文档库 最新最全的文档下载
当前位置:文档库 › 高考中档大题规范练(2)立体几何与空间向量

高考中档大题规范练(2)立体几何与空间向量

高考中档大题规范练(2)立体几何与空间向量
高考中档大题规范练(2)立体几何与空间向量

高考中档大题规范练(2) 立体几何与空间向量(理)

1.(课标全国甲)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =5

4

,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.

(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.

2.(山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.

(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;

(2)已知EF =FB =1

2

AC =23,AB =BC ,求二面角F -BC -A 的余弦值.

3.(上海)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为2

3

π,

11A B 长为π

3,其中B 1与C 在平面AA 1O 1O 的同侧.

(1)求三棱锥C —O 1A 1B 1的体积;

(2)求异面直线B 1C 与AA 1所成的角的大小.

4.(四川)如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =1

2AD .E 为棱

AD 的中点,异面直线P A 与CD 所成的角为90°.

(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;

(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.

5.(北京)如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.

(1)求证:PD⊥平面P AB;

(2)求直线PB与平面PCD所成角的正弦值;

(3)在棱P A上是否存在点M,使得BM∥平面PCD?若存在,求AM

AP的值;若不存在,说明理由.

高考中档大题规范练(2) 立体几何与空间向量(理) 答案

1(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得

AE AD =CF

CD

,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .

由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得

OH DO =AE AD =14

. 所以OH =1,D ′H =DH =3.

于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD . (2)解 如图,

以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD ′—→

的方向为z 轴正方向,建立空间直角坐标系,则H (0,0,0), A (-3,-1,0),B (0,-5,0),C (3,-1,0),

D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→

=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ???

??

m ·AB →=0,m ·

AD ′→=0,即?????

3x 1-4y 1=0,

3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).

设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ???

??

n ·AC →=0,n ·

AD ′→=0,即?????

6x 2=0,

3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=

m ·n |m ||n |=-1450×10

=-75

25.

sin 〈m ,n 〉=

295

25

.

因此二面角B -D ′A -C 的正弦值是

295

25

. 2(1)证明 设FC 中点为I ,连接GI ,HI .在△CEF 中,

因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .

又EF ∥OB ,所以GI ∥OB .

在△CFB 中,因为H 是FB 的中点,所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC .

因为GH ?平面GHI ,所以GH ∥平面ABC .

(2)解 连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系.

由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M ,

所以FM =FB 2-BM 2=3,可得F (0,3,3). 故BC →=(-23,-23,0),BF →

=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量. 由?????

m ·BC →=0,m ·

BF →=0,可得???

-23x -23y =0,-3y +3z =0.

可得平面BCF 的一个法向量m =?

??

?

-1,1,

33, 因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=

m ·n |m ||n |=7

7

. 所以二面角F -BC -A 的余弦值为

77

. 3解 (1)连接O 1B 1,则11A B =∠A 1O 1B 1=π

3

∴△O 1A 1B 1为正三角形, ∴111

O A B S

34

, ∴111

—C O A B V

=1

3

OO 1·111

O A B S =

3

12

. (2)设点B 1在下底面圆周的射影为B , 连接BB 1,则BB 1∥AA 1,

∴∠BB 1C 为直线B 1C 与AA 1所成角(或补角), BB 1=AA 1=1.

连接BC ,BO ,OC ,AB =11A B =π3,AC =2π

3,

∴BC =π3,∴∠BOC =π

3,∴△BOC 为正三角形,

∴BC =BO =1,∴tan ∠BB 1C =BC

BB 1

=1, ∴∠BB 1C =45°,

∴直线B 1C 与AA 1所成的角的大小为45°.

4解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,

相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC =ED . 所以四边形BCDE 是平行四边形.

从而CM ∥EB .又EB ?平面PBE ,CM ?平面PBE . 所以CM ∥平面PBE .

(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,

所以CD ⊥平面P AD .从而CD ⊥PD .

所以∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.

设BC =1,则在Rt △P AD 中,P A =AD =2.

过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 易知P A ⊥平面ABCD ,

从而P A ⊥CE .且P A ∩AH =A ,于是CE ⊥平面P AH .又CE ?平面PCE , 所以平面PCE ⊥平面P AH .

过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE . 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =

2

2

. 在Rt △P AH 中,PH = P A 2+AH 2=

32

2

. 所以sin ∠APH =

AH PH =13

. 方法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .

从而∠PDA 是二面角P -CD -A 的平面角.所以∠PDA =45°. 由∠P AB =90°,且P A 与CD 所成的角为90°,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.

作Ay ⊥AD ,以A 为原点,以AD →,AP →

的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系,

则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0). 所以PE →=(1,0,-2),EC →=(1,1,0),AP →

=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ).

由?????

n ·PE →=0,n ·

EC →=0.得?????

x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).

设直线P A 与平面PCE 所成的角为α,

则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=1

3.

所以直线P A 与平面PCE 所成角的正弦值为1

3.

5(1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,又AB ⊥AD ,AB ?平面ABCD , ∴AB ⊥平面P AD .

∵PD ?平面P AD ,∴AB ⊥PD ,

又P A ⊥PD ,P A ∩AB =A ,∴PD ⊥平面P AB .

(2)解 取AD 中点O ,连接CO ,PO .∵P A =PD ,∴PO ⊥AD . 又∵PO ?平面P AD ,平面P AD ⊥平面ABCD , ∴PO ⊥平面ABCD ,

∵CO ?平面ABCD ,∴PO ⊥CO , ∵AC =CD ,∴CO ⊥AD .

以O 为原点建立如图所示空间直角坐标系.

易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0).

则PB →=(1,1,-1),PD →=(0,-1,-1),PC →

=(2,0,-1). 设n =(x 0,y 0,1)为平面PDC 的一个法向量. 由?????

n ·PD →=0,n ·

PC →=0得?????

-y 0-1=0,2x 0-1=0,解得?????

y 0=-1,x 0=1

2. 即n =????12,-1,1.

设PB 与平面PCD 的夹角为θ. 则sin θ=|cos 〈n ,PB →〉| =????

??n ·PB →|n ||PB →|=

?

???

??1

2-1-11

4

+1+1×3=3

3. (3)解 设在棱P A 上存在点M ,使得BM ∥平面PCD ,

则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →

=(-1,-λ,λ). ∵BM ?平面PCD ,∴BM ∥平面PCD ,

当且仅当BM →·n =0,即(-1,-λ,λ)·????12,-1,1=0,解得λ=14,∴在棱P A 上存在点M 使得BM ∥平面PCD ,此时

AM AP =1

4

.

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

高考数学空间向量例题

1(2010辽宁理19))已知三棱锥P -ABC 中,PA ⊥面ABC ,AB ⊥AC ,PA=AC=1 2 AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.证明:CM ⊥SN ; 审题要津:本题空间坐标系易建立,可用坐标法. 证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图,则P (0,0,1), C (0,1,0),B (2,0,0),M (1,0, 12),N (12,0,0),S (1,12 ,0) 111(1,1,),(,,0)222 CM SN =-=--u u u u r u u u r , 因为11 0022 CM SN ?=-++=u u u u r u u u r , 所以CM ⊥SN . 【点评】对坐标系易建立的空间线线垂直判定(证明)问题,常用向量法,即通过证明所证直线的方向向量的数量积为0证明两直线垂直. 例2(2010天津理19) 在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,CF =AB =2CE , 1::AB AD AA = 1:2:4.证明AF ⊥平面1A ED 审题要津:本题空间坐标系易建立,可用坐标法. 解析:如图所示,建立空间直角坐标系,点A 为坐标原点,设 1AB =,依题意得(0,2,0)D ,(1,2,1)F , 1(0,0,4)A ,31,,02E ?? ??? 已知(1,2,1)AF =u u u r ,131,,42EA ??=-- ???u u u r ,11,,02ED ?? =- ?? ?u u u r 于是AF u u u r ·1EA u u u r =0,AF u u u r · ED u u u r =0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ?= 所以AF ⊥平面1A ED 【点评】对坐标系易建立的空间线面垂直问题,通常用向量法,先求出平面的法向量和直线 的方向向量,证明平面法向量与直线的方向向量平行或者直接用向量法证明直线与平面内两条相交直线垂直,再用线面垂直判定定理即可. 例 3 (2010年山东文)在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.求证:平面EFG ⊥平面PDC . 审题要津:本题空间坐标系易建立,可用坐标法.

历届数学高考中的试题精选空间向量与立体几何

空间向量与立体几何 1.(2008海南、宁夏理)如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。 (1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D 2.(2008安徽文)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点。 (Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。 1 A

3.(2005湖南文、理)如图1,已知ABCD 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对 称轴OO 1折成直二面角,如图2。 (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小。 4.(2007安徽文、理)如图,在六面体1111D C B A ABCD -中,四边形ABCD 是边长为2的正方形,四边形 1111D C B A 是边长为1的正方形,⊥1DD 平面1111D C B A ,⊥1DD 平面ABCD ,DD 1=2。 (Ⅰ)求证:11C A 与AC 共面,11D B 与BD 共面. (Ⅱ)求证:平面;1111BDD B ACC A 平面⊥ (Ⅲ)求二面角C BB A --1的大小. A B C D O O 1 A B O C O 1 D

5.(2007海南、宁夏理)如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求二面角A SC B --的余弦值. 6.(2007四川理)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积. O S B A C

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

空间向量与立体几何高考题汇编

1. (2009北京卷)(本小题共14分) 如图,四棱锥 P-ABCD 的底面是正方形, PD _底面ABCD , 点E 在棱PB 上. (I )求证:平面 AEC _平面PDB ; (H )当PD = J2AB 且E 为PB 的中点时,求 AE 与 平面PDB 所成的角的大小. 解:如图,以D 为原点建立空间直角坐标系 D-xyz , 设 AB 二 a,PD 二h, 则 A a,0,0 ,B a,a,0 ,C 0,a,0 , D 0,0,0 ,P 0,0,h , (I 「AC …a,a,0 齐=0,0,h,DB=a,a,0 , ??? AC 丄 DR AC 丄 DB ??? AC 丄平面 PDB ???平面AEC _平面PDB . (n )当PD =?』2AB 且E 为PB 的中点时, 设ASBD=O 连接 OE 由(I )知ACL 平面PDB 于 O, ? / AEO 为AE 与平面PDB 所的角, ?- AOE =45,即AE 与平面PDB 所成的角的大小为45 ? 2.(2009山东卷)(本小题满分 12分) P 0,0,、、2a Ji i 42 E —a, —a, — a , 匹2 2 丿 ?cos AEO EA 】EO 2 p,

解法二:(1)因为AB=4, BC=CD=2, F 是棱AB 的中点, 所以BF=BC=CF ^ BCF 为正三角形,因为ABCD 为 等腰梯形,所以/ BAC=Z ABC=60 ,取AF 的中点M, 连接。皿>则DMLAB,所以DM L CD, 以DM 为x 轴,DC 为y 轴,DDi 为z 轴建立空间直角坐标系, ,则 D( 0,0,0 ) ,A (、.3,-1,0 ) ,F ( ... 3,1,0 ) ,C 向量为;=(x, y,则 4 ^F=0所以 ]n C 。= 0 i EE i i-丄.3 i 0=0,所以 n _ EE i ,所以直线 EEj/ 平面 FCC . 2 2 2 ) FB =(0, 2,0),设平面BFC 的法向量为n =( x, y, z)则]J i n FC =0 .厂 ,取 n=(2,0, J3),则 -、3x i y i 2 Z i —0 2 7 ,由图可知二面角 B-FC 1 -C 2 .7 7 B-FC i -C 的余弦值为+ 3. (2009全国卷H)(本小题满分12分) 如图,直三棱柱 ABC-ABG 中,AB_AC, D 、E 分别为AA ,、 B i C 的中点,DE _平面BCC i (I )证明:AB=AC (II )设二面角A-BD -C 为60°,求B i C 与平面BGD 所成的角 的大小。 (I )分析一:连结BE, : ABC -AQG 为直三棱柱,一 B^C =90 , C (0,2,2 ) ,E (邑 2 i 2。) ,Ei ( ? 3小), E i ,_1,1),CF =(.3-1,0),CC i =(0,0,2) D E ? A M F F C 、3,I ,2) 设平面CGF (020 ③-八。取 n=(i,§0), z = 0 yi =0 n 2 i 一、3 0 0 .3 =2, |二汀(3)2 =2,|;|「22 0 c ,3)2 -7 所以cos n, n |n||n | 为锐角,所以二面角 D i A i B i

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

立体几何空间向量练习

立体几何空间向量练习 1.在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题. (1)求EF的长 (2)证明:EF∥平面AA1D1D; (3)证明:EF⊥平面A1CD. 2.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A 1B与C1D所成角的余弦值; (2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的 角)的余弦值.

3.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设P A=1,AD=2. (1)求平面BPC的法向量; (2)求二面角B﹣PC﹣A的正切值. 4.如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知 BM=2,CD=3,AD=4,AA1=5. (1)求直线A1C和平面ABCD的夹角; (2)求点A到平面A1MC的距离.

5.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2,AD=CD=1,E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)若二面角P﹣AC﹣E的余弦值为, 求直线P A与平面EAC所成角的正弦值. 6.如图,在正三棱柱ABC﹣A1B1C1中,D为AC的中点. (1)证明:AB1∥平面BC1D; (2)证明:BD⊥平面AA1C1C; (3)若AA1=AB,求直线BC1与平面AA1C1C所成角的正弦值.

7.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l. (1)证明:l⊥平面PDC; (2)已知PD=AD=1,Q为l上的点,QB=, 求PB与平面QCD所成角的正弦值. 8.如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点. (Ⅰ)求证:BC1∥平面AD1E; (Ⅱ)求直线AA1与平面AD1E所成角的正弦值.

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等 的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向 量也叫做共线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ), a ρ b ρa ρb ρλ=)1(=++=y x y x 其中 a ± 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件 是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量 p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫 做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三 个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐 标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位 正交基底,用{,,}i j k r r r 表示。空间中任一向量k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

五:平面向量与空间向量十年高考题(含答案)

第五章 平面向量与空间向量 ●考点阐释 1.向量是数学中的重要概念,并和数一样,也能运算.它是一种工具,用向量的有关知识能有效地解决数学、物理等学科中的很多问题. 向量法和坐标法是研究和解决向量问题的两种方法. 坐标表示,使平面中的向量与它的坐标建立了一一对应关系,用“数”的运算处理“形”的问题,在解析几何中有广泛的应用.向量法便于研究空间中涉及直线和平面的各种问题. 2.平移变换的价值在于可利用平移变换,使相应的函数解析式得到简化. ●试题类编 一、选择题 1.(2002春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定... 成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c ) 2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( ) A.3x +2y -11=0 B.(x -1)2+(y -2)2=5 C.2x -y =0 D.x +2y -5=0 3.(2001、、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( ) A.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4) 4.(2001、、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则 ?等于( ) A. 4 3 B.- 4 3 C.3 D.-3 5.(2001)如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A 1=c .则下列向量中与 M B 1相等的向量是( ) A.- 21a +2 1 b + c B. 21a +21b +c C. 21a -2 1 b + c D.- 21a -2 1b +c 6.(2001、、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于 ( )

空间向量高考题.doc.docx

空间向量高考题 1. 如下图 , 在长方体 ABCD— A1 B1C1 D1中, 已知 AB=4, AD=3, AA1= 2. E、F 分别是线段AB、BC上的点 , 且 EB=FB=1. (Ⅰ)求二面角C— DE—C1的正切值 ; (Ⅱ)求直线 EC1与 FD1所成角的余弦值 . 、如图四棱锥 P—ABCD中底面 ABCD为矩 形AB AD , 侧面 PAD为等 边 2 .,,, =8,=4三角形 , 并且与底面所成二面角为60°. (Ⅰ)求四棱锥P— ABCD的体积 ;(Ⅱ)证明PA⊥BD. 4、如图,α⊥β,α ∩β=l ,∈α,∈β,点 A 在直线 l 上的射影为 1 ,点 A B A B 在直线l 上的射影为1,已知=,1, 1 =,求: B AB 2AA=1BB (Ⅰ)直线 AB分别与平面α,β所成的角的大小;(Ⅱ)二面角A1-AB- B1的大小 .

证∵α⊥β,α∩β=l , AA1⊥l , BB1⊥l ,∴AA1⊥β,BB1⊥α , 则∠ BAB1,∠ ABA1分别是 AB与α和β所成的角 . Rt△BB1A 中, BB1=,AB=2,∴ sin∠BAB1=, ∴∠ BAB1=45°. Rt△AA1B 中, AA1=1,AB=2, ∴sin ∠ABA1=,∴∠ ABA1=30°. 故 AB与平面α,β所成的角分别是45°, 30°. ( Ⅱ) 如图,建立坐标系,则A1( 0, 0, 0), A(0,0, 1), B1(0,1,0), B (,1,0). 在 AB上取一点 F(x,y,z),则存在 t ∈R,使得=t, 即( x,y,z-1)=t() ,∴点 F 的坐标为 (t ,t ,1- t). 要使,须=0,即(,t ,1-t )·(,1,-1)=0, 2t+t-(1 -t)=0 ,解得 t=,∴点 F 的坐标为 () ∴(). 1 ). ∴ 设 E 为 AB 的中点,则点 E 的坐标为( 0, 又 ∴,∴∠A1FE为所求二面角的平面角.

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

空间向量与立体几何知识点学生

用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos ,a b a b a b ?<>= ?, 但务必注意两异面直线所成角θ的范围是0,2π?? ? ??, 故实质上应有:cos cos ,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sin θ=| cos φ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量;

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

空间向量与立体几何高考题汇编62478

1.(2009北京卷)(本小题共14分) 如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. (Ⅰ)求证:平面AEC PDB ⊥平面; (Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与 平面PDB 所成的角的大小. 解:如图,以D 为原点建立空间直角坐标系D xyz -, 设,,AB a PD h == 则()()()()(),0,0,,,0,0,,0,0,0,0,0,0,A a B a a C a D P h , (Ⅰ)∵()()(),,0,0,0,,,,0AC a a DP h DB a a =-==u u u r u u u r u u u r , ∴ 0,0AC DP AC DB ?=?=u u u r u u u r u u u r u u u r , ∴AC ⊥DP ,AC ⊥DB ,∴AC ⊥平面PDB , ∴平面AEC PDB ⊥平面. (Ⅱ)当2PD AB = 且E 为PB 的中点时,() 1120,0,2,,,22P a E a a a ?? ? ?? ?, 设AC∩BD=O,连接OE , 由(Ⅰ)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所的角, ∵1122,,,0,0,2222EA a a a EO a ???? =--=- ? ? ? ???? ?u u u r u u u r , ∴2 cos 2EA EO AEO EA EO ?∠== ?u u u r u u u r u u u r u u u r , ∴45AOE ?∠=,即AE 与平面PDB 所成的角的大小为45? . 2.(2009山东卷)(本小题满分12分) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1) 证明:直线EE 1//平面FCC 1; (2) 求二面角B-FC 1-C 的余弦值。 E C E 1 A 1 B 1 C 1 D 1 D

立体几何与空间向量

第30练 空间角的突破方略 题型一 异面直线所成的角 例1 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线BA 1与AC 所成的角. 破题切入点 利用BA 1→·AC →=|BA 1→|·|AC →|×cos 〈BA 1→,AC →〉,求出向量BA 1→与AC →的夹角〈BA 1→,AC →〉, 再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角.还可用几何法或坐标法. 解 方法一 因为BA 1→=BA →+BB 1→,AC →=AB →+BC →, 所以BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2. 所以BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, cos 〈BA 1→,AC →〉=-a 2 2a ×2a =-12. 所以〈BA 1→,AC →〉=120°. 所以异面直线BA 1与AC 所成的角为60°. 方法二 连接A 1C 1,BC 1,则由条件可知A 1C 1∥AC , 从而BA 1与AC 所成的角亦为BA 1与A 1C 1所成的角, 由于该几何体为边长为a 的正方体, 于是△A 1BC 1为正三角形,∠BA 1C 1=60°, 从而所求异面直线BA 1与AC 所成的角为60°. 方法三 由于该几何体为正方体,

空间向量与立体几何讲义

高 二 年级 数学 学科 一、空间向量的数量积坐标运算 1.空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++ ,则称有序实数组{,,}x y z 为 向量a 的坐标,记着p = . 2.空间向量的直角坐标运算 (1)若123(,,)a a a a = ,123(,,)b b b b = ,则112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈ , (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =--- . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 2.数量积:即 ?=332211b a b a b a ++ 3 .夹角:cos ||||a b a b a b ??==? 4.模长公式:若123(,,)a a a a = ,则||a == . 5.平行与垂直: 112233//,,()a b a b a b a b R λλλλ?===∈ 00332211=++?=??⊥b a b a b a 6.距离公式:若111(,,)A x y z ,222(,,)B x y z , 则||AB == , 或,A B d = 【典型例题】例1 如图,空间四边形OABC 中,,OA a OB b == , OC c = ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN = .

相关文档
相关文档 最新文档