文档库 最新最全的文档下载
当前位置:文档库 › 金属氧化物催化机理

金属氧化物催化机理

金属氧化物催化机理
金属氧化物催化机理

?氨吸附/脱附法研究发现随着在MoO3 – P2O5体系中加入少量的Bi2O3后催化剂的酸性迅速增加,并达到极大值,然后随Bi2O3的量增加而下降

?亲核氧化反应的第一步是有机分子的活化,然后进行氧离子的亲核加成作用

?催化剂要活化烃类并使其进一步进行氧化反应,必须具备酸性和氧化还原两种催化功能,并且这两种功能又必须相互协同进行

?

?不同氧化物上的实验结果表明:第V、Ⅵ、Ⅶ族过渡金属氧化与配位多面体形成不同类型的键合方式,并且在确定有机分子亲核插入机理中起着重要的作用

?

强亲电性的O 2-和O -物种进攻有机分子中电子密度最高的部分进行亲电加成形成过氧或环氧化合物,并且进一步发生断裂而使烃分子降解起始,烯烃形成饱和醛,而芳烃形成相应的酸酐

? 在高温时,高反应性的饱和醛迅速发生全氧化

催化剂要活化烃类并使其进一步进行氧化反应,必须具备酸性和氧化还原两种催化功能,并且这两种功能又必须相互协同进行

? 催化剂的酸碱性质变化对催化反应选择性的影响不是由于分子中官能团反应能力

改变而引起的,而仅是改变了吸附性质,即改变反应物或产物分子在催化剂表面上的停留时间

(1)丁烯氧化脱氢的工业催化剂

① Bi – Mo 氧化物体系。在这类催化剂中,Mo 或Bi – Mo 氧化物是主要活性组分,碱金属、铁系元素、ⅤB 元素的氧化物主要起到提高活性、选择性和结构稳定性的作用,SiO2或 A12O3作为载体

② 以Sb 或Sn 的氧化物为基础的二组分或多组分氧化物催化剂

③ 以Ti 氧化物为基础的多组分混合氧化物是近年来开发的一类催化剂 ④ 铁酸盐催化剂体系 ⑤ H – 198型铁系催化剂

如何确定半导体氧化物为n 型或p 型

① n 型氧化物的金属离子应该有容易达到的较低的氧化态;如:ZnO 和Fe3O4。 ② p 型氧化物的金属离子应有容易达到的高的氧化态;如:Cu2O 和CoO 。

p 型半导体活性最高,其次是绝缘体,n 型半导体活性最低。

? 晶格氧离子O

2-

是亲核试剂,它没有氧化性质,它们可以通过亲

核加成插入到烃类分子缺电子的位置上,导致选择性氧化,这种方式生成的含氧化合物的类型取决于反应物分子与催化剂

表面活性中心之间形成的中间态结构

1.两种以上的吸附部位

阴离子,金属阳离子的不同变价。

如:Cr2O3/载体,Cr3+是加氢和脱氢反应活性中心,Cr5+是化学吸附中心和催化聚合反应活性中心。

氧化物的氧离子则是含氧化合物的强化学吸附位。

如:CO2与氧化物中的O2-以碳酸根的形式化学吸附:CO2 + O2- CO32- MVK机理对催化剂的要求:

1)需要两类活性中心,其中之一能吸附反应物分子,另一个必须能转变气相氧分子为晶格氧;

2)必须含有可变价金属离子。通常由双金属氧化物组成,如MoO3-Bi2O3,MoO3-SnO2等,也可以由可变价态的单组分氧化物构成。

萘在V2O5催化剂上氧化:

1)萘与氧化物反应,萘被氧化,氧化物被还原;

2)被还原的氧化物与气相氧反应回到初始状态。

3.M=O键能大小与催化剂表面脱氧能力

复合氧化物催化剂给出氧的趋势,为衡量它是否能进行选择性氧化的关键。

①如果M=O键解离出氧的热效应△HD小,则给出易,催化剂活性高,选择性小;

②如果△HD大,则给出难,催化活性低;

③只有△HD适中,催化剂有中等活性,选择性好。

从CO2可逆吸附量曲线可以看出,随着Bi2O3的逐渐加入,催化剂的碱性连续增加,丁烯转化丁二烯的选择性曲线在酸性最大值时有一最小值,尔后随催化剂的碱性增加而增大,直到酸碱共存的交点达到最大,此后选择性随着碱性的增加而降低

金属氧化物催化剂

金属氧化物催化剂及其催化作用金属氧化物催化剂通常为复合氧化物(complex oxides),即多组分的氧化物。如V O -MoO , TiO -V 2O 5-P 2O 5,V 2O 5-MoO 3-Al 2O 3。组分中至少有一个组分是过渡金属氧化物。组分与组分之间可能相互作用,作用的情况因条件而异。复合氧化物系通常是多相共存,如MoO 3-Al 2O 3,就有α-、β-、复杂,有固溶体、有杂多酸、有混晶等。 就催化作用与功能来说,有的组分是主催化剂,有的组分为助催化剂或者是载体。

金属氧化物催化作用机制-1 z半导体的能带结构 z催化中重要的是非化学计量的半导体,有n型和p型两大类。非计量的化合物ZnO是典型的n型半导体(存在自由电子而产生导电行为)。NiO是典型的p型半导体,由于缺正离子造成非计量性,形成氧离子空穴,温度升高时,此空穴变成自由空穴,可在固体表面迁移,成为NiO导电的来源。 z Fermi能级E f是表征半导体性质的一个重要物理量,可以衡量固体中电子逸出的难易,它与电子的逸出功?直接相关。?是将一个电子从固体内部拉到外部变成自由电子所需的能量,此能量用以克服电子的平均位能,Fermi能级E 就是这种平均位能。 f z对于给定的晶格结构,Fermi能级E f的位置对于其催化活性具有重 O分解催化反应。 要意义。如N x z XPS研究固体催化剂中元素能级变化

金属氧化物催化作用机制-2 z氧化物表面的M=O键性质与催化活性的关联 z晶格氧(O=)的催化作用:对于金属氧化物催化剂表面发生氧化反应时,作为氧化剂的氧存在吸附氧与晶格氧两种形态。晶格氧由于氧化物结构产生。选择性氧化(Selective Oxidation)是固体氧化物催化剂应用主要方向之一。在选择性氧化中,存在典型的还原-氧化催化循环(Redox mechanism))。这里晶格氧直接参与了选择性氧化反应。 z根据众多的复合氧化物催化氧化可以概括出:1 选择性氧化涉及有效的晶格氧;2 无选择性完全氧化反应,吸附氧和晶格氧都参加了反应;3 对于有两种不同阳离子参与的复合氧化物催化剂,一种阳离子M+承担对烃分子的活化与氧化功能,它们再氧化靠晶格氧O=;另一种金属氧化物阳离子处于还原态,承担接受气相氧。(双还原-氧化催化循环机理) (dual-redox) z举例:甲烷选择性氧化制备合成气、甲醇或甲醛 z CH4+O2→CO+2H2-136 kcal/mol z CH4+O2→CH3OH -22 kcal/mol z CH4+O2→HCHO+H2O -70 kcal/mol z CH4+O2→CO2+2H2O -189 kcal/mol

金属氧化物催化机理

?氨吸附/脱附法研究发现随着在MoO3 – P2O5体系中加入少量的Bi2O3后催化剂的酸性迅速增加,并达到极大值,然后随Bi2O3的量增加而下降 ?亲核氧化反应的第一步是有机分子的活化,然后进行氧离子的亲核加成作用 ?催化剂要活化烃类并使其进一步进行氧化反应,必须具备酸性和氧化还原两种催化功能,并且这两种功能又必须相互协同进行 ? ?不同氧化物上的实验结果表明:第V、Ⅵ、Ⅶ族过渡金属氧化与配位多面体形成不同类型的键合方式,并且在确定有机分子亲核插入机理中起着重要的作用

? 强亲电性的O 2-和O -物种进攻有机分子中电子密度最高的部分进行亲电加成形成过氧或环氧化合物,并且进一步发生断裂而使烃分子降解起始,烯烃形成饱和醛,而芳烃形成相应的酸酐 ? 在高温时,高反应性的饱和醛迅速发生全氧化 催化剂要活化烃类并使其进一步进行氧化反应,必须具备酸性和氧化还原两种催化功能,并且这两种功能又必须相互协同进行 ? 催化剂的酸碱性质变化对催化反应选择性的影响不是由于分子中官能团反应能力 改变而引起的,而仅是改变了吸附性质,即改变反应物或产物分子在催化剂表面上的停留时间 (1)丁烯氧化脱氢的工业催化剂 ① Bi – Mo 氧化物体系。在这类催化剂中,Mo 或Bi – Mo 氧化物是主要活性组分,碱金属、铁系元素、ⅤB 元素的氧化物主要起到提高活性、选择性和结构稳定性的作用,SiO2或 A12O3作为载体 ② 以Sb 或Sn 的氧化物为基础的二组分或多组分氧化物催化剂 ③ 以Ti 氧化物为基础的多组分混合氧化物是近年来开发的一类催化剂 ④ 铁酸盐催化剂体系 ⑤ H – 198型铁系催化剂 如何确定半导体氧化物为n 型或p 型 ① n 型氧化物的金属离子应该有容易达到的较低的氧化态;如:ZnO 和Fe3O4。 ② p 型氧化物的金属离子应有容易达到的高的氧化态;如:Cu2O 和CoO 。 p 型半导体活性最高,其次是绝缘体,n 型半导体活性最低。 ? 晶格氧离子O 2- 是亲核试剂,它没有氧化性质,它们可以通过亲 核加成插入到烃类分子缺电子的位置上,导致选择性氧化,这种方式生成的含氧化合物的类型取决于反应物分子与催化剂 表面活性中心之间形成的中间态结构

多孔金属过渡金属氧化物复合材料的制备及电化学性能研究

多孔金属/过渡金属氧化物复合材料的制备及电化学性能研究基于自身独特的物理化学性能,以自然界储量丰富、可调控的微/纳结构形态为优点的过渡金属氧化物材料一直以来受到众多科研者的青睐,且在环境和能源领域有着广阔的应用前景,可用于超级电容器、电化学传感器和光催化等等。但是,过渡金属氧化物有导电性差、低的离子传输动力学、差的结构稳定性等缺点,限制了其应用。因此,设计高性能的过渡金属氧化物电极结构己成为非常紧迫的任务。本论文以多孔金属为基,采用等离子体处理、原子层沉积、电化学沉积以及金属有机骨架化合物热分解等不同的方法制备出各类过渡金属氧化物复合电极,并研究了它们在超级电容器、生物传感器及水氧化反应方面的性能。这对于阐明材料的微/纳结构与性能之间的关系,以及进一步拓宽过渡金属氧化物的应用范围具有重要的意义。针对以上问题,本论文的主要内容是基于多孔金属和过渡金属氧化物纳米复合材料构筑高性能电化学电极的创新性研究,主要涵盖的工作有:(1)采用水热合成、热退火及等离子体处理的方法制备出多级多孔的Ni/NiO 核壳结构,并且对样品进行了形貌表征及电化学性能测试。该核壳结构是由高导电性且相互连通的Ni骨架内核以及均匀覆盖其表面的NiO壳层组成,其在超级电容器和生物传感器方面表现出优异的电化学性能。作为赝电容电极材料,该电极表现出高达255 mF cm-2的面积电容。同时,该电极还表现出对葡萄糖电氧化的高催化活性,灵敏度为4.49 mA mM-1 cm-2,检测限为10 mM。此外,分层多级的孔径增强了电解质和离子在互连的多孔通道内的快速扩散及传输,这主要体现

在4000个循环的优异稳定性方面以及对葡萄糖短至1.5 s的电流快速响应。分层多级多孔金属/金属氧化物核壳结构这些概念也为能量存储和电化学催化领域设计高性能电极材料开辟了新的途径。(2)通过使用原子层沉积的方法在纳米多孔金(NPG)膜的骨架表面上包覆一层超薄的CoO壳层制备柔性的电化学传感电极,并且对样品进行了形貌表征及电化学性能测试。NPG/CoO复合电极不仅实现了对葡萄糖氧化和H202还原的高催化活性,而且表现出在葡萄糖和H202分子浓度检测中良好的线性关系。此外,该电极用于H202传感器时的灵敏度可高达62.5 μA mM-1 cm-2且其线性关系保持在0.1-92.9 mM的浓度范围内。该电极表现出的优异电催化性能主要是由于Au和CoO在界面处的协同效应以及具有高导电性和大比表面积的多孔金骨架的贡献。(3)通过采用微米级的划刻技术将纳米多孔金薄膜加工成交叉指形的平面微集流体,这种高离子传输的纳米多孔通道和高电导率的相互连通纳米金骨架可设计出高性能的微型赝电容器。因此,这些制备出的微电容器件显示一系列优异的电容特性,包括超快充放电(高倍 率性能)、高的比电容(1.27mFcm-2,127 F cm-3)以及在保持高功率密度(22.21 W cm-3)的同时还能取得高能量密度(0.045 Wh cm-3)。特别是,优异的循环稳定性和机械柔韧性给他们在未来微型电子学的应用提供了巨大潜力。这种设计概念也为将平面型超级电容器集成到大规模制备的微型化器件中提供了一种新途径。(4)通过在Ar和空气中退火处理水热合成的金属有机骨架化合物(Co-MOF)可得到多孔的 Co304/C纳米线阵列(NAs)。在电化学储能方面,Co3O4/C NAs在1 mA

金属氧化物催化剂与选择性氧化

金属氧化物催化剂与选择性氧化催化剂设计理论基础、作用机理

金属氧化物催化剂 金属氧化物催化剂通常为复合氧化物(complex oxides),即多组分的氧化物。如V 2532V 2O 5-P 2O 5,V 2O 5-MoO 3-Al 2O 3。组分中至少有一个组分是过渡金属氧化物。组分与组分之间可能相互作用,作用的情况因条件而异。复合氧化物系通常是多相共存,如MoO 3-Al 2O 3,就有α-、β-、复杂,有固溶体、有杂多酸、有混晶等。 就催化作用与功能来说,有的组分是主催化剂,有的组分为助催化剂或者是载体。

金属氧化物催化剂的结构化学z具有某种特定晶格结构的新化合物生成,需要满足三个方面的要求:1 控制化学计量关系的价态平衡;2 控制离子间大小相互取代的可能;3修饰理想结构的配位情况变化。这种理想结构是基于假定离子是刚性的、不可穿透的、非崎变的球体。 z对于复合金属氧化物,实际结构常有晶格缺陷、非化学计量的情况,而且离子是可变形的。 z任何稳定的化合物。无论它是晶态结构或无定形态结构,必须满足化学价态的平衡。当晶格中发生高价离子取代低价离子时,就要结合高价离子和因取代而需要的晶格阳离子空位以满足这种要求。

金属氧化物催化剂的结构特征z 尖晶石结构(AB 2O 4,LiMn 2O 4, MoAg 2O 4, MoLi 2O 4,WLi 2O 4)A 8B 16O 32z 钙钛矿型结构(ABO 3, LaMnO 3, LaFeO 3, LaCrO 3, LaCoO 3)z 层状结构LiCoO 2, LiNiO 2, LiMn 2O 4, LiNi x Co 1-x O 2z 新型介孔材料TiO 2, Al 2O 3、PbO 2、Fe 2O 3、WO 3、V 2O 5、MoO 3、ZrO 2 、TiO 2 、Mn 2O 4

金属氧化物催化机理

?氨吸附/脱附法研究发现随着在MoO3 –P2O5体系中加入少量得Bi2O3后催化剂得酸性迅速增加,并达到极大值,然后随Bi2O3得量增加而下降 ?亲核氧化反应得第一步就是有机分子得活化,然后进行氧离子得亲核加成作用 ?催化剂要活化烃类并使其进一步进行氧化反应,必须具备酸性与氧化还原两种催化功能,并且这两种功能又必须相互协同进行 ?不同氧化物上得实验结果表明:第V、Ⅵ、Ⅶ族过渡金属氧化与配位多面体形成不同类型得键合方式,并且在确定有机分子亲核插入机理中起着重要得作用

? 强亲电性得O 2-与O -物种进攻有机分子中电子密度最高得部分 进行亲电加成形成过氧或环氧化合物,并且进一步发生断裂而使 烃分子降解起始,烯烃形成饱与醛,而芳烃形成相应得酸酐 ? 在高温时,高反应性得饱与醛迅速发生全氧化 催化剂要活化烃类并使其进一步进行氧化反应,必须具备酸性与氧化还原两种催化功能, 并且这两种功能又必须相互协同进行 ? 催化剂得酸碱性质变化对催化反应选择性得影响不就是由于分子中官能团反应能 力改变而引起得,而仅就是改变了吸附性质,即改变反应物或产物分子在催化剂表面 上得停留时间 (1)丁烯氧化脱氢得工业催化剂 ① Bi – M o氧化物体系。在这类催化剂中,M o或Bi – Mo 氧化物就是主要活性 组分,碱金属、铁系元素、ⅤB 元素得氧化物主要起到提高活性、选择性与结构稳定性得 作用,SiO2或 A12O 3作为载体 ② 以S b或Sn 得氧化物为基础得二组分或多组分氧化物催化剂 ③ 以Ti 氧化物为基础得多组分混合氧化物就是近年来开发得一类催化剂 ④ 铁酸盐催化剂体系 ⑤ H – 198型铁系催化剂 如何确定半导体氧化物为n 型或p 型 ① n 型氧化物得金属离子应该有容易达到得较低得氧化态;如:ZnO 与Fe3O4。 ② p 型氧化物得金属离子应有容易达到得高得氧化态;如:Cu2O 与Co O。 p 型半导体活性最高,其次就是绝缘体,n型半导体活性最低。 1. 两种以上得吸附部位 阴离子,金属阳离子得不同变价。 如:Cr2O3/载体,Cr 3+就是加氢与脱氢反应活性中心,Cr 5+就是化学吸附中心与 催化聚合反应活性中心。 ? 晶格氧离子O 2-就是亲核试剂,它没有氧化性质,它们可以通过 亲核加成插入到烃类分子缺电子得位置上,导致选择性氧化,这 种方式生成得含氧化合物得类型取决于反应物分子与催化剂 表面活性中心之间形成得中间态结构

第六章 金属催化剂催化作用

第六章 金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1. 乙烯环氧化工业催化剂 2. 乙烯环氧化反应机理 3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1. 合成氨催化剂简况 2. 熔铁催化剂的结构 3. 各种助剂的作用及含量的最佳值范围 4. 氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1. 催化重整反应及重整催化剂 2. 烃类在过渡金属上的吸附态及烃类脱氢 3. 催化重整作用机理 五、其他重要类型金属催化剂简介 1. 镍系催化剂 2. 裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的

加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么? 表6-1 金属催化剂类型(按制备方法划分) 催化剂类型催化剂用金属制造方法特点 还原型Ni, Co, Cu, Fe金属氧化物以H2还原 甲酸型Ni, Co金属甲酸盐分解析出金属 Raney型Ni, Co, Cu, Fe金属和铝的合金以NaOH处理,溶提去 铝

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛 TiO 2 光触媒的广泛应用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象, 然而未能对其进行理论解释。直到1955 年, Brattain 和Gareet才对光电现象进行了合理的解释, 标志着光电化学的诞生。1972 年, 日本东京大学Fu jishmi a和H onda研究发现[ 3] , 利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30 年里, 人们在光催化材料开发与应用方面的研究取得了丰硕的成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对的分离效率, 提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步, 然而受认知手段与认知水平的限制, 目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面, 现有光催化材料的光响应范围窄, 量子转换效率低, 太阳能利用率低, 依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件, 也是光催化材料研究者所需要解决的首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO2是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀),无毒,廉价,原料来源丰富。 TiO2在紫外光激发会产生电子-空穴对,锐钛型TiO2激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水

光催化研究进展

光催化材料最新研究进展 1.简介 当今世界正面临着能源短缺和环境污染的严峻挑战,解决这两大问题是人类社会实现可持续发展的迫切需要。中国既是能源短缺国,又是能源消耗大国。近年来,伴随社会经济的快速发展,中国石油对外依存度不断攀升,已经严重影响国家经济健康发展和社会稳定,并威胁到国家能源安全。同时,石油等化石能源的过度消耗导致污染物大量排放,加剧了环境污染,尤其是我国近年来雾霾天气的频繁出现,严重影响了人民的生活和身体健康,开发和利用太阳能是解决这一难题的有效方法之一。 我国太阳能资源十分丰富,每年可供开发利用的太阳能约1.6×1015W,大约是2010年中国能源消耗的500倍。从长远看,太阳能的有效开发与利用对优化中国能源结构具有重大意义。然而太阳能存在能量密度低、分布不均匀、昼夜/季节变化大、不易储存等缺点。 如图1所示,光催化技术可以将太阳能转换为氢能。氢能能量密度高、清洁环保、使用方便,被认为是一种理想的能源载体。目前氢能的利用技术逐渐趋于成熟,以氢气为燃料的燃料电池已开始实用化,氢气汽车和氢气汽轮机等一些“绿色能源”产品已开始投入市场。氢利用技术的成熟提高了对制氢技术快速发展的要求。高效、低成本、大规模制氢技术的开发成为了“氢经济”时代的迫切需求。自20世纪70年代日本科学家利用TiO2光催化分解水产生氢气和氧气以来,光催化材料一直是国内外研究的热点之一。光催化太阳能制氢方法是一种成本低廉、集光转换与能量存储于一体的方法,该领域的研究越来越受到各国的广泛关注。国际上光催化材料研究竞争十分激烈。光催化材料不仅具有分解水制氢的功能,而且具有环境净化功能。利用光催化材料净化空气和水已成为当今世界引人注目的高新环境净化技术。太阳能转换效率是制约光催化技术走向实用化的关键因素之一,光催化材料的光响应范围决定了太阳能转换氢能的最大理论转化效率。光催化领域经过40余年的发展和积累,正孕育着重大突破,光催化太阳能转换效率不断提高,光催化技术正处于迈向大规模应用的关键阶段,国际竞争十分激烈。 在能源和环境问题强大需求的推动下,国际上光催化领域的研究已经从最初的实验现象发现,逐步由基础理论研究转向光催化材料的应用基础研究;由光催化材料探索逐步转向高效光催化材料体系设计。在研究手段上,已经能够从分子、原子水平上揭示光催化材料基本物性以及光催化材料的构-效关系,从飞秒时间尺度上研究光催化反应过程与反应机理。包括第一性原理与分子动力学模拟在内的现代科学计算方法,逐渐在光催化材料物性与光催化反应机理研究方面起到重要作用。以半导体物理学、材料科学和催化化学为基础的较为完整的光催化基础理论体系已经初步建立。光催化已经发展为物理、化学、能源和环境等多学科交叉领域,成为了热点研究领域之一。光催化领域最新的研究进展主要集中体现在认识光催化太阳能转换效率限制因素;揭示光催化机理与发展表征手段;设计基于新奇物理机制的光催化材料(改善光催化反应效率)阐明光催化材料构-效关系以及构建复杂、高选择性环境净化体系等方面。

铈锰复合氧化物催化剂的制备

铈锰复合氧化物催化剂的制备、表征及活性评价【摘要】本实验通过制备铈锰金属复合氧化物催化剂,利用差热分析(DTA)和BET等对所制备的催化剂的结构和性能进行表征,并对其进行乙烯氧化反应的活性评价。 【关键词】铈锰金属复合氧化物催化剂,制备,差热分析,BET,乙烯氧化,活性评价 The Preparation,Characterization and Performance Evaluation of Ce/Mn plex Oxide Catalyst 【Abstract】In this experiment, we prepared the Ce/Mn plex oxide catalyst. From BET, BET and testament of catalytic performance, we get an overall view of the properties of Ce/Mn multiplicity catalyst. 【Keywords】Ce/Mn plex oxide catalyst,Production,TGA,BET,testament of catalytic performance 【前言】 相当一些化学反应的自由能变化小于零,甚至远小于零。也就是说,这些反应在热力学上看,是有较大的反应潜力。但由于存在较高的反应活化能,使得这些反应实际上不能发生。如加入适当的催化剂,改变原来的反应历程,能按某一活化能较低的途径进行。氧化铈具有很好的还原性能和氧储存能力,作为催化剂和催化剂载体在汽车尾气净化,低温WGS,CO氧化等很多领域有重要的应用。氧化锰是常见的氧化型催化剂的活性组分。锰铈复合氧化物在催化氧化方面的应用引起了人们的注意,并有进一步深入研究的意义。 差热分析是热分析的一种,它是在一定条件下同时加热或冷却样品和参比物,并

具有d10电子构型的金属氧化物光催化剂

具有d10电子构型的金属氧化物光催化剂的制备及其光催化性质 1.概述 能源利用、环境保护、生命科学等成为人类当前最热门的话题。近年来,随着光催化技术的发展,人们不仅期望它在太阳能的转换与储存和新物质合成中做出重大的贡献,还希望它在降解污染物、抗菌杀毒等方面发挥重要的作用。光催化技术现已被广泛应用于环保、建筑、医学、能源开发等领域[1]。 人们对于光催化技术的研究及应用,主要集中在有机物的光降解和水的光解。随着研究的深入,人们发现半导体光催化技术,具有能耗低、氧化能力强、反应条件温和、操作简便、可减少二次污染等突出优点,有着诱人的应用前景,将可能逐渐成为实用的工业化技术。半导体光催化剂分散在介质中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与介质中相似的组分进行氧化和还原反应。大量实验证明,半导体光催化是目前光化学方法应用于污染控制、能源开发等诸多研究中最活跃的领域。 目前,国内外研究者就半导体光催化诸多方面的问题开展了深入地研究,其主要内容有:半导体光催化材料的筛选、制备,半导体光催化活性产生的机制及所产生的活性物种,光催化剂的固定化及尺寸量子化,半导体光催化矿化各种有机物的机理,各种形式的半导体光催化反应器,水中和气相中各种污染物光催化降解动力学等。其中最具代表性的为基于TiO2的各种光催化剂被大量的开发并被人们实际的应用。围绕TiO2改性、提高太阳能的转化率、改进光催化方法和光反应器,提高光催化效率,仍然是广大研究者进行的一个课题[2-4]。 电子构型又称电子组态。是原子、离子或分子的电子状态的一种标志。按照量子力学的轨道近似法,原子、离子或分子中的每一个电子被认为各处于某自旋和轨道的状态。体系中全体电子所处的自旋和轨道的总体,构成了整个体系的电子构型。对于构成传统的过渡金属氧化物的骨架金属有Ti4+、Zr4+、Nb5+以及Ta5+,具有d0的电子构型,它们通过掺杂、复合以及共掺氧化钌(RuO2)和氧化镍辅助催化剂等形成的半导体光催化剂,展现良好的光催化活性。但是最近发现含有d10

光电催化还原CO2金属氧化物催化材料研究进展

文章编号:1007 ? 6735(2018)05 ? 0058 ? 05DOI: 10.13258/https://www.wendangku.net/doc/2610006802.html,ki.nmme.2018.05.011光电催化还原CO2金属氧化物催化材料研究进展 张瑞新, 蔡 晴, 王燕刚, 康诗飞, 左元慧, 崔立峰 (上海理工大学 环境与建筑学院,上海 200093) 摘要:光电催化还原CO2在众多减排技术中因其洁净环境友好成为研究热点。通过对比光催化,电催化和光电催化的原理,论证光电催化还原CO2在节能减排领域的应用价值。以Ti,Zr,Fe,Cu为基本元素的4个催化材料体系为研究对象,对同一体系不同催化材料从材料合成方法,合成难易程度,催化效率,选择性和催化能耗等不同方面做出综合比较和评价,并对光电催化还原CO2的研究方向和应用前景作出了展望。 关键词:CO2;光电催化;金属氧化物;催化材料 中图分类号:TM 911.4 文献标志码:A Progress of Metal Oxide Catalytic Materials for the Photoelectric Catalytic Reduction of CO2 ZHANG Ruixin, CAI Qing, WANG Yangang, KANG Shifei, ZUO Yuanhui, CUI Lifeng (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China) Abstract: Photoelectric catalytic reduction CO2 has become a hot topic in many emission reduction technologies due to its friendly, clean, environmental. By comparing the principles of photo catalysis, electric catalysis and photoelectric catalytic, the article demonstrates application value of photoelectric catalytic reduction CO2 in the field of energy conservation and emission reduction. 4 catalytic materials systems with Ti, Zr, Fe and Cu as basic elements are studied, the comprehensive comparison and evaluation of different catalytic materials in the same system are made from the aspects of material synthesis methods, synthesis difficulty, catalytic efficiency, selectivity and catalytic energy consumption. The expectation are also made about the research direction and application prospect of photoelectric catalytic reduction CO2. Keywords: CO2; photoelectric catalysis; metallic oxide; catalytic material 从环境角度来讲,全球变暖是温室效应对人类最严重也是最直接的危害,但是由此引发的打破全球碳平衡是更值得被关注的问题[1]。 在众多CO2减排技术中,将CO2变废为宝引起了人们的广泛重视,而光电催化还原CO2技术用水作为氢源,将太阳光和电能作为动力,整个技术应用过程中相当洁净,对环境友好,因此成为CO2还原领域的研究热点。光电催化剂的制备是光电催化 有 色 金 属 材 料 与 工 程 第 39 卷 第 5 期NONFERROUS METAL MATERIALS AND ENGINEERING Vol. 39 No. 5 2018 收稿日期:2017?07?19 作者简介:张瑞新(1993—),女,硕士研究生。研究方向:环境化学。E-mail: 504003711@https://www.wendangku.net/doc/2610006802.html, 通信作者:王燕刚(1981—),男,副教授。研究方向:CO2捕获与催化资源化的利用。 E-mail: wangyangang@https://www.wendangku.net/doc/2610006802.html,

相关文档
相关文档 最新文档