λ δ+=+ -=k k i n n e

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

大学物理试题1.1

1.选择题 1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张 力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上 升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g . 2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( ) (A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒 的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的 角速度ω至少应为 ( ) (A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球 上的重力加速度为g ,则水星表面上的重力加速度为: ( ) (A) 0.1 g (B) 0.25 g (C) 2.5 g (D) 4 g 5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则 摆锤转动的周期为 ( ) (A)g l . (B)g l θcos . (C)g l π 2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动, 则转台的角速度ω应满足 ( ) (A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( ) (A) 恒为零. (B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 a 1 m θ θ l ωO R A A O O ′ ω

大学物理下练习题答案汇总

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

相关文档
相关文档 最新文档