文档库 最新最全的文档下载
当前位置:文档库 › 杆状天线

杆状天线

杆状天线
杆状天线

PMM RA01

Low frequency rod antenna

Main features

PMM RA01 is perfect for RF field measurements in a wide variety of EMC applications,including interference measurements from high-voltage power lines.

PMM RA01 can be used in conjunction with any Receiver or Spectrum Analyzer,although its ideal companion for on site measurements is the Digital EMI Receiver PMM 9010,

portable and fully compliant to CISPR-16-1-1.

?9 kHz to 30 MHz (RA01);

150 kHz to 30 MHz (RA01HV) frequency range

?Built-in preamplifier for high sensitivity

?Rechargeable battery of long operation time ?Excellent flatness

?Tripod mounting adapter ?Individual calibration ?Easy assembling

?High rejection to mains frequencies

?Robust,rustproof aluminium case,ground plane and rod

? Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH and L3 Communications Holdings, Inc. – Trade names are trademarks of the owners.

Narda Safety Test Solutions srl Via Leonardo da Vinci, 21/2320090 Segrate (MI) ITALY Phone: +39 02 26 998 71Fax: +39 02 26 998 700E-Mail: support@narda-sts.it

www.narda-sts.it

a brand of

P r e l i m i n a r y s p e c i f i c a t i o n s s u b j e c t t o c h a n g e s w i t h o u t p r i o r n o t i c e 12/09

Low frequency rod antenna

SPECIFICATIONS RA-01RA-01-HV

Frequency range 9 kHz – 30 MHz 150 kHz – 30 MHz

Impedance 50 ΩOutput connector BNC Antenna Factor +10 dB (typical)(+6dB for 1m monopole effective

length normalization)

Internal battery Rechargeable,7,2 V Operating time >24 hours Recharging time 6 hours Tripod mounting 1/4”x 20 screw Dimensions Rod:1 m x 16 mm dia.

Ground plane:600 x 600 mm 2 mm thick Aluminium sheet Electronics:150 x 135 x 120 mm

Weight 1,5 kg

Ordering information

RA-01

Rod antenna 9 kHz-30 MHz RA-01-HV

Rod antenna 150 kHz-30 MHz

Includes:

Universal AC charger

Individual calibration report Operating manual Carrying case Optional accessories TR-01

Tripod,adjustable height 60-180 cm,carrying bag included

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

基站天线选型

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

基站美化天线技术规范

美化天线技术规范

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规范、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规范、采购模式等内容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规范要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°内的方位角,15°内俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

RFID天线印刷工艺

RFID电子标签天线工艺 RFID 电子标签技术又称RFID(Radio FrequencyIdentification)射频识别技术,是一种非接触式的自动识别技术,通过相距几厘米到几米距离内传感器发射的无线电波,可以读取RFID 电子标签内储存的信息,识别RFID 电子标签所代表的物品、人和器具的身份。 这种技术最早由美国海军研究试验室(NRL)开发用于敌我识别系统(IFF),将盟军的飞机和敌方的飞机区别开来。目前在全球范围内,RFID 电子标签技术正逐渐被应用到人们生活的方方面面。 RFID 电子标签技术与其它自动识别技术,例如与条形码识别技术相比,具有如下特点:RFID 电子标签的阅读器能透过泥浆、污垢、油污、木材、水泥、塑料、蒸汽等非金属材料阅读标签,不必一定与标签直接接触;RFID 电子标签的数据存储容量大,标签上数据可以加密、随时更新;RFID 电子标签实现了“免接触”,不需要直线瞄准扫描操作,读写速度快,读取距离大;RFID 电子标签的体积小、易封装,外形多样;RFID 电子标签的使用寿命可长达10 年以上,读写10 万次,无机械磨损、无机械故障;RFID 电子标签的编号独一无二,而且可以加入防伪识别码。RFID 电子标签和条形码的主要区别是数据被电子化储存在RFID 电子标签的存储单元内,采用专用芯片的RFID 读卡机能根据每件货物唯一的序列标识号来进行识别,并可以进行密钥认证,保障数据安全。 另外,值得一提的是,RFID 电子标签因具有上述的读写速度快,读取距离远,数据容量大等特点,被应用在物流过程和供应链管理之中,使交易成本减少,管理水平得到提高。 一、RFID 电子标签的构成与使用 RFID 电子标签通常由标签天线(或线圈)及标签芯片组成,是射频技术的核心。其结构图见图1。 标签天线在整个RFID 系统中起着很重要的作用,它不仅要将RFID 电子标签所存储的信息调制反射,同时还要捕获阅读器发射的电磁波,为标签芯片提供能量。 由于RFID 电子标签要粘贴到被识别的物体上,这就需要RFID 电子标签能够足够小,标签天线不仅要求小尺寸,而且具有全向或半球覆盖的方向性。另外,作为数据载体的微型芯片基本已模块化,但芯片的数据信息及读写要求不同,芯片阻抗不确定,这就需要标签天线能够实现可变性,以便与芯片阻抗共轭匹配,以提供最大功率给芯片。当然,RFID 电子标签需要大规模使用,要求标签天线加工简单,成品率高,制造成本低。 标签天线作为RFID 系统中最易变的部分,面临着小型化、共形化、低损耗和低成本的实际要求,其制造在整个RFID 系统中占有重要地位。

2.4 GHz天线的选择和选择标准

Options and Selection Criteria for 2.4 GHz Antennas 2.4 GHz is a sweet spot for modern-day RF design can be demonstrated by mentioning a few well-known names: Bluetooth, ZigBee, Wi-Fi and WLAN. One can also toss cellular applications into the mix. Clearly, this unlicensed band allows a variety of handheld, mobile, and fixed base station designs that communicate either point-to-point, or are routed through a cellular or mesh network. Popularity, however, brings technical issues. Even with channel s egmentation, one standard’s signal can step on another and clog up throughput. Fortunately, frequency allocations, algorithms, time-slicing, and back-off timers, among other techniques, help let everyone share the band and play nicely together. Even so, achieving optimum performance and meeting reliability goals calls for superior antenna design and close attention to the associated components that keep everything resonant. What is more, whether balanced or single ended, the transmit gain and receive sensitivity depend on the physical nature of the antenna and its radiation pattern. This article takes a look at 2.4 GHz antennas and the coupling networks that make them work. It examines commercially available single-chip antennas that are designed to work in the 2.4 GHz ISM band. It discusses antenna types, RF distribution patterns, and range and design issues associated with using a single-chip antenna, as opposed to a connector- mounted external antenna or PCB antenna. All parts, datasheets, development kits and training modules referenced here are available on Digi-Key’s website. The signal path Key in making your antenna perform as desired is the signal path to the antenna. While most RF chips have good output stages, matching, filtering, and splitting still may be needed, especially if a single antenna is used for more than one communications standard. As such, the typical RF output stages must still connect to either a single ended, balanced, or diplexed matching network (Figure 1).

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

天线设计规范

天线设计规范 深圳麦汉科技技术有限公司 研发部内部标准及对外培训资料 2013.7.10 编制:黄年宇

第1篇 项目评估基本概念

1-1 背景 根据公司年度经营计划,研发工程师要同客户建立积极主动地工作关系,不仅要现场分析和解决测试中遇到的问题,还要能够对客户的新项目进行现场评估和提出建议。而后者是目前大部分工程师的弱项,掌握基本的评估技巧和准则,不仅是公司实力的体现,也是个人能力的提升。 下面将分为几方面对项目的评估做基本的介绍: *天线的空间和性能 *直板机PIFA天线的评估 *直板机Monopole天线的评估 *翻盖机PIFA天线的评估 *翻盖机Monopole天线的评估 *滑盖机PIFA天线的评估 *滑盖机Monopole天线的评估 *双模机的评估 *SAR的评估 *装饰件的评估 *天线材质的选择 *人体模拟评估 *评估中的注意事项

1-2 天线空间和性能(PIFA ) 所需空间H>6.0mm S>400mm2H>6.5mm S>450mm2H>6.5mm S>450mm2H>7.0mm S>500mm2H>7.0mm S>500mm2H>7.0mm S>550mm2H>7.0mm S>600mm2H>7.0mm S>600mm2H>5.5mm S>200mm2H>7.0mm S>550mm2H>5mm S>150mm2频段 CDMA800 850&1900 900&1800 850&1800&1900 900&1800&1900 GSM 四频 GSM 三频+WCDMA GSM 四频+WCDMA GPS LTE-38、39、40 Bluetooth 可能达到的性能VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<1.5 EFF >50%VSWR<2 EFF >50%VSWR<2 EFF ≈50%

蚀刻天线制作方法与制作流程简介

目前我们了解的天线制作技术主要有三种:绕线式天线、印刷天线和蚀刻天线。此外还有真空镀膜法生产RFID天线的,上述几种生产方法的特点比较如下: 2.1 绕线式天线 绕线和印刷技术在中国大陆得到了较为广泛的应用,大部分的 RFID标签制造商也是采用此技术。 利用线圈绕制法制作RFID标签时,要在一个绕制工具上绕制标签线圈并进行固定,此时要求天线线圈的匝数较多。这种方法用于频率围在125-134KHz的RFID标签,其缺点是成本高、生产速度慢、生产效率较低。 2.2 印刷天线 印刷天线是直接用导电油墨(碳浆、铜浆、银浆等)在绝缘基板(或薄膜)上印刷导电线路,形成天线的电路。主要的印刷方法已从只用丝网印刷扩展到胶印、柔性版印刷、凹印等制作方法,较为成熟的制作工艺为网印与凹印技术。其特点是生产速度快,但由于导电油墨形成的电路的电阻较大,它的应用围受到一定的局限。 2.3 蚀刻天线 印制电路的蚀刻技术主要应用于欧洲地区,而在,目前仅少数软性电路板厂有能力运用此技术制造RFID标签天线。 蚀刻技术生产的天线可以运用于大量制造13.56M、UHF频宽的电子标签中,它具有线路精细、电阻率低、耐候性好、信号稳定等优点。 3、蚀刻天线制作方法简介 蚀刻天线常用铜天线和铝天线,其生产工艺与挠性印制电路板的蚀刻工艺接近。 3.1 蚀刻天线的制作流程 挠性聚酯覆铜(铝)板基材――贴感光干膜/印感光油墨――连续自动曝光――显像――蚀刻――退膜--水洗--干燥—质检—包装 3.2 制作流程说明 挠性聚酯覆铜(铝)板基材:采用软板专用的合成树脂胶(环氧胶、丙烯酸胶)将铜箔(铝箔)与聚酯膜压合在一起,经高温后固化后而成,其电性能、耐高温性、耐腐蚀性较强。材料的组成截面图如下:

天线技术标准

无线网络系统菜用标准化设计:所选设备全部符合国际标准、行业标准和国家标准。 技术规范: 无线: 1. 无线标准:IEEE 80 2.11a/b/g 2. 频带: A Mode: 5725~ 5850 MHz for US B/G Mode: 2400~2483.5 MHz All Mode: Frequency accuracy < 20ppm 3. 数据速率(Mbps): 6,9,12,18,24,36,48,54(802.11a/b/g) 4. 无线协议: 802.11a:OFDM,802.11b/g:DSSS 5. 调制: 802.11a:BPSK、QPSK、16QAM、64QAM 802.11b/g:DBPSK、DQPSK、CCK 6. 信道: 802.11a: 13(美国,FCC):8个室内信道,5个室外信道 13+(欧洲,ETSI),13(日本,MKK) 5 (Ch: 149,153,157,161,165):中国 802.11b/g: 11(美国,FCC) 13(欧洲,ETSI) 11(1~11)(中国) 7. 发射功率: 视配置而定 8. 接收灵敏度 A Mode: -87dBm@6Mbps -70dBm@54Mbps B Mode: -94dBm@1Mbps -87dBm@11Mbps G Mode: -87dBm@6Mbps -70dBm@54Mbps 9. LO(晶体)频率稳定性: +/-20PPM,在普通操作范围(0到55°C)内、 电气特性: 1. 电源输入:自感应120/240 V AC,50/60Hz,单一分离的相位,内置ANSI / IEEE C6 2.41 C3级别集成的分支电路保护 2. 直流输入:48V,最大6A 3. 802.3af PoE(以太网线供电) 保护电路: 天线保护: < 0.5uJ for 6kV/3kA 电气保护: - ANSI/IEEE C62.41, UL 1449-2 ed., 10kA@8/20 uS Waveform, 36kA per phase - EN61000-4-5 Level 4 AC Surge Immunity - EN61000-4-4 Level 4 EMC Field Immunity

最新天线的分类和选择 天线材料选择的

天线的分类和选择天线材料选择的

天线的分类和选择+天线材料选择的.txt——某天你一定会感谢那个遗弃你的人,感谢那个你曾深爱着却置之你不顾的人。做一个没心没肺的人,比什么都强。________舍不得又怎样到最后还不是说散就散。天线分为:1.全向天线2.定向天线(我们接触和用的基本是前两种) 3.机械天线4.电调天线5.双极化天线。 下面主要介绍坛友们比较关心的定向和全向天线。感兴趣的朋友可以google或者baidu其他相关天线的详细资料。“相关资料提供下载”中提供简单介绍下载。) 天线介绍: 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,(使用大功率网卡的朋友注意了,此类天线最好能离人体3米及以上,辐射对人体的伤害就不用说了吧)也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 2.2.1个人见解:定向分为反射型和引向型定向 反射型:常见的有:双菱(叠双菱)(跟平板差不多。),长城(跟平板差不多)平板(方向角较大,一般用于覆盖,形用于接收角度广容易调试) 栅格(方向尖锐,常用于点对点)。此类天线主要靠反射信号到达振子来工作。 引向型:常见的有:8木(引导信号到主振子,多余的经反射振子,再次到达主振子)叠双菱是两者都有,主振子信号源:是前面引向菱,后面反射板。主要靠反射,所以定义反射型。 全向天线:常见的有9db.8db. 7db.6db.5db 2db 定向天线:叠双菱(N菱),平板,八木,栅格,卫--星锅,长城,开槽等等 注:排名分前后(个人推荐) 天线的选择: 本帖隐藏的内容需要回复才可以浏览 以上天线介绍主要偏重于发射,个人认为接收的原理和发射原理相类似。发射要考虑一个功率问题,因为如果天线做的不好,在功率过大的情况下,该发射出去的功率没有发射出去就很容易反过来(简单说就是驻波大,导致功率反噬)损坏机器。友情提醒一下:使用大功率路由和网卡的朋友,在不确定自制天线技术指标的情况下,尽量将功率调低一点,够用就好。 关于天线的选择,关键还是要看使用环境。如果是6层以下的小区环境,视野不太开阔20-50米之间就有阻挡物的,建议使用全向或者平板天线。个人推荐:

OTA天线测试的能力及测试标准

OTA测试能力 OTA测试能力: 1:有源部分 辐射功率 (TRP) 灵敏度性能 (TIS) 2:无源部分 天线增益测试(Gain) 天线接口阻抗测试(Input Impedance) 天线驻波比/回波损耗测试(VSWR/RL) 天线方向图测试(Radiation Pattern) 方向性(Directivity) 波束宽带/前后比(3Db BW/FB Ratio) 交叉极化比/隔离度(Cross Polar/Isolation) 支持的无线制式:GSM,CDMA,WCDMA,TDSCDMA产品的有源或者无源测试;蓝牙,WIFI,DVB等天线的无源测试; 目前支持的测试规范: 1:CTIA的OTA测试规范(Test Plan for Mobile Station Over the Air Performance V2.2.2)2:GCF 的OTA测试规范(GCF CC V3.33最新规定) 3:3GPP/ETSI OTA antenna performance conformance testing (TS 34.114,TS25.144) 4:中国工信部在2008年强制执行的OTA进网规定(YDT 1484-2006) 5:无源天线测试标准(Passive antenna test:IEEE149-1979)

TRP全称Total Radiated Power,即总辐射功率。其含义是手机在空间三维球面上的射频辐射功率的积分值,反应了手机在所有方向上的发射特性。打个比方,就如同一盏灯泡在所有方向上的辐射的光的总和。那么越亮就代表其发射的能量越多,越暗就代表其发射的能量越少。但是辐射功率是有上限的,手机本身对最大的辐射功率进行了限制,任何手机的射频模块输出功率不会超过2W(33dBm)。越是接近这个值,说明信号发射能力越好,也说明辐射更大。该指标通常与SAR指标(反映人体吸收的辐射的指标)相互制约,一部合格的手机既要有好的发射能力,又要有较低的SAR 值。 我国的标准YD1484-2006<<移动台空间射频辐射功率和接收机性能测量方法>>是对手机进行TRP测量的规范性文件,其中约定了TRP的最低值,对于GSM手机而言,900频段不能低于26dBm,1800频段不能低于25dBm;对于CDMA手机而言TRP 不能低于20dBm,与北美的CTIA要求是一致的,而与欧洲的3GPP标准比较则有一些测量方式上的差异。 目前无线产品对人体辐射大小的衡量方法被广泛接受的标准是SAR (Specific Absorption Rate)值. SAR的实际意义就是对人体的辐射能量的大小, 它是指辐射被人体头部或身体各部位组织吸收的比率,单位是W/kg。国际非电离性辐射保护委员会(ICNIRP)和欧洲规定的SAR值上限标准为2W/kg,美国联邦通讯委员会( FCC)规定的最大SAR值为1.6W/kg,我国目前SAR的主要标准为YD/T 1644.1 《手持和身体佩戴使用的无线通信设备对人体的电磁照射》。在这里特别要注意的是SAR的测试数值是指峰值水平, 也就是要求被测手机处于最大功率发射模式下进行测量和评估!

如何选购车载天线和基地台天线

如何选购车载天线和基地台天线 车载天线 车载天线是指设计安装在车辆上的移动通讯天线,最常见就是吸盘天线。由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地台天线。车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。八分之五波长天线和中部加感型天线也有较高的增益,且价格比较便宜,因此得到广泛的使用。在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。由于吸盘天线是根据汽车使用环境而设计,所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。在天线选型阶段主要参考天线的外型和增益。建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。 基地台天线 基地台天线在整个通讯系统中具有非常关键的作用,尤其是作为通讯枢纽的通信台站。高增益天线不但可以增加无线电波的覆盖面积,而且对接收信号也有一定的放大作用,可以更好的接收微弱的上行信号,改善移动台与基地台的无线通讯质量。一般情况下基地台都选用高增益天线,对于有干扰的情况可以按实际情况考虑加装窄带滤波器以减小干扰的影响。常用的基地台天线有玻璃钢天线、四环阵天线、定向天线。 玻璃钢天线为全向天线基本没有方向性,适合基地台位置位于通讯网络中心区域的情况。由于玻璃钢天线安装容易,因此广泛应用于各类基地台站。玻璃钢天线增益最高可以达到10db左右,增益越高天线也就越长,一般增益为5-6db增益的玻璃钢天线在长度和价格上比较有竞争力,制造工艺也比较成熟,采用较多。该类天线除了电气性能外,外层玻璃钢天线罩的品质也有很大的差异,一些劣质产品在风吹日晒一年后外层玻璃钢会出现开裂的情况导致整条天线报废,一些大厂名牌的玻璃钢天线在品质上更有保障。 定向天线相当于把多个方向上的能量集中到一个方向上来发射,具有主方向辐射增益高的特点,常用的是八木天线。八木天线的单元数越多其增益也越高,适合点对点远距离通讯和位于通讯网边缘的子台站使用。比较适合位于偏远地区的派出所定向与上级分局联系之用,使用得当效果会优于玻璃钢天线。 四环阵天线的特点是承受功率大、增益高、增益方向可调,适合通讯枢纽(分局和市局以及中继台站)使用,不过其价格比较高。四环阵天线四个发射振子方向可调,当四个振子

多天线技术

多天线技术综述 一、引言 进入21世纪后,无线通信网络技术高速发展,同时无线通信网络中数据业务迅速增长。根据业界的普遍预测,在未来10年间里,数据业务将以每年1.6 2倍的速率增长,预计到2020年通信网络的容量需求将是目前的1000倍[1],这无疑给整个无线通信网络带来了巨大的挑战。而多天线技术作为一种增强通信系统的方法,很早就应用到了无线通信网络中,且其价值也在无线通信领域得到了认可。研究表明,作为多天线技术之一的多进多出MIMO(Multiple Input Multiple Output)技术能够很好的提高无线通信系统的频谱利用率。采用MIMO 技术在室内传播环境下的频谱效率能够达到2040bit/s/Hz,而使用传统的无 线通信技术在移动蜂窝中的频谱效率仅为15bit/s/Hz,在点对点的固定微波 系统中也只有1012bit/s/Hz[2]。由此可见,多天线技术能够在不增加功率和带宽资源的前提下有效的提高无线网络的频谱效率。 多天线技术主要是指智能天线技术和MIMO技术。基于WCDMA, CDMA2000和TD-SCDMA技术的第三代移动通信系统应用的多天线技术主要是智能天线技术[3]。智能天线技术可以克服多用户间的干扰,通过空分多址增加频谱效率和信道容量;并且能够有效的抵抗多径衰落的影响,从而提高通信质量;同时,对功率的控制也可以通过在网络建设初期增加基站的覆盖范围来实现。因此,应用到支持多种业务的第三代移动通信系统中,很好的提高了传输速率,增加了频谱宽度,从而使通信服务质量得到了极大的提高。而MIMO技术是在3G向LTE(Long Term Evolution)演进中被引入的,它和正交频分复用技术0FDM相结合在LTE中起到了巨大的作用。第四代移动通信系统应用的多天线技术是智能天线技术和MIMO 技术的结合,两者的结合使第四代移动通信系统在不占用额外的频谱和传输功率的前提下大大增加了传输速率和传输的可靠性[4]。据专家预测,能够高效处理特性差异巨大的各种业务的下一代移动通信系统5G(IMT-2020)将使用大规模天 线技术[5],大规模天线技术在5G中的引入将使系统的传输速率大大的提升,它 将是5G通信中具有革命性的技术之一。

天线的基础知识

天线的基础知识(2009-05-17 22:14:38) 1 天线工作原理及作用是什么? 天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。 2 天线有多少种类? 天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。 按工作频段可划分为超长波、长波、中波、短波、超短波和微波。 按其方向可划分为全向和定向天线。 3 如何选择天线? 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。 4 什么是天线的增益? 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 5 什么是电压驻波比? 天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通

基站美化天线技术规范标准

美化天线技术规

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规、采购模式等容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°的方位角,15°俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

天线参数及选择

一、天线的几个重要参数 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用哪一个纯出于习惯。在我们日常维护中,用得较多的是驻波比和回波损耗。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5。回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化

电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。) 3.天线的增益 天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。 4.天线的波瓣宽度 波瓣宽度是定向天线常用的一个很重要的参数,它是指天线的辐射图中低于峰值3dB处所成夹角的宽度(天线的辐射图是度量天线各个方向收发信号能力的一个指标,通常以图形方式表示为功率强度

基站天线的选型原则

基站天线的选型原则 一、生产厂家的选择 二、关于三阶互调指标5基站天线的选型原则(建议) 三、基站天线选型原则建议 一、生产厂家的选择 首先要考察厂家的生产能力、研发队伍、仪器设备、检测手段、售后服务、质量保证体系。对具体的基站天线产品还应考察下列各项: 1、为提高网络性能和降低成本,在城区使用的基站天线应具有极化分集代替空间分集的能力。 2、对天线罩因雨雪、裹冰造成的表面分布电容影响,应有一定的防范能力。 3、为保证天线的最大增益,天线应当采用低耗馈电网络技术。 4、全向天线高增益天线在确保电性能前提下,天线尺寸应尽量短。 5、为确保产品的一致性及坚固性。生产厂家应有模具化生产能力。 6、生产厂家应对天线的驻波比及三阶互调指标100%检测,对抽检(例10%)产品应进行包括增益和方向图在内的全指标测试。 7、要有完善的密封工艺并采用优质密封胶,确保天线的防水性和寿命。 8、定型产品要按信息产业部的标准进行环境试验:高温、低温、振动、冲击、运输。 9、具有采用机械下倾、电下倾、电调下倾三种调整方式相结合,解决大机械倾角下波形畸变的能力。 10、在考虑产品的适用性后,还要考察所需基站天线的性能价格比和厂家的供货期。

二、关于三阶互调指标5基站天线的选型原则(建议) 互调的定义 ?互调是指非线性射频线路中,两个或多个频率混合后所产生的噪音信号。 ?互调产生的本来并不存在“错误”信号,此信号会被系统误认为是真实的信号。 ?互调可由有源元件(无线电设备、二极管)或无源元件(电缆、接头、天线、滤波器)引起。 具有两个载波信号的互调失真频率实例 频率A及B上的载波,产生如下互调信号: 1阶:A,B 2阶:(A+B),(A-B) 3阶:(2A±B),(2B ±A) 4阶:(3A±B),(3B ±A),(2A±2B) 5阶:(4A±B),(4B ±A),(3A±2B),(3B ±2A) 互调失真如何影响系统的性能? ?较高功率的发射信号通常会混合产生互调信号,最后进入接收波段。 ?而基站天线接收的信号通常功率较低。 ?如果互调信号与实际的接收信号具有相近或较高的功率,系统会误把互调信号视为真实信号。 GSM系统实例: 三阶互调失真信号(A=935MHz,B=960MHz) 2A-B=1870-960=910MHz 2B-A=1920-935=985MHz A及B代表GSM发射频率2A-B进入GSM接收波段,带来问题。 五阶互调失真信号(A=935MHz,B=954MHz在中国移动GSM的下行频段内)3A-2B=2805-1908=897MHz(在中国移动GSM上行频段内) 互调失真如何影响系统的性能? ?在系统将互调信号视为真实的接收信号的情况下,将带来如下问题:

相关文档