文档库 最新最全的文档下载
当前位置:文档库 › 2013年数学中考试题专题1二次函数与相似三角形

2013年数学中考试题专题1二次函数与相似三角形

2013年数学中考试题专题1——二次函数与相似三角形

1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2

关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点??

? ??

232,D 在抛物线上,直线是一次函数

()02≠-=k kx y 的图象,点O 是坐标原点.

(1)求抛物线的解析式;

(2)若直线平分四边形OBDC 的面积,求k 的值.

(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.

答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以?

??=++=+-5.1240

c b a c b a ,所以3a+3b=1.5,即a+b=0.5,

又12=-

a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以2

3

212++-=x x y . (2)由(1)知2

3

212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,

令kx -2=1.5,得l 与CD 的交点F(23

,27k ),

令kx -2=0,得l 与x 轴的交点E(0,2

k

),

根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,

即:

,5

11),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(2

1

232122+--=++-=x x x y

所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为2

2

1x y -

= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,

所以

1

1

11PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为

N

M

N M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入2

2

1x y -

=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件, 故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.

考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.

点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。

4、(2013陕西)

两点.

(1)写出这个二次函数的对称轴;

(2)设这个二次函数的顶点为D ,与y 轴交于点C ,

它的对称轴与x 轴交于点E ,连接AD 、DE 和DB , 当△AOC 与△DEB 相似时,求这个二次函数的表达式。

[提示:如果一个二次函数的图象与x 轴的交点 为)0,(),0,(21x B x A A ,那么它的表达式可表示 为:))((21x x x x a y --=]

考点:此题在陕西的中考中也较固定,第(1)问主要考查待定

系数法求二次函数的解析式,二次函数与坐标轴的交点坐标,

抛物线的对称性等简单问题。第二问主要考查二次函数综合应用之点的存在性问题;包括最短距离与面积的最值等(等腰三角形,平行四边形,正方形,相似三角形,相似,全等等问题。考查问题的综合能力要求较高,基本上都是转化为求点的坐标的过程。

解析:本题中(1)由抛物线的轴对称性可知,与x 轴的两个交点关于对称轴对称,易求出对称轴;

(2)由提示中可以设出函数的解析式,将顶点D 与E 的坐标表示出来,从而将两个三角形的边长表示出来,而相似的确定过程中充分考虑到分类即可解决此题; 解:(1)对称轴为直线:x=2。 (2)∵A (1,0)、B (3,0),所以设)3)(1(--=x x a y 即a ax ax y 342

+-=

当x=0时,y=3a ,当x=2时,y=a -

∴C (0,3a ),D(2,-a) ∴OC=|3a|,

(第24题图)

∵A (1,0)、E (2,0), ∴OA=1,EB=1,DE=}-a|=|a| 在△AOC 与△DEB 中, ∵∠AOC=∠DEB=90° ∴当

EB

DE

OC AO =

时,△AOC ∽△DEB ∴

1|||3|1a a =

时,解得33=a 或33

-=a 当

DE

EB

OC AO =

时,△AOC ∽△BED ∴

|

|1

|3|1a a =

时,此方程无解, 综上所得:所求二次函数的表达式为:

3334332+-=

x x y 或333

4332-+-=x x y

7、(2013?内江)如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE∥BC,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;

(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;

(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.

==

x

x

()﹣

=

标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;

(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM 的长;

(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.

考点:二次函数综合题.

分析:(1)将A(3,0),C(0,4)代入y=ax2﹣2ax+c,运用待定系数法即可求出抛物线的解析式;

(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P、点M的坐标,即可得到PM的长;

(3)由于∠PFC和∠A EM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.

解答:解:(1)∵抛物线y=ax2﹣2ax+c(a≠0)经过点A(3,0),点C(0,4),

∴,解得,

∴抛物线的解析式为y=﹣x2+x+4;

(2)设直线AC的解析式为y=kx+b,

∵A(3,0),点C(0,4),

∴,解得,

∴直线AC的解析式为y=﹣x+4.

∵点M的横坐标为m,点M在AC上,

∴M点的坐标为(m,﹣ m+4),

∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,

∴点P的坐标为(m,﹣ m2+m+4),

∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,

即PM=﹣m2+4m(0<m<3);

(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,PF=﹣m2+m+4﹣4=﹣m2+m.

若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,

即(﹣m2+m):(3﹣m)=m:(﹣ m+4),

∵m≠0且m≠3,

∴m=.

∵△PFC∽△AEM,∴∠PCF=∠AME,

∵∠AME=∠CMF,∴∠PCF=∠CMF.

在直角△CMF中,∵∠CMF+∠MCF=90°,

∴∠PCF+∠MCF=90°,即∠PCM=90°,

∴△PCM为直角三角形;

②若△CFP∽△AEM,则CF:AE=PF:EM,

即m:(3﹣m)=(﹣m2+m):(﹣m+4),

∵m≠0且m≠3,

∴m=1.

∵△CFP∽△AEM,∴∠CPF=∠AME,

∵∠AME=∠CMF,∴∠CPF=∠CMF.

∴CP=CM,

∴△PCM为等腰三角形.

综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.

点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.

10、(2013?曲靖压轴题)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x 轴于点C,交抛物线于点E.

(1)求抛物线的解析式.

(2)当DE=4时,求四边形CAEB的面积.

(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.

3236+)32﹣3234=12.

BD=

m

15、(2013浙江丽水压轴题)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M 是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂

足为F ,过点B 作y 轴的垂线与直线CF 相交于点E ,点D 点A 关于直线CF 的对称点,连结AC ,BC ,CD ,设点A 的横坐标为t (1)当2 t 时,求CF 的长;

(2)①当t 为何值时,点C 落在线段BD 上?

②设△BCE 的面积为S ,求S 与t 之间的函数关系式;

(3)如图2,当点C 与点E 重合时,△CDF 沿x 轴左右平移得到△C ’D ’F ’,再将A ,

B ,

C ’,

D ’为顶点的四边形沿C ’F ’剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,请直接写出所有符合上述条件的点C ’的坐标。

17、(2013?自贡)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;

(2)在图②中,若AP1=2,则CQ等于多少?

(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.

BC=x

AP

=sin45°=

P

BC

BC=

x

3x x

(+

与y轴交于点C,点D为顶点.

(1)求点B及点D的坐标.

(2)连结BD,CD,抛物线的对称轴与x轴交于点E.

①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.

②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.

,CB=3

==

x解方程组,CB=3

==

由方程组

的坐标为(,﹣)

==

a

∴MG=FG=

a

a

,﹣

==

a

∴MG=FG=

a3+

坐标为(,﹣

二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣2

3

0),以0C为直径作半圆,圆心为D.

(1)求二次函数的解析式;

(2)求证:直线BE是⊙D的切线;

(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

=,由此求得

=

=

=

=

+t

次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函

数图象上存在一点D使四边形ABCD能构成平行四边形.

(1)试求b,c的值,并写出该二次函数表达式;

(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?

②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

考点:二次函数综合题.

分析:(1)根据一次函数解析式求出点A.点C坐标,再由△ABC是等腰三角形可求出点B 坐标,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式.

(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置;

②只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO,利用对应边成比例得出h的表达式,继而表示出△APQ 的面积表达式,利用配方法求出最大值,即可得出四边形PDCQ的最小值,也可确定点P的位置.

解答:解:(1)由y=﹣x+3,

相关文档
相关文档 最新文档