文档库 最新最全的文档下载
当前位置:文档库 › 定量降雨模式预报精度比较及评定指标

定量降雨模式预报精度比较及评定指标

定量降雨模式预报精度比较及评定指标
定量降雨模式预报精度比较及评定指标

计算机的主要性能指标包括哪些 精品

作业一 1、计算机的主要性能指标包括哪些? [参考答案]: 计算机的主要技术性能指标有下面几项:主频、字长、存储容量、存取周期和运算速度等。 (1)主频:主频即时钟频率,是指计算机的CPU在单位时间内发出的脉冲数。 (2)字长:字长是指计算机的运算部件能同时处理的二进制数据的位数,它与计算机的功能和用途有很大的关系。字长决定了计算机的运算精度,字长长,计算机的运算精度就高。字长也影响机器的运算速度,字长越长,计算机的运算速度越快。 (3)存储容量:计算机能存储的信息总字节量称为该计算机系统的存储容量存储容量的单位还有MB(兆字节)、GB(吉字节)和TB(太字节)。 (4)存取周期:把信息代码存入存储器,称为“写”;把信息代码从存储器中取出,称为“读”。存储器进行一次“读”或“写”操作所需的时间称为存储器的访问时间(或读写时间),而连续启动两次独立的“读”或“写”操作(如连续的两次“读”操作)所需的最短时间,称为存取周期(或存储周期)。 (5)运算速度:运算速度是一项综合性的性能指标。衡量计算机运算速度的单位是MIPS(百万条指令/秒)。因为每种指令的类型不同,执行不同指令所需的时间也不一样。过去以执行定点加法指令作标准来计算运算速度,现在用一种等效速度或平均速度来衡量。等效速度由各种指令平均执行时间以及相对应的指令运行比例计算得出来,即用加权平均法求得。 2、说明常见的计算机分类方法及其类型。 [参考答案]: 计算机有多种分类方法。常见的分类方法有以下几种: (1)按处理的信息形式分。可分为数字计算机和模拟计算机。用脉冲编码表示数字,处理的是数字信息,这类计算机是数字计算机;处理长度、电压、电流等模拟量的计算机称为模拟计算机。本书介绍的是数字计算机的组成原理。 (2)按字长分。可分为 8 位机、16位机、32位机和64位机等。 (3)按结构分。可分为单片机、单板机、多芯片机与多板机。 (4)按用途分。可分为工业控制机与数据处理机等。 (5)按规模分。可分为巨型机、小巨型机、大中型机、小型机、工作站和微型机(PC 机)六类。 作业二 1、计算机中为什么采用二进制数码?

精密水准测量的测量精度分析

精密水准测量的测量精度分析 【摘要】现阶段,在对地面上点的高程进行测量的过程中,运用精密水准测量的方式是众多测量方式中较为有效的方法之一。本文对目前精密水准测量中的相关规范进行阐述,并结合笔者自身的实践经验,对精密水准测量中的误差进行分析,并对提高精密水准测量精度的措施进行总结。 【关键词】精密水准测量;测量精度;分析 Abstract:At this stage, the process of measurement in the elevation of the ground point, using precise leveling way is one of the effective methods in many measurements. This article carries on the elaboration to the related specifications in precise leveling at present, and combining with the author’s own practical experience and analyzes the error in precise leveling, and to improve the leveling precision measures were summarized. Keyword:precise leveling accuracy of measurement; analysis; 中图分类号: P224.1 1前言 在对地面点高程进行测量的过程中,精密水准测量是目前精度较高的方法之一,该类测量方式能够有效的运用在野外测量的工作中。精密水准测量一方面为国家统一的高程测量系统的建立发挥着积极的作用,另一方面能够为相关学者对地球的研究提供较为精确的数据,尤其是在对海平面等方面的研究发挥着积极的作用。然而随着我国科学技术的不断发展以及相关研究领域对精度方面的日益提高的要求,精密水准测量的测量精度也越来越受到社会各界的关注。 2精密水准测量的相关规范 目前,在进行精密水准测量的过程中,其相关规定主要包括以下几个方面的内容: 第一,在进行测量之前的半个小时左右,应将仪器避光放置,并使得仪器的温度基本与外界环境的温度保持一致。在进行测量的过程中,应运用遮阳伞等设备对阳光进行遮挡,避免对测量结果产生影响。同时,在变换观测地点期间,应运用相关的保护装置将仪器进行遮盖。 第二,在对测量仪器位置进行确定的过程中,应将其置于与前后标尺连线中央的位置,其所偏差的距离应控制在相关规定允许的范围之内。在进行二等测量的过程中,其测点与前后标尺之间距离的差异应控制在1m之内。

02 第二章 精度指标与误差传播

第二章:精度指标与误差传播 内容及学习要求 本章详细讨论偶然误差分布的规律性,衡量精度的绝对指标-中误差,相对指标-权及其确定权的实用方法;方差、协因数定义及其传播律等问题。本章内容是是测量平差的理论基础,也是本课程的重点之一。学习本章要求深刻理解精度指标的含义,掌握权、协方差、协因数概念,确定权及根据已知协方差、协因数的观测值求其函数的方差、协因数的方法(协因数、协方差传播律)。 §2-1概述 概括本章内容,其主线是偶然误差的统计规律→衡量单个随机变量的精度指标-方差→衡量随机向量的精度指标-协方差阵→求观测值向量函数的精度指标-协方差传播律→精度的相对指标-权。 §2-2偶然误差的规律性 本小节阐述偶然误差的统计规律性,提出偶然误差服从正态分布的结论 任何一个观测值,客观上总是存在一个真正代表其值的量,这一数值就称观测值的真`值。从概率统计的观点看,当观测量仅含偶然误差时,真值就是其数学期望。 某一随机变量的数学期望为:i n i i p x X E ∑== 1 )( 或 ?+∞ ∞ -=dx x xf X E )()( 期望的实质是一种理论平均值,可用无穷观测,以概率为权,取加权平均值的概念理解.dx x f )(表示x 出现在小区间dx 的概率。 设对n 个量进行了观测,观测值为。 、、、n L L L ???21其相应的真值分别为。 、、、n L L L ???21令i i i i L L ?-=?, 即真误差。由于假定测量平差所处理的观测值只含偶然误差,所以真误差i ?就是偶然误差。用向量形式表述为: ? ????????????=?n b L L L L 211、?????? ????????=?n n L L L L ..211、?? ?????????????=??n n .211 则有:111???-=?n n n L L 注意:本教程中凡是不加说明,即没有下标说明的向量都是列向量,若表示行向量则加以转置符号表示,如:T T T B A L 、、等。 对单个的偶然误差而言,大小和符号都没有规律,及事先完全不可预知。但从大量测量实践中知道,在相同的观测条件下,偶然误差就总体而言,有一定的统计规律,表现为如下几点: 1、 误差绝对值有一定限值 2、 绝对值小的比大的多 3、 绝对值相等的正负误差出现的个数相等或接近。 教材中分别列举两个实例,以358和421个三角形闭合差的分析结果验证了上述结论(闭合差是理论值与观测值之差,故是真误差)。注意:统计规律只有当有较多的观测量时,才能得出正确结论。 为了形象地刻画误差分布情况,以横坐标表示误差的大小,纵坐标采用单位区间频率(出现在某区间内的频率,等于该区间内出现的误差个数i v 除误差总个数n ,而采用单位频率 i i nd V ?为纵坐标值,使曲线(直方图)趋势不因区间间隔不同而变化)。根据统计规律可知,在相同条件下所得一组独立观测值,n 足够大时,误差出现在各个区间的频率总是稳定在某一常数(理论频率)附近,n 越大;稳定程度越高。n 趋于∞,则频率等于概率(理论频率)。令区间长度0→?d ,则长方条顶形成的折线变成光滑曲线,称概率曲线。

计算机性能指标

计算机性能指标 (1)运算速度。运算速度就是衡量计算机性能的一项重要指标。通常所说的计算机运算速度(平均运算速度),就是指每秒钟所能执行的指令条数,一般用“百万条指令/秒”(mips,Million Instruction Per Second)来描述。同一台计算机,执行不同的运算所需时间可能不同,因而对运算速度的描述常采用不同的方法。常用的有CPU时钟频率(主频)、每秒平均执行指令数(ips)等。微型计算机一般采用主频来描述运算速度,例如,Pentium/133的主频为133 MHz,PentiumⅢ/800的主频为800 MHz,Pentium 4 1、5G的主频为1、5 GHz。一般说来,主频越高,运算速度就越快。 (2)字长。计算机在同一时间内处理的一组二进制数称为一个计算机的“字”,而这组二进制数的位数就就是“字长”。在其她指标相同时,字长越大计算机处理数据的速度就越快。早期的微型计算机的字长一般就是8位与16位。目前586(Pentium, Pentium Pro, PentiumⅡ,PentiumⅢ,Pentium 4)大多就是32位,现在的大多数人都装64位的了。 (3)内存储器的容量。内存储器,也简称主存,就是CPU可以直接访问的存储器,需要执行的程序与需要处理的数据就就是存放在主存中的。内存储器容量的大小反映了计算机即时存储信息的能力。随着操作系统的升级,应用软件的不断丰富及其功能的不断扩展,人们对计算机内存容量的需求也不断提高。目前,运行Windows 95或Windows 98操作系统至少需要 16 M的内存容量,Windows XP则需要128 M以上的内存容量。内存容量越大,系统功能就越强大,能处理的数据量就越庞大。 (4)外存储器的容量。外存储器容量通常就是指硬盘容量(包括内置硬盘与移动硬盘)。外存储器容量越大,可存储的信息就越多,可安装的应用软件就越丰富。目前,硬盘容量一般为10 G至60 G,有的甚至已达到120 G。 (5)I/O的速度 主机I/O的速度,取决于I/O总线的设计。这对于慢速设备(例如键盘、打印机)关系不大,但对于高速设备则效果十分明显。例如对于当前的硬盘,它的外部传输率已可达20MB/S、4OMB/S以上。 (6)显存 显存的性能由两个因素决定,一就是容量,二就是带宽。 容量很好理解,它的大小决定了能缓存多少数据。而带宽方面,可理解为显存与核心交换数据的通道,带宽越大,数据交换越快。所以容量与带宽就是衡量显存性能的关键因素。

全站仪三角高程测量精度分析报告

全站仪三角高程测量精度分析 作者修涛 容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析

Total Station trigonometric leveling accuracy analysis Abstract T otal Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction. Research and verify through practice, Total Station trigonometric leveling observations amendment can fully meet the accuracy requirements of the third and fourth level measurement, Can take advantage of Excel's powerful data processing capabilities, more convenient to make the processing of observational data.Article based on trigonometric leveling principle and law of error propagation, Total Station trigonometric leveling application and accuracy in the measurement are discussed. Different methods of measurement for triangulation were compared, analyzed and summarized. Trigonometric leveling Total Station Standards test, measurement accuracy analysis. Key words Electronic Total Station;trigonometric leveling;accuracy analysis

如何理解电子测量仪器的精度指标

如何理解电子测量仪器的精度指标 精确度是衡量电子测量仪器性能最重要的指标,通常由读数精度、量程精度两部分组成。本文结合几个具体案例,讲述误差的产生、计算以及标定方法,正确理解精度指标能够帮助您选择合适的仪器仪表。 一、测量误差的定义 误差常见的表示方法有:绝对误差、相对误差、引用误差。 1)绝对误差:测量值x*与其被测真值x之差称为近似值x*的绝对误差,简称ε。 计算公式:绝对误差 = 测量值 - 真实值; 2)相对误差:测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。 计算公式:相对误差 =(测量值 - 真实值)/真实值×100%(即绝对误差占真实值的百分比); 3)测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常以百分数表示。引用误差=(绝对误差的最大值/仪表量程)×100% 引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围,以减小测量误差 举个例子,使用万用表测得电压1.005V,假定电压真实值为1V,万用表量程10V,精度(引用误差)0.1%F.S,此时万用表测试误差是否在允许范围内? 分析过程如下: 绝对误差:E = 1.005V - 1V = +0.005V; 相对误差:δ=0.005V/1V×100%=0.5%; 万用表引用误差:10V×0.1%F.S=0.1V; 因为绝对误差0.005V<0.1V,所以10V量程引用误差0.1%F.S的万用表,测量1V相对误差为0.5%,仍在误差允许范围内。 二、测量误差的产生 绝对误差客观存在但人们无法确定得到,且绝对误差不可避免,相对误差可以尽量减少。误差组成成分可分为随机误差与系统误差,即:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和系统误差: 1)系统误差(Systematic error) 定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 产生原因:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差。 特性:是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化。 优化方法:方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。 2)随机误差。 定义:随机误差又叫偶然误差,是指测量结果与同一待测量的大量重复测量的平均结果之差。产生原因:即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差。 特点:是对同一测量对象多次重复测量,测量结果的误差呈现无规则涨落,可能是正偏差,也可能是负偏差,且误差绝对值起伏无规则。但误差的分布服从统计规律,表现出以下三个

计算机第1章练习题

1、电子计算机诞生于( )B A.1941年B.1946年C.1949年D.1950年 2.、世界上首次提出存储程序计算机体系结构的是( )D A.莫奇莱B.艾仑·图灵 C.乔治·布尔D.冯·诺依曼 3、世界上第一台电子数字计算机采用的主要逻辑部件是( )A A.电子管B.晶体管 C.继电器D.光电管 4、下列叙述正确的是( )D A.世界上第一台电子计算机是ENIAC,首次实现了“存储程序”方案 B.按照计算机的规模,人们把计算机的发展过程分为四个时代 C.微型计算机最早出现于第三代计算机中 D.冯·诺依曼提出的计算机体系结构奠定了现代计算机的结构理论基础 5、一个完整的计算机系统应包括( )B A.系统硬件和系统软件B.硬件系统和软件系统 C.主机和外部设备D.主机、键盘、显示器和辅助存储器 6、微型计算机硬件系统的性能主要取决于()A A.微处理器B.内存储器 C.显示适配卡D.硬磁盘存储器 7、微处理器处理的数据基本单位为字。一个字的长度通常是( )D A.16个二进制位B.32个二进制位 C.64个二进制位D.与微处理器芯片的型号有关 8、计算机字长取决于哪种总线的宽度( )B A.控制总线B.数据总线 C.地址总线D.通信总线 9、“PentiumⅡ350”和“PentiumⅢ450”中的“350”和“450”的含义是( )D A.最大内存容量B.最大运算速度 C.最大运算精度D.CPU的时钟频率 10、微型计算机中,运算器的主要功能是进行( )C A.逻辑运算B.算术运算 C.算术运算和逻辑运算D.复杂方程的求解 11、微型计算机中,控制器的基本功能是( )D A.存储各种控制信息B.传输各种控制信号 C.产生各种控制信息D.控制系统各部件正确地执行程序 12、下列四条叙述中,属RAM特点的是( )B A.可随机读写数据,且断电后数据不会丢失 B.可随机读写数据,断电后数据将全部丢失 C.只能顺序读写数据,断电后数据将部分丢失 D.只能顺序读写数据,且断电后数据将全部丢失 13、在微型计算机中,运算器和控制器合称为( )C A.逻辑部件B.算术运算部件 C.CPUD.算术和逻辑部件 14、在微型计算机中,ROM是( )C A.顺序读写存储器B.随机读写存储器 C.只读存储器D.高速缓冲存储器 15、电子计算机最主要的工作特点是()C A.高速度B.高精度

建筑物沉降观测精度指标及评定方法

建筑物沉降观测精度指标及评定方法 摘要:本文结合相关标准,探讨了建筑物沉降观测精度指标的含义及其估算方法,并对沉降观测结果的精度评定进行了研究。 关键词:建筑物;沉降观测;精度评定;精度指标 0 引言 沉降观测的精度要求取决于观测的目的、该建筑物的允许变形值以及建筑物的结构与基础类型[1]。由于沉降观测的精度直接影响到观测成果的可靠性和精确性,因此精度指标的确定及评定是沉降观测中的一个重要环节。然而,在现实工作中,建筑物沉降观测的精度评定经常被忽视,不少测量工作者甚至不清楚精度指标的含义及精度评定的方法。本文结合标准《建筑物沉降观测方法》DGJ32/J18-2006及《建筑变形测量规范》JGJ8-2007的要求,对建筑物的精度指标及评定进行深入探讨,弄清精度指标的概念及精度评定的方法。 1 基本概念 在测量中,由于受到测量仪器、观测者、外界条件等种种因素的影响,产生误差是不可避免的。测量误差分为偶尔误差和系统误差两大类,所谓精度,就是描述偶然误差分布的参数,精度越高,表示偶然误差的离散度越小,观测成果越可靠,反之亦然。 为了衡量观测精度的高低,利用一些数字反映误差分布的离散程度,这些数字称为衡量精度的指标,较常用的精度指标为方差和中误差,计算公式如下: (1) (2) 方差和中误差是表征精度的绝对数字指标,权、协因数(权倒数)则是表征精度的相对数字指标。设有观测值,对应的方差为,如选定任一常数,协因数的计算公式为: (3) 则称为的协因数或权倒数,为单位权中误差。对于水准测量,常用每公里观测高差中误差或者每测站高差中误差作为单位权中误差。 2 建筑物沉降观测精度指标及评定方法 2.1 精度指标

计算机性能指标

计算机性能指标 (1)运算速度。运算速度是衡量计算机性能的一项重要指标。通常所说的计算机运算速度(平均运算速度),是指每秒钟所能执行的指令条数,一般用“百万条指令/秒”(mips,Million Instruction Per Second)来描述。同一台计算机,执行不同的运算所需时间可能不同,因而对运算速度的描述常采用不同的方法。常用的有CPU时钟频率(主频)、每秒平均执行指令数(ips)等。微型计算机一般采用主频来描述运算速度,例如,Pentium/133的主频为133 MHz,Pentium Ⅲ/800的主频为800 MHz,Pentium 4 1.5G的主频为1.5 GHz。一般说来,主频越高,运算速度就越快。 (2)字长。计算机在同一时间内处理的一组二进制数称为一个计算机的“字”,而这组二进制数的位数就是“字长”。在其他指标相同时,字长越大计算机处理数据的速度就越快。早期的微型计算机的字长一般是8位和16位。目前586(Pentium, Pentium Pro, PentiumⅡ,PentiumⅢ,Pentium 4)大多是32位,现在的大多数人都装64位的了。 (3)内存储器的容量。内存储器,也简称主存,是CPU可以直接访问的存储器,需要执行的程序与需要处理的数据就是存放在主存中的。内存储器容量的大小反映了计算机即时存储信息的能力。随着操作系统的升级,应用软件的不断丰富及其功能的不断扩展,人们对计算机内存容量的需求也不断提高。目前,运行Windows 95或Windows 98操作系统至少需要 16 M的内存容量,Windows XP则需要128 M以上的内存容量。内存容量越大,系统功能就越强大,能处理的数据量就越庞大。 (4)外存储器的容量。外存储器容量通常是指硬盘容量(包括内置硬盘和移动硬盘)。外存储器容量越大,可存储的信息就越多,可安装的应用软件就越丰富。目前,硬盘容量一般为10 G至60 G,有的甚至已达到120 G。 (5)I/O的速度 主机I/O的速度,取决于I/O总线的设计。这对于慢速设备(例如键盘、打印机)关系不大,但对于高速设备则效果十分明显。例如对于当前的硬盘,它的外部传输率已可达20MB/S、4OMB/S以上。 (6)显存 显存的性能由两个因素决定,一是容量,二是带宽。 容量很好理解,它的大小决定了能缓存多少数据。而带宽方面,可理解为显存与核心交换数据的通道,带宽越大,数据交换越快。所以容量和带宽是衡量显存性能的关键因素。 另外,带宽又由频率和位宽两个因素所决定,计算公式为:带宽=频率X位宽/8。举个例子,两块核心和显存容量相同的显卡,卡1的显存为DDR3 1600MHz频率和128位宽;卡2的显存为DDR2 800MHZ频率和256位宽。看上去两者显存参数不同,但通过公式计算得出,两者都是25.6G/S的带宽,性能是相同的。 所以,只要了解了本质,无论多么复杂多变的产品,都无法忽悠到我们。 (显存容量): 常见的容量有128M、256M、512M、896M、1G等等。容量越大,能缓存的数据就

计算机的主要性能指标(必知)

计算机的主要性能指标是什么 计算机功能的强弱或性能的好坏,不是由某项指标决定的,而是由它的系统结构、指令系统、硬件组成、软件配置等多方面的因素综合决定的。对于大多数普通用户来说,可以从以下几个指标来大体评价计算机的性能。 (1)运算速度。运算速度是衡量计算机性能的一项重要指标。通常所说的计算机运算速度(平均运算速度),是指每秒钟所能执行的指令条数,一般用“百万条指令/秒”(mips,Million Instruction Per Second)来描述。同一台计算机,执行不同的运算所需时间可能不同,因而对运算速度的描述常采用不同的方法。常用的有CPU时钟频率(主频)、每秒平均执行指令数(ips)等。微型计算机一般采用主频来描述运算速度,例如,Pentium/133的主频为133 MHz,Pentium Ⅲ/800的主频为800 MHz,Pentium 4 1.5G的主频为1.5 GHz。一般说来,主频越高,运算速度就越快。 (2)字长。计算机在同一时间内处理的一组二进制数称为一个计算机的“字”,而这组二进制数的位数就是“字长”。在其他指标相同时,字长越大计算机处理数据的速度就越快。早期的微型计算机的字长一般是8位和16位。目前586(Pentium,Pentium Pro,PentiumⅡ,PentiumⅢ,Pentium 4)大多是32位,现在的大多数人都装64位的了。 (3)内存储器的容量。内存储器,也简称主存,是CPU可以直接访问的存储器,需要执行的程序与需要处理的数据就是存放在主存中的。内存储器容量的大小反映了计算机即时存储信息的能力。随着操作系统的升级,应用软件的不断丰富及其功能的不断扩展,人们对计算机内存容量的需求也不断提高。目前,运行Windows 95或Windows 98操作系统至少需要16 M的内存容量,Windows XP 则需要128 M以上的内存容量。内存容量越大,系统功能就越强大,能处理的数据量就越庞大。 (4)外存储器的容量。外存储器容量通常是指硬盘容量(包括内置硬盘和移动硬盘)。外存储器容量越大,可存储的信息就越多,可安装的应用软件就越丰富。目前,硬盘容量一般为10 G至60 G,有的甚至已达到120 G。 以上只是一些主要性能指标。除了上述这些主要性能指标外,微型计算机还有其他一些指标,例如,所配置外围设备的性能指标以及所配置系统软件的情况等等。另外,各项指标之间也不是彼此孤立的,在实际应用时,应该把它们综合起来考虑,而且还要遵循“性能价格比”的原则。 追问 信息存储容量的基本单位,一个字节,,1K字节、1兆字节,1G字节,1TB的换算关系 回答 1024电脑的容量单位最小的是Bit,也就是位。而8位为一个字节,也就是Byte。在往上就是KB,MB,GB,TB。 电脑使用的是2进制,即1KB=1024B,1MB=1024KB=1048576B, 1GB=1024MB,1TB=1024GB

如何读懂测量仪器的精度指标

如何读懂测量仪器的精度指标 摘要:在精密测试测量行业,测量准确度(精度)是仪器本身的灵魂,是仪器最重要的指标之一,但不同的仪器其准确度有不同的表达方式,因此只有理解了仪器的精度指标后才能更好地指导我们进行测量。 在测试测量过程中,受测量仪器硬件本身、测量条件或测量方法的影响,测量得到的结果(测量值)与真实值之间有一定的差异,这个差异就是测量误差,测量误差可能包含与测量值成比例的误差,也可能包含与测量值无关的固定误差。通常测量仪器的精度指标会以这两种误差的组合方式给出,例如PA8000的精度指标如图1所示。 图1 PA8000精度指标 图1中的精度指标是以“±(%读数 + %量程)”的方式表示的,即读数精度+满量程精度表示法。顾名思义,读数精度就是仅与测量值成比例的误差,而满量程精度则是与测量值无关仅与量程有关的固定误差,即当量程确定后这个误差也就固定了。 电测量仪表的精度指标还有另外一种表达方式,介绍之前先回顾一下误差的两种表示方式:绝对误差和相对误差。绝对误差是测量值与标准值(真实值)之差;相对误差是绝对误差与标准值(真实值)的比值。前面所说的读数精度就是用相对误差来表示,而满量程精度就是用绝对误差来表示的。相对误差能直观地表示测量的质量,而绝对误差则不如相对误差来的直观。 电测量仪器仪表精度指标的另外一种表达方式就是准确度等级。电测量仪器仪表在规定条件下工作时,绝对误差的最大值与仪表量程的比值就叫做仪表的准确度等级,比如某电流互感器的准确度等级如图2所示。 图2 电流互感器指标参数 在《GB/T 13283-2008工业过程测量和控制用检测仪表和显示仪表精确度等级》中对我

测量精度指标

学习情境5 测量误差分析与数据处理 项目载体:北京工业职业技术学院地形图测绘数据分析与处理教学项目设计: 1、项目分析:项目来源:根据北京工业职业技术学院国家级示范院校建设工作的要求,为了提高学院管理的水平,已经测绘了该院综合地形图;根据实际工作的需要,测绘地形图的比例尺为1:500。 北京工业职业技术学院位于北京市石景山区五里坨地区,占地面积400余亩,建筑面积约20万平方米,大部分地区的自然地貌已经被建筑物和绿化带所覆盖,植被、建筑物相对比较密集,测区内的图根控制点大多数完好可以利用。 地形图的图式采用国家测绘局统一编制的《1:500、1:1000、1:2000大比例尺地形图图式》。 在地形图测绘过程中,获得了大量的外业观测数据,由于测量观测成果中测量误差的存在,使得测量数据之间存在着诸多矛盾,为了消除这些矛盾获得最终的测量成果,冰瓶定期精度,就必须要按照要求进行测量数据的分析与处理。。 2、任务分解:根据根据实际工作的需要,测量数据分析与处理工作任务可以分解为:评定精度的指标、中误差传播定律、盈盈误差传播定律处理测量观测资料、坐标方位角、根据地形图绘制断面图、量算制定区域的面积、根据指定坡度确定最短路线等 3、各环节功能:评定精度的指标是进行测量数据分析与处理时,进行精度评定的重要环节,是衡量测量成果精度高低的指标和手段;中误差传播定律是分析测量内业计算成果的误差分析的重要手段和基本技能;测量数据分析与处理是测量内业工作的核心内容,是测量工作者的重要的专业技能之一。 4、作业方案:根据实际工作的需要,确定衡量精度的指标,运用中误差传播定律分析解决测量工作中的数据分析问题;运用误差理论对测量过程中获得的高程测量数据、平面控制测量数据进行综合分析与处理,获得合格的测量内业成果并进行精度评定。 5、教学组织:本学习情景的教学为14学时,分为3个相对独立又紧密联系的子学习情境,教学过程中以作业组为单位,以各作业组的外业观测成果数据分

IO系统性能之一:衡量性能的几个指标

IO系统性能之一:衡量性能的几个指标 2011年03月24日05:00 it168网站原创作者:DBABeta 马齿苋编辑:李隽我要评论(0) 【IT168 应用】作为一个数据库管理员,关注系统的性能是日常最重要的工作之一,而在所关注的各方面的性能只能IO性能却是最令人头痛的一块,面对着各种生涩的参数和令人眼花缭乱的新奇的术语,再加上存储厂商的忽悠,总是让我们有种云里雾里的感觉。本系列文章试图从基本概念开始对磁盘存储相关的各种概念进行综合归纳,让大家能够对IO性能相关的基本概念,IO性能的监控和调整有个比较全面的了解。 在这一部分里我们先舍弃各种结构复杂的存储系统,直接研究一个单独的磁盘的性能问题,藉此了解各个衡量IO系统系能的各个指标以及之间的关系。需要注意的是,本文探讨的仅限于磁盘IO性能,网络IO性能不考虑在内。 几个基本的概念 在研究磁盘性能之前我们必须先了解磁盘的结构,以及工作原理。不过在这里就不再重复说明了,关系硬盘结构和工作原理的信息可以参考维基百科上面的相关词条——Hard disk drive(英文)和硬盘驱动器(中文)。 读写IO(Read/Write IO)操作 磁盘是用来给我们存取数据用的,因此当说到IO操作的时候,就会存在两种相对应的操作,存数据时候对应的是写IO操作,取数据的时候对应的是是读IO操作。 单个IO操作 当控制磁盘的控制器接到操作系统的读IO操作指令的时候,控制器就会给磁盘发出一个读数据的指令,并同时将要读取的数据块的地址传递给磁盘,然后磁盘会将读取到的数据传给控制器,并由控制器返回给操作系统,完成一个写IO的操作;同样的,一个写IO的操作也类似,控制器接到写的IO操作的指令和要写入的数据,并将其传递给磁盘,磁盘在数据写入完成之后将操作结果传递回控制器,再由控制器返回给操作系统,完成一个写IO的操作。单个IO操作指的就是完成一个写IO或者是读IO的操作。 随机访问(Random Access)与连续访问(Sequential Access) 随机访问指的是本次IO所给出的扇区地址和上次IO给出扇区地址相

关于城市测量中的测量精度分析

关于城市测量中的测量精度分析 城市测量是以城市总体规划为基础而进行的一项测量活动,它涉及的内容是十分丰富的,包括建设用地界址线、市政规划测量及城市道路规划测量等,这项工作的目标是促进城市建设的发展,基于其自身的特点,测量精度的要求是很高的,一旦出现误差,城市规划就可能出现不合理,最终影响到整个城市的发展。 标签:城市测量;测量精度;分析 随着计算机技术的不断发展,其在城市测量中的运用也越来越多,城市测量的高精度要求测量必须在统一的地面坐标系统控制下进行,它通常采用人工测量与计算机分析相结合的作业方法,其与周边测量工程的衔接度反映出实际操作的可行性,文章结合城市测量的实践经验,对测量精度进行了分析与思考。 1 城市测量精度分析 当前城市规划测量的控制主要采用在城市一、二级导线上分别设三级导线或导线网的方法,这种方法通过对导线中误差的分析,结合测边、测角、起始数据的影响,计算出导线的误差,其采用的公式是十分复杂的,公式中包含导线中点、导线横向误差以及导线纵向误差等数据,以上误差的分配都采用的是等影响原则,各项误差的分配值为+2.5cm或-2.5cm,最后,利用导线中点与端点各误差的比例关系,计算出导线端点各误差值的规定值,该计算公式中主要包含m、n、L三个数据,m代表偶然测距误差;n表示导线边数,L表示导线总长。 三级导线的平均边长为120cm,导线长度为1.5km,以三级导线测量精度要求估算导线误差如下表所示,其中,导线误差单位为mm,导线长度单位为km。 从以上表可以看出,随着导线长度的增加,导线测角误差对点位误差的影响越来越大,测站数对点位误差也有一定的影响,测边误差包括系统误差和偶然误差,大气折光误差和照准误差属于偶然误差,三级导线作为一种短导线,其系统误差与测边中偶然误差相比较小,所以,偶然误差是导线点位误差的主要影响因素,偶然误差会随着导线长度的增加而减少,随着导线边数的增加而增加,系统误差对点位的影响很小,它随导线长度的增加而增加,导线长度为1.5km时,系统误差只有±3毫米。在短导线中,导线点位误差受测邊误差的影响较大,当导线测站数为12站,长度为1.5千米时,各项误差对导线的影响大致相同,均在±2.5毫米左右,其中,最弱点的中误差为±5毫米,这个误差满足导线中误差精度的要求,测角误差会随着导线长度的增加而增大,此外,测站数的增加对最弱点导线误差的影响也会增大。 2 城市测量的现状 目前,GPS技术已在城市测量中得到有效运用,但大多数城市依然采用的是导线网的常规测量方法,据统计,在全年1217条导线中,三级导线为485条,

精度指标的含义

关于不确定度指标的理解 在测试仪器行业,不确定度(很多人称之为精度,因此下面就称之为精度)是仪器的一个最重要指标之一,而不确定度指标的表示是有不同的方式的。而不同的表示方式有时会带来一些意义上的混淆或混乱。因此如何理解精度的指标就变得非常重要了。 不确定度指标是指仪器测量值的可能范围,也就是估计的误差范围。误差的类型有与测量值成比例的误差,有与测量值大小无关的固定误差,一般仪器的指标是两种误差之和。通常人们希望仅有与测量值成比例的误差,读数(Reading)精度就是指这种误差。如果仪器仅用固定误差表示指标的叫做引用误差,满量程(Full Range)精度就是指这种误差。 在压力测试(通常称为表)中常使用满量程精度。读数精度和满量程精度的表示有什么不同吗?他们是怎么计算出来的?下面我们以一个压力测试的例子来具体说明,更有助于直观的理解之间的区别。 具体的例子如下:两个压力测试仪,最大量程都是10MPa。一个是读数精度1%,另一个是满量程精度1%。二者有何区别? 我的不确定度是0.02% 我的不确定度也是0.02% 首先要介绍两种误差表示方式,一个是绝对误差,一个是相对误差。绝对误差是测量值与标准值(估计真值)之差;相对误差是绝对误差和标准值的比值。例如测量数值是100,其绝对误差是1,则相对误差就是1/100,也就是1%。再如,测量值是50,绝对误差是0.5,则相对误差是0.5/50,还是1%。 通过相对误差才能表示出测量的质量,所以通常评价测量结果和测量仪器都使用相对误差。如果不确定度给出的是相对误差,马上就知道最后测量结果究竟如何。如果是给出的是绝对误差,最后的不确定度需要进行计算才能知道。在解释读数精度和满量程精度的实际例子中就可清楚的了解这一点。 搞清楚相对误差和绝对误差后,我们就很容易理解读数精度和满量程精度了。所谓读数精度就是用相对误差表示。而满量程精度是用引用误差或绝对误差表示。以上面提出的例子来说,两个压力测试仪,最大量程都是10MPa。一个读数精度是1%,另一个满量程精度是1%。二者有何区别?

论文--解读测试设备的精度指标

解读测试设备的精度指标 金惟伟徐伟专钱岑 (上海电器科学研究所,上海,20063,国防科学技术大学,长沙,410073,湖南银河电气有限公司,410073)摘要: 电机试验为电机设计、质量检验等提供必要的数据支撑,其测试数据的正确性和准确性是验证电机设计及保证电机质量的重要手段。针对部分试验站的测试准确性和可重复性较差的问题,本文从量程、频率、相位、测试方法、现场干扰等不同角度,对测试设备的精度指标进行简要分析,结合电机试验测试技术现状及相关国家标准要求,提出用户选择测试设备尤其是变频测试设备时应该注意的若干事项。 关键词:电机试验、功率测试、变频测试 Analysis on Accuracy Performance of Motor Test Equipment Wei Wei-jin Wei Zhuan-Xu Ceng-Qian (Shanghai Electrical Apparatus Research Institute Co., Ltd,Shanghai,20063,National Unive rsity of Defense Technology,Changsha,410073,HuNan YinHe Electric Co.,Ltd,Changsha,41007 3) Abstract:Motor test is an necessary process for motor design and production quality validation. Thus, the correction and accuracy of measurement data are of extremely importance. With the problem of measurement un-accuracy and poor repeatability in some motor test station, the accuracy performance has been briefly analyzed in this paper from different points of view such as measuring scope, frequency, phase, test methods and field interference. Moreover, several suggestions about selection of test equipment, especially the frequency converter test equipment, has been proposed according to currently measuring technique on motor test and relative national standards. Keywords: motor test, power test, frequency converter test 引言 您遇到过这样的问题吗? 两个测试设备准确度都满足国家标准要求的试验站,对同一台电机的合格判定出现截然不同的结论? 这个问题在电机试验检测中较为普遍,在分析原因之前,让我们对测试设备的精度指标做一下解读。 1. 量程对精度的影响 首先看一下常见的几种关于测试设备精度的表示方法: A.准确度:0.2级 B.量程的0.2% C.读数的0.1%+量程的0.2% D.读数的0.2%+量程的0.1% 按照电工测量仪表的准确度定义,A与B等效。C的精度低于A或B,由于读数一般小于量程,故C的精度低于D。 四种表示方法的精度均与量程相关,也就是说,对于同一被测信号,采用相同精度不同的量程仪表,测试结果精度不同,举例来说,同样是100V的信号,采用两款准确度均为0.2级,量程分别为200V和2000V的仪表进行测试,测量结果分别为100±0.4V和100±4V,两者的绝对误差分别为0.4V和4V,相对误差分别为0.4%和4%,即后者的误差是前者的10倍。 事实上,对于采用量程表示精度的仪表而言,在量程范围内,被测值(真值)越小,读数越小,相对误差越大,相对误差与真值的关系如下图,图中,仪表准确度为0.2级,真值在量程的 1/128~1(0.78125%~100%)之间,为表示方便,Y轴采用对数刻度,由图可知,当真值在量程附近,最大相对误差接近0.2%,真值在量程的1/128倍时,最大相对误差为25.6%。

衡量机床质量的指标

衡量机床质量的指标 机床是将金属毛坯加工成机器零件的机器,它是制造机器的机器,所以又称为”工作母机”或”工具机”,习惯上简称机床。现代机械制造中加工机械零件的方法很多:除切削加工外,还有铸造、锻造、焊接、冲压、挤压等,但凡属精度要求较高和表面粗糙度要求较细的零件,一般都需在机床上用切削的方法进行最终加工。在一般的机器制造中,机床所担负的加工工作量占机器总制造工作量的40%-60%,机床在国民经济现代化的建设中起着重大作用。 机床本身质量的优劣,直接影响所造机器的质量。衡量一台机床的质量是多方面的,但主要是要求工艺性好,系列化、通用化、标准化程度高,结构简单,重量轻,工作可靠,生产率高等。具体指标如下: 1. 工艺的可能性 工艺的可能性是指机床适应不同生产要求的能力。通用机床可以完成一定尺寸范围内各种零件多工序加工,工艺的可能性较宽,因而结构相对复杂,适应于单件小批生产。专用机床只能完成一个或几个零件的特定工序,其工艺的可能性较窄,适用于大批量生产,可以提高生产率,保证加工质量,简化机床结构,降低机床成本。 2. 精度和表面粗糙度 要保证被加工零件的精度和表面粗糙度,机床本身必须具备一定的几何精度、运动精度、传动精度和动态精度。 (1)几何精度、运动精度、传动精度属于静态精度 几何精度是指机床在不运转时部件间相互位置精度和主要零件的形状精度、位置精度。机床的几何精度对加工精度有重要的影响,因此是评定机床精度的主要指标。 运动精度是指机床在以工作速度运转时主要零部件的几何位置精度,几何位置的变化量越大,运动精度越低。 传动精度是指机床传动链各末端执行件之间运动的协调性和均匀性。 以上三种精度指标都是在空载条件下检测的,为全面反映机床的性能,必须要求机床有一定的动态精度和温升作用下主要零部件的形状、位置精度。影响动态精度的主要因素有机床的刚度、抗振性和热变形等。 机床的刚度指机床在外力作用下抵抗变形的能力,机床的刚度越大,动态精度越高。机床的刚度包括机床构件本身的刚度和构件之间的接触刚度。机床构件本身的刚度主要取决于构件本身的材料性质、截面形状、大小等。构件之间的接触刚度不仅与接触材料、接触面的几何尺寸和硬度有关,而且还与接触面的表面粗糙度、几何精度、加工方法、接触面介质、预压力等因素有关。 机床上出现的振动,可分为受迫振动和自激振动。自激振动是在不受任何外力、激振力干扰的情况下,由切削过程内部产生的持续振动。在激振力的持续作用下,系统被迫引起的振动为受迫振动。 机床的抗震性和机床的刚度、阻尼特性、质量有关。由于机床的各个零部件热膨胀系数不同,因而造成了机床各部分不同的变形和相对位移,这种现象叫机床的热变形。由于热变形而产生的误差最大可占全部误差的70%。 对于机床的动态精度,目前尚无统一标准,主要通过切削加工典型零件所达到的精度间接的对机床动态精度作出综合的评价。 3. 系列化等程度 机床的系列化、通用化、标准化是密切联系的,品种系列化是部件通用化和零件标准化的基础,而部件的通用化和零件的标准化又促进和推动品种系列化工作。 4. 机床的寿命

相关文档
相关文档 最新文档