文档库 最新最全的文档下载
当前位置:文档库 › 微波原理与技术教学大纲

微波原理与技术教学大纲

微波原理与技术教学大纲
微波原理与技术教学大纲

《微波原理与技术》教学大纲

一、说明

1.本课程的任务在于研究微波技术的基本概念和基本分析方法。初步认识一些微波网络和微波器件,经适当的数学分析求解,对所得结果给以物理解释,赋予物理意义。

通过课程的学习,希望激发起同学们对微波学科方向的学习兴趣和热情,使他们有信心也有能力逐步适应这一领域的发展需要。

2.微波通信技术的发展日新月异,不可能在课堂上灌输全部知识。故在讲解本课程时,不必逐章逐节地依次讲解课本。在符合教学大纲的前提下,完全可以在内容的取舍、讲解的次序以及阐明问题的方法上,采用不同的做法。最好多留一部分内容让学生自学,以培养学生的独立自学能力。同时指导学生多读一些参考书,以便开阔思路,学得更活。

3.学习本课程,应有一定的数学基础和电磁场分析基础。本课程涉及的前序学科内容主要包括:高等数学、线性代数、复变函数、信号与线性系统与电磁场等等。在讲解这门课程时,将直接引用有关学科的结论。在运用这些数学工具时,注重解决工程问题,加强物理概念的解释。本课程与电磁场分析基础联系比较密切。

二、讲授大纲

第一章:绪论

内容简介: 本章扼要的介绍了什么微波,微波的特点及其主要应用。

教学要求:在学完本章之后,应当对微波的频谱范围及其特点有比较清楚的认识,对本门课程所要研究的对象有一般的了解。

第一节:通信的需求和电磁波波谱的开括

主要内容:简述什么是微波。

第二节:微波的特点

主要内容:简述微波不同于其他传送方式的九大特点。

第三节:微波的发展历史

主要内容:简述微波技术发展的几大历程。

第四节:微波的应用

主要内容:简述微波技术在各个领域的应用。

第一部分:微波技术的基本理论

第二章:传输线的基本理论

内容简介:本章将研究微波传输线的基本理论,即通过麦斯韦方程组对微波传输线的稳定正弦状态及其参数进行分析;并介绍一种简易的传输线分析方法(史密斯圆图)。

教学要求:熟练掌握通过史密斯圆图分析法,并熟悉各类传输线参数的分析方法。

第一节:麦克斯韦方程的横电磁波形式

主要内容:讲述电磁波沿柱状导体系统传播的电磁波形式。

第二节:传输线方程

主要内容:传输线方程及其分布参数简介。

第三节:均匀传输线的稳态正弦波

主要内容:正弦波在均匀传输线上传输时各传输参量表达式的推导。

第四节:入射波,反射波,反射系数

主要内容:入射波,反射波,反射系数表达式的推导。

第五节:传输线方程的双曲函数型式及传输线的等值网络

主要内容:讲述传输线方程解的形式及其等值网络。

第六节:输入阻抗,开路线,短路线,驻波比

主要内容:推导开路、短路时,传输线的输入阻抗及驻波比。

第七节:传输线的圆图,反射系数圆图,阻抗圆图及导纳圆图

主要内容:讲述反射系数圆图,阻抗圆图及导纳圆图的推导过程和所代表的物理意义。第八节:史密斯圆图及其应用

主要内容:讲述史密斯圆图的组成结构及其应用举例。

第九节:传输线的阻抗匹配

主要内容:讲述三种不同类型的传输线阻抗匹配形式。

第十节:对称微带线

主要内容:讲述对称微带线的特征及其参量表达式

第十一节:微带线

主要内容:讲述微带线的特征及其参量表达式

第十二节:耦合带状线

主要内容:讲述耦合带状线的特征及其参量表达式

习题:李大年《微波原理与技术》北京师范大学出版社P410—P415

第三章:波导与谐振腔

内容简介:本章将讲述各类波导与谐振腔的电磁波传输方程的分析方法及其主模形式。

教学要求:熟练掌握各类波导及谐振腔内所传输的电磁波的场分量表达式及其所代表的物理含义,并能够通过场分量表达式推导出该波导的主模形式。

第一节:矩形波导

主要内容:讲述矩形波导内TE、TM、TEM波传输方程的一般表达式。

第二节:矩形波导中的主模TE10 模

主要内容:讲述矩形波导主模TE10 模的传输方程及基本参量。

第三节:圆波导

主要内容:讲述圆波导的传输方程及主模形式。

第四节:同轴线

主要内容:讲述同轴线的传输方程及主模形式。

第五节:圆柱形介质波导与光纤

主要内容:讲述圆柱形介质波导与光纤的传输方程及主模形式。

第六节:金属空腔谐振器

主要内容:讲述金属空腔谐振器的传输方程及主模形式。

第七节:同轴线谐振腔

主要内容:讲述同轴线谐振腔的传输方程及主模形式。

第八节:介质谐振腔

主要内容:讲述介质谐振腔的传输方程及主模形式。

习题:李大年《微波原理与技术》北京师范大学出版社P415—P416

第四章:微波网络基础

内容简介:本章讨论用集中参数的元件组合来等效微波系统的研究方法。

教学要求:熟练掌握微波网络的等效电路分析法及根据微波电路相关条件求等效电路散射矩阵的方法。

第一节:引言

主要内容:本章研究方法简介

第二节:均匀波导管的等效电路

主要内容:应用电压、电流波沿分布参数电路的传播来等效电磁波沿矩形波导管的传播。第三节:单端口网络

主要内容:应用集中参数的单端口网络来等效微波系统,并推广至多端口网络。

第四节:微波网络的广义克希荷夫定律

主要内容:微波网络的广义克希荷夫定律的讨论。

第五节:散射矩阵

主要内容:引入散射矩阵并证明其两大重要性质。

第六节:双端口网络

主要内容:双端口网络的讨论及其应用举例。

第七节:双口网络散射参数的实验测定,双口网络的外特性参数

主要内容:双口网络散射参数及其外特性参数的确定。

第八节:微波网络的信号流图

主要内容:微波网络散射参量的信号流图分析法

第九节:波导中简单不均匀性的等效电路

主要内容:应用定性的近似分析法,导出波导中一些简单不连续性的等效电路。

习题:李大年《微波原理与技术》北京师范大学出版社P416—P421

第二部分:微波无源电路与器件

第五章:微波滤波器与阻抗变换器

内容简介:本章主要介绍各类微波滤波器与阻抗变换器的设计方法。

教学要求:熟练掌握各类微波滤波器与阻抗变换器的设计方法并能进行简单的应用设计。第一节:概述

主要内容:本章内容简介。

第二节:滤波器的插入衰减综合法

主要内容:通过插入衰减综合法设计微波滤波器。

第三节:低通型滤波器的梯形网络综合法

主要内容:通过梯形网络综合法决定低通原型滤波器的元件值和电路形式。

第四节:微波低通滤波器设计法

主要内容:介绍由低通原型滤波器出发,设计微波低通滤波器的方法并举例说明。

第五节:微波高通与带通滤波器设计法

主要内容:介绍微波高通与带通滤波器的设计方法。

第六节:倒置变换器与变形原型滤波器

主要内容:介绍倒置变换器与变形原型滤波器的设计方法。

第七节:平行耦合线带通滤波器

主要内容:介绍平行耦合线带通滤波器的设计方法。

第八节:四分之一波长阶梯阻抗变换器的综合设计

主要内容:多节四分之一波长阻抗变换器设计方法简介。

习题:李大年《微波原理与技术》北京师范大学出版社P421—P422

第六章:微波多端网络与器件

内容简介:本章介绍了微波三端口网络、四端口网络、定向耦合器、功率分配器及铁氧体器件,对这些微波网络与器件的功能及散射矩阵参数进行了一些讨论。

教学要求:要求掌握各元器件的分析方法,并能够推导出一些器件的散射矩阵参数。

第一节:三端口网络,环形器

主要内容:证明三端口网络两大重要性质,并介绍特殊三端口网络——三端环形器。

第二节:E-T接头及H-T接头

主要内容:推导E-T接头及H-T接头散射矩阵的表达式。

第三节:四端口网络,魔T

主要内容:推导四端口网络及魔T散射矩阵的表达式。

第四节:混合环

主要内容:推导混合环散射矩阵的表达式。

第五节:定向耦合器

主要内容:推导定向耦合器散射矩阵的表达式。

第六节:波导小孔定向耦合器

主要内容:波导小孔定向耦合器的耦合度、隔离度及方向性等参数的分析。

第七节:平行耦合传输线定向耦合器

主要内容:推导平行耦合传输线定向耦合器散射矩阵的表达式。

第八节:微波功率分配器与功率合成器

主要内容:微波功率分配器与功率合成器工作情况分析。

第九节:微波铁氧体

主要内容:微波铁氧体特性简介。

第十节:微波铁氧体器件

主要内容:微波铁氧体器件简介。

习题:李大年《微波原理与技术》北京师范大学出版社P422—P425

第三部分:微波有源器件

第七章:微波电真空器件

内容简介:速调管、行波管、磁控管、反波管振荡器、回旋管及自由电子激光管的结构和工作原理简介。

教学要求:掌握各微波电真空器件的结构及工作原理。

第一节:引言

主要内容:本章简介。

第二节:双腔速调管

主要内容:分析双腔速调管的工作原理。

第三节:多腔速调管

主要内容:分析多腔速调管的工作原理。

第四节:反射速调管

主要内容:分析反射速调管的工作原理。

第五节:行波管

主要内容:行波管结构及工作原理简介。

第六节:慢波结构

主要内容:行波管中慢波结构的分析。

第七节:行波管的小信号理论

主要内容:采用空间电荷波法对行波管进行定量分析。

第八节:磁控管

主要内容:磁控管结构及工作原理简介。

第九节:返波管振荡器

主要内容:返波管振荡器结构及工作原理简介。

第十节:回旋管

主要内容:回旋管结构及工作原理简介。

第十一节:自由电子激光器

主要内容:自由电子激光器结构及工作原理简介。

习题:李大年《微波原理与技术》北京师范大学出版社P425—P426

第八章:微波半导体器件与电路

内容简介:本章简介了肖特基表面势垒二极管、微波混频器、转移电子振荡器与放大器、变容二极管与参量放大器、微波晶体管放大器和PIN二极管的结构及工作原理,并简介了微波集中元件电路与单片集成电路。

教学要求:要求对上述的微波半导体器件有所了解,并对微波集中元件电路与单片集成电路有所了解。

第一节:引言

主要内容:本章简介。

第二节:肖特基表面势垒二极管

主要内容:肖特基表面势垒二极管结构及工作原理简介。

第三节:微波混频器

主要内容:微波混频器结构及工作原理简介。

第四节:转移电子振荡器与放大器

主要内容:转移电子振荡器与放大器结构及工作原理简介。

第五节:变容二极管与参量放大器

主要内容:变容二极管与参量放大器结构及工作原理简介。

第六节:微波晶体管放大器

主要内容:微波晶体管放大器结构及工作原理简介。

第七节:PIN二极管及其应用

主要内容:PIN二极管结构及工作原理简介。

第八节:微波集总元件电路与微波单片集成电路

主要内容:微波集总元件电路与微波单片集成电路简介。

三、讲授教材及参考书目

讲授教材:李大年《微波原理与技术》北京师范大学出版社

参考书目:※R.E.Collin,Field Theory of Guided Waves,McGraw-Hill.

※吴明英毛秀英《微波技术》

※黄宏嘉《微波原理》科学出版社

※李嗣范《微波元件原理与设计》人民邮电出版社

※吴万春《微波网络及其应用》国防工业出版社

※廖承恩陈达章《微波技术基础》国防工业出版社

※J.L.Altman, Microwave Circuits, D.V AN NOSTRAND CMOPANY, Inc.

※小西良弘电磁波回路才一ム社

四、教学学时分配

微波技术应用

微波技术 一概述 微波是指波长范围为1mm~1m,频率范围为30×102 ~30×105MHz,具有穿透特性的电磁波。常用的微波频率为91 5MHz和 2 450MHz。微波作为一种电磁波,通常应用于广播、电视及通信技术中,近年来,随着科学技术的发展,微波作为一种能源,已逐渐应用于食品杀菌、干燥、烘烤、膨化、解冻等方面。 微波技术在食品工业中的应用可追溯到四十年代末期,1947年由美国雷声公司马文·贝克根据微波的加热效应制成了世界上第一台用于食品加热的微波炉。鉴于微波具有在食品内部生热并迅速产生均匀温度的观点,人们开始研究将它用于工业加热技术上以其开辟新的热能源,提高热能利用率和缩短加工时间,大约经历了十余年的探索,终于在1965年由美国Cryodry Comporation 公司研制成功了世界上第一台 915MHz/50kW隧道式微波干燥设备,并在Seyfert Foods食品公司首次投入实际应用,用来干燥油炸马铃薯片。此后微波能技术在美国、日本、加拿大和欧洲等发达国家在用来解决食品工业中的多种加热干燥、烹制、杀虫灭菌和回温解冻等方面相继获得成功并表现出强大的技术优势。到七十年代,世界各国普遍推广应用。例如在气候温和潮湿的日本,微波在食品工业中的应用占整个工业应用的60%。我国自1973年由南京电子管厂率先研制成功了工业微波干燥设备以来,经过了20年的努力,也积累了比较丰富的经验。目前我国已成功地应用微波能烧烤食品、干果焙烤、牛肉干燥、蔬菜脱水、快餐面干燥、食品杀菌、饮料杀菌、白酒陈化催熟等许多领域,并取得显著进展。 二微波技术的原理及特点 综合微波技术在食品工业中的各种应用可归结为如下原理。 (一)微波加热干燥原理 微波加热技术是一种新的加热方式。它是依靠以每秒245000万次速度进行周期变化的微波透入物料内,与物料的极性分子相互作用,物料中的极性(如水分子)吸收了微波能以后,改变其原有的分子结构,亦以同样的速度作电场极性运动,致使彼此间频繁碰撞而产生了大量的摩擦热,从而使物料内各部分在同一瞬间获得热能而升温。由于微波辐射下介质的热效应是内部整体加热的,即理论上所谓的“无温度梯度加热”,基本上介质内部不存在热传导现象,因此,微波可相当均匀地加热介质。微波加热技术与传统加热方法相比,有如下特性:①穿透力强。②热惯性小。③呈现选择加热特性。④具有反射性和透射性。 微波干燥是在微波理论,微波技术和微波电子管成就的基础上发展起来的一门新技术,微波干燥已在许多领域内获得广泛的应用。它是应用微波加热的原理, 使品温度上升,达到干燥的目的。微波干燥具有如下的特点: 1 .干燥速度快、干燥时间短 由于常规加热需要加热传热介质和环境,再进入食品,故需较长时间才能达到所需加热温度。而微波加热则是加热物体直接吸收微波能,加热速度大大高于常规加热方法,此时只需一般方法的十分之一到百分之一的时间就能完成整个加热和干燥的过程。 2. 产品质量高 由于加热时间短,又非热效应配合,因此,可以保存加工原料的色、香、味,并且维生素的破坏也较少。 3. 加热均匀

微波技术原理简述

微波原理 微波技术是一门需要高度实验技能的专业技术知识,微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题,微波是一门理论与实践密切结合的科技知识。 微波是一种频率非常高的电磁波。微波包括的波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右的电磁波。由于微波的频率很高,所以也叫超高频电磁波。目前国内只有915MHz和2450MHz 被广泛使用。 微波是电磁波,它具有电磁波的诸如反射、透射干涉、衍射、偏振以及伴随着电磁波能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。微波系统没有导线式电路,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。 l 微波的穿透深度 ①、渗透深度(穿透深度)当微波进入物料时,物料表面的能量密度是最大的,随着微 波向物料内部的渗透,其能量呈指数衰减,同时微波的能量释放给了物料。渗透深度可表示物料对微波能的衰减能力的大小。一般它有两种定义: ②渗透深度为微波功率从物料表面减至表面值的1/e(36.8%)时的距离,用DE表示,e 为自然对数底值。 DE=λ0/π gδ式中λ0--------自由空间波长; ε---------介电常数; tgδ-------介质损耗。 ③微波功率从物料表面衰减到表面值的1/2时的距离,即所谓半功率渗透深度D1/2,其表 达式为 渗透深度随波长的增大而变化,它与频率有关,频率越高,波长越短,其穿透力也越弱。 微波在空气中的渗透深度:2450MHz为12.2cm;915Mhz为33.3cm。 特别注意提醒:微波进入物料后,物料吸收微波能并将其转变为热能,微波的场强和功率就不断地被衰减,即微波透入物料后将进入衰减状态。不同的物料对微波能的吸收衰减能力是不同的,这随物料的介电特性而定。衰减状态决定着微波对介质的穿透能力。 l 微波的热效率 工业微波设备在生产工作中的热效率计算方法,行业内多数企业几乎依据1Kw的微波输出功率在1h时间内烘干1kg的水来笼统计算。这样的计算结果在设备工作过程中给客户和生产企业带来很多莫名的误区,从而给工业微波造成不必要的负面影响。 假设微波设备的输出功率为P0(kw),那么微波设备在1h的工作过程中,所产生的热效率应进行如下的估算: 式中:η微波加热效率,其值的大小与加热器损耗和负荷匹配系数确定,一般做到0.7~0.9;

微波技术基础实验指导书讲解

微波技术基础实验报告 所在学院: 专业班级: 学生姓名: 学生学号: 指导教师: 2016年5月13日

实验一微波测量系统的了解与使用 实验性质:验证性实验级别:必做 开课单位:学时:2学时 一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2.学习使用测量线 四、基本原理: 图1。1 微波测试系统组成 1.信号源 信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器

当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。 3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。 1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。2.了解测量线结构,掌握各部分功能及使用方法。 2.1按图检查本实验仪器及装置。 2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。 2.3调节信号源频率,观察指示器的变化。 2.4调节衰减器,观察指示器的变化。 2.5调节滑动架,观察指示器的变化。 六、预习与思考: 总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。 实验二驻波系数的测量

微波技术在各领域的应用 (2)

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波就是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波与短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其她波段的重要特点,它自被人类发现以来,就不断的得到发展与应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究与利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别就是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为止,家用微波炉、工业微波应用

微波技术原理试卷

《微波技术原理》课程试卷 20 -20 学年第一学期 得分 评卷人 一、填空题(每小题1分,共18分) 1、微波波段常用的传输线有 、 、 、 和 。 2、对于均匀无耗传输线,根据终端所接负载阻抗大小和性质的不同,其工 作状态分为 、 、 三种。 3、微波是最高的无线电波,其频率范围大约在 ~ 之间。它一般划分为 、 、 和 四个主要波段。 4、微波不同于其它波段的电磁波,其具有 、 、 、 和 等特性。 得分 评卷人 二、选择题(每小题2分,共6分) 1、厘米波的频率范围为( ) A 、0.3~3GHz B 、3~30GHz C 、30~300GHz D 、300~3000GHz 2、下列是二端口微波网络工作特性参量的是( ) A 、输入阻抗 B 、转移参量 C 、散色参量 D 、输入驻波比 3、终端负载与传输线不匹配,测得传输线中相邻两个电压振幅波节点之间的距离20mm ,则工作波长为( ) A 、5mm 、 B 、10mm C 、20mm D 、40mm 题号 一 二 三 四 五 六 总分 得分

得分评卷人 三、判断题(每小题2分,共8分) 1、均匀无耗传输线上各点反射系数的模是相等的。() 2、大中功率的微波系统中常采用矩形波导作为传输线和构成器件。() 3、传输线长度为10cm时,当信号为937.5MHz时,此传输线是短线。() 4、短路负载将电磁能量无反射全部吸收。() 得分评卷人 四、名词解释(每小题4分,共12分) 行波状态 驻波比 定向耦合器 得分评卷人 五、简答(每小题6分,共18分) 1、简述波导、同轴线、平面传输线在实际应用中各有何特点。 2、对传输线的基本要求是什么?

微波技术在各领域的应用

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波和短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断的得到发展和应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究和利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为

微波技术基础 简答题整理

第一章传输线理论 1-1.什么叫传输线?何谓长线和短线? 一般来讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同体组成的导波系统,均可成为传输线;长线是指传输线的几何长度l远大于所传输的电磁波的波长或与λ可相比拟,反之为短线。(界限可认为是l/λ>=0.05) 1-2.从传输线传输波形来分类,传输线可分为哪几类?从损耗特性方面考虑,又可以分为哪几类? 按传输波形分类: (1)TEM(横电磁)波传输线 例如双导线、同轴线、带状线、微带线;共同特征:双导体传输系统; (2)TE(横电)波和TM(横磁)波传输线 例如矩形金属波导、圆形金属波导;共同特点:单导体传输系统; (3)表面波传输线 例如介质波导、介质镜像线;共同特征:传输波形属于混合波形(TE波和TM 波的叠加) 按损耗特性分类: (1)分米波或米波传输线(双导线、同轴线) (2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) (3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微带线) (4)光频波段传输线(介质光波导、光纤) 1-3.什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什么? 传输线的特性阻抗是传输线处于行波传输状态时,同一点的电压电流比。其数值只和传输线的结构,材料和电磁波频率有关。 阻抗匹配时终端负载吸收全部入射功率,而不产生反射波。 1-4.理想均匀无耗传输线的工作状态有哪些?他们各自的特点是什么?在什么情况的终端负载下得到这些工作状态?

(1)行波状态: 0Z Z L =,负载阻抗等于特性阻抗(即阻抗匹配)或者传输线无限长。 终端负载吸收全部的入射功率而不产生反射波。在传输线上波的传播过程中,只存在相位的变化而没有幅度的变化。 (2)驻波状态: 终端开路,或短路,或终端接纯抗性负载。 电压,电流在时间,空间分布上相差π/2,传输线上无能量传输,只是发生能量交换。传输线传输的入射波在终端产生全反射,负载不吸收能量,传输线沿线各点传输功率为0.此时线上的入射波与反射波相叠加,形成驻波状态。 (3)行驻波状态: 终端负载为复数或实数阻抗(L L L X R Z ±=或L L R Z =)。 信号源传输的能量,一部分被负载吸收,一部分反射回去。反射波功率小于入射波功率。 1-5.何谓分布参数电路?何谓集总参数电路? 集总参数电路由集总参数元件组成,连接元件的导线没有分布参数效应,导线沿线电压、电流的大小与相位,与空间位置无关。分布参数电路中,沿传输线电压、电流的大小与相位随空间位置变化,传输线存在分布参数效应。 1-6.微波传输系统的阻抗匹配分为两种:共轭匹配和无反射匹配,阻抗匹配的方法中最基本的是采用λ/4阻抗匹配器和支节匹配器作为匹配网络。 1-7.传输线某参考面的输入阻抗定义为该参考面的总电压和总电流的比值;传输线的特征阻抗等于入射电压和入射电流的比值;传输线的波阻抗定义为传输线内横向电场和横向磁场的比值。 1-8.传输线上存在驻波时,传输线上相邻的电压最大位置和电压最小位置的距离相差λ/4,在这些位置输入阻抗共同的特点是纯电阻。 第二章 微波传输线 2-1.什么叫模式或波形?有哪几种模式?

电磁场理论与微波技术复习提纲

电磁场理论与微波技术复习提纲 一、总体要求 通过本课程的学习,建立起电磁场与电磁波的基本思想,掌握电磁场与微波技术的基本概念、基本原理、基本分析方法,对波导理论有比较完整的理解,了解电磁场与微波技术的最新发展和应用。 “电磁场理论与微波技术”由“电磁场与电磁波基本理论”和“微波技术基础”两部分构成。第一部分“电磁场理论”所占比例约为:55% 第二部分“微波技术基础”所占比例约为:45% “电磁场与电磁波基本理论”部分重点考查内容为: 基本概念和理论 静电场 恒定电场 麦克斯韦方程组 平面电磁波 “微波技术基础”部分考查内容为: 基本概念和理论 传输线理论 波导理论 微波网络基础 二、考试形式与试卷结构 1、试题分为选择题(20%)、填空题(20%)、名词解释题(8%)、简答题(10%)、计算题(42%)。试卷总分100分。 2、考试形式为闭卷考试 3、考试时间:120分钟 名词解释: 1、坡印廷矢量和平均坡印廷矢量 2、电位移矢量 3、主模 4、色散

5、体电荷分布、面电荷分布、线电荷分布、体电流分布、面电流分布、线电流分布 6、电偶极子 7、直线极化、左右旋圆极化、椭圆极化 8、趋肤效应 9、均匀平面波、TEM模、TE模、TM模 10、全反射和全透射 11、波导 12、基本振子和对称振子 13、简并现象 14、微波 简答题: 1、如何判断长线和短线? 2、何谓分布参数电路?何谓集总参数电路? 3、何谓色散传输线?对色散传输线和非色散传输线各举一个例子。 4、均匀无耗长线有几种工作状态?特点?条件是什么? 5、说明二端口网络几种参量的物理意义? 6、发生全反射和全透射的条件 7、分析微波网络的方法 8、写出常见的微波元件9、分析天线的方法10、写出常见的天线 11、用哪些参数可以描述天线的性能指标,并解释其中的一到两个参数。 12、通量和散度的区别 13、旋度和环流的区别14、负载匹配和电源匹配 计算题: 1、矢量分析 1.1、1. 2、1.4、1.15、1.20 2、无界空间均匀平面波2.45、2.46、3.2、3.14 3、理想介质和良导体为边界的均匀平面波垂直入射3.17、3.22 4、分离变量法2.23,平行导体板(ppt例题) 5、阻抗圆图 6、波导模式和波长等计算5.11、5.12 7、高斯定理和安培环路定理(ppt例题)

射频与微波技术原理及应用汇总

射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 0 B E t D H J t D B ρ???=- ????=+??=?= (1.1) 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。 电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。对于规则边界条件,Maxwell 方程有严格的解析解。但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。 由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。当0,0J ρ==时,有 222200E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基

础。传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法 低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L、C、R。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U、电流I转化为频率f、功率P、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”。具体内容包括: (1)、将均匀导波系统等效为具有分布参数的均匀传输线; (2)、将不均匀性等效为集总参数微波网络; (3)、确定均匀导波系统与不均匀区的参考面。 2、传输线方程及其解 传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。电路理论和传输线之间的关键不同处在于电尺寸。集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。 以传输TEM模的均匀传输线作为模型,如图1所示。在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。终端负载处为坐标起点,向波源方向为正方向。 图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有

微波原理与技术论文

摘要:微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,通过解决微波在传输、处理过程中的遵循的原理,逐渐使微波技术发展成为一门很完整的学科,并在工程上有日新月异的应用。在加热技术上形成一种全新的观念,在通信方面给信息领域带来一场空前的革命。关键词:微波技术;微波加热;通信;电磁波;天线 Abstract The theoretical basis of microwave technique is the classical electromagnetic theory, the goal is to solve the practical problems in microwave engineering. Microwave is a knowledge of a close combination of theory and practice, the theoretical starting point of microwave technology is the Max equations, solved by microwave in transmission, processing process follow the principle, the development of microwave technology has become a very complete discipline, and change rapidly used in engineering. The formation of a new idea in the heating technology in communication, to the information industry brought an unprecedented revolution. 1.引言 随着科学技术的迅速发展和生产工艺的不断改进,微波技术已在许多工业生产领域得到应用。在国内,微波技术已应用于玻璃纤维、化工产品、保温材料、木材等的干燥,食品、医疗的灭菌、干燥和焙烤。并在医疗、环保、农业等领域也有所应用。微波技术的应用,提高了生产效率和产品质量,降低了能耗和环境污染,减轻了人的劳动强度,提高了生产效益。在国际上,许多工业发达国家都对微波的工业应用非常重视,把微波技术作为改进生产工艺和提高产品质量的重要手段。 2.微波的特性 一是似光性。微波波长非常小,当微波照射到某些物体上时,将产生显著的反射和折射,就和光线的反、折射一样。同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性。这样利用微波就可以获得方向性好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位和距离,这就是雷达导航技术的基础。 二是穿透性。微波照射于介质物体时,能深入该物体内部的特性称为穿透性。例如微波是射频波谱中惟一能穿透电离层的电磁波(光波除外)。因而成为人类外层空间的“宇宙窗口”;微波能穿透生物体,成为医学透热疗法的重要手段;

微波原理概述.

微波原理概述 1、微波技术原理 微波技术是一门需要高度实验技能的专业技术知识,微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,麦克斯维方程组本身就是从实践中归纳、总结出来的。大多数微波实际应用的工程问题都不能通过理论计算得到精确的解析解。在研究微波工程问题时,为了避开一些复杂的数学运算和无解析解的问题,常需要根据具体情况和一些基本的物理概念对所研究的问题做简化、等效或近似处理,因此,通过实践来修正理论分析结果是每个微波工程技术人员具备的基本技能。 2、微波定义 微波是一种频率非常高的电磁波。微波包括的波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右的电磁波。由于微波的频率很高,所以也叫超高频电磁波。 为了进行比较,这里将微波、工业用电和无线电中波广播的频率与波长范围列于表中。 因为微波的应用极为广泛,为了避免相互的干扰,供工业、科学及医学使用的微波频段是不同的,现将其列于表中 不同工作频率的微波系统具有不同的技术特性、生产成本和用途,微波系统的工作频率越高。其结构尺寸就越小;微波通讯系统的工作频率越高,其信息容量越大;微波雷达系统的工作频率越高,雷达信号的方向性和系统的分辨率就越高。微波的频率越高,其大气传输和传输线传输的损耗就越大。 目前国内只有915MHz和2450MHz 被广泛使用。在较高的两个频率段还没有合适的大功率工业设备。 3、微波的特殊性质

微波是电磁波,它具有电磁波的诸如反射、透射干涉、衍射、偏振以及伴随着电磁波能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。在微波系统中,组件的电性质不能认为是集总的,微波系统没有导线式电路,交、直流电的传输特性参数以及电容和电感等概念亦失去了其确切的意义。在微波领域中,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。 ⑴在研究微波问题时,应使用电磁场的概念,许多高频交变电磁场的效应不能忽略。例如微波的波长和电路的直径已是同一数量级,位相滞后现象已十分明显,这一点必须加以考虑。 ⑵微波传播时是直线传播,遇到金属表面将发生反射,其反射方向符合光的反射规律。 ⑶微波的频率很高,因此其辐射效应更为明显,它意味着微波在普通的导线上传输时,伴随着能量不断的向周围空间辐射,波动传输将很快地衰减,所以对传输组件有特殊要求。 ⑷当入射波与反射波相迭加时能形成波的干涉现象,其中包括驻波现象。在微波波导或谐振腔中,我们也利用多种模式的电磁场的分布、迭加来改善电磁场分布的均匀性。 ⑸微波能量的空间分布同一般电磁场能量一样,具有空间分布性质。哪里存在电磁场,哪里就存在能量。例如微波能量传输方向上的空间某点,其电场能量的数值大小与该处空间的电场强度的二次方有关,微波电磁场总能量为空间点的电磁场能量的总和。 4、微波与材料的相互作用 当微波在传输过程中遇到不同材料时,会产生反射、吸收和穿透现象,这些作用和其程度、效果取决于材料本身的几个主要的固有特性:介电常数、介质损耗角正切(tgδ,简称介质损耗)、比热、形状、含水量的大小等。 ⑴常用材料 在微波加工系统中,常用的材料有导体、绝缘体、介质、极性和磁性化合物几类。 ①导体一定厚度以上的导体,如铜、银、铝之类的金属,能够反射微波,因此在微波系统中,常利用导体反射微波的这种特殊的形式来传播微波能量。例如微波装置中常用的波导管,就是矩形或圆形的金属管,通常由铝或黄铜制成。它们像光纤传导光线一样,是微波的通路。 ②绝缘体在微波系统中,绝缘体有其完全不同于普通电路中的地位。绝缘体可透过微波,并且它吸收的微波功率很小。微波和绝缘体相互间的影响,就象光线和玻璃的关系一样,玻璃使光线部分地反射,但大部分则透过,只有很少部分被吸收。在微波系统中,根据不同情况使用着玻璃、陶瓷、聚四氟乙烯、聚丙烯塑料之类的绝缘体,它们常作为反应器的材料。由于这种“透明”特性,在微波工程中也常用绝缘体材料来防止污物进入某些要害部位,这时的绝缘体就成为有效的屏障。

微波技术原理及其在化学化工领域的应用

HUNAN UNIVERSITY 题目:微波技术原理及其在化学化工领域的应用

微波技术原理及其在化学化工领域的应用 摘要:本文介绍了微波技术原理以及其发展背景,并针对微波技术在化学化工领域的应用概况进行了总结和介绍,也提出了应用中的问题以及展望。 关键词:微波技术,化学,化工 1.引言 微波是一种波长很短的电磁波,其频率介于300 MHz-300 GHz,波长介于1 mm-1 m之间。因其波长介于远红外线和短波之间,故称之为微波。微波具有的特点为高频性、波动性、热特性和非热特性[1]。随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。近年来,微波以其高效、均匀、节能、环保等诸多优点受到广泛关注,并逐渐成为一种新型能源得到越来越广泛的应用[2]。 2.微波技术的发展 微波技术兴起于20世纪30年代,在电视、广播、通讯等相关技术领域中得到了广泛的应用。经过长期发展后,美国于 1945 年率先发现了微波的又一特性,即热效应,并创新性的将其作为一种非通讯能源开始应用于工业、农业以及相关科学研究中。 微波技术的发展主要取决于微波器件的应用和发展。早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,实验未能取得实质性的进展[3]。1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实验条件。美国电话电报公司的George C. Southworth.将波导用作宽带传输线并申请了专利,同时,美国麻省理工学院的M.L Barrow 完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[4]。20世纪40年代,第二次世界大战期间,雷达的出现和使用引起了人们对微波理论和技术的高度重视,并研制了很多微波器件,在此期间,微波技术迅速发展并在

微波技术基础

摘要 本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。 10 This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.

微波技术基础 第一章微波简介 1.1 什么是微波 微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz 300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~ MHz3000 括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。 下图为电磁波谱分布图: 1.2微波的基本特点 1.似光性和似声性 微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。这样利用微波就能获得方向性极好、体积小的天线设

微波技术基础复习重点

第一章引论 微波是指频率从300MHz到3000GHz范围内的电磁波,相应的波长从1m到0.1mm。包括分米波(300MHz到3000MHz)、厘米波(3G到30G)、毫米波(30G 到300G)和亚毫米波(300G到3000G)。 微波这段电磁谱具有以下重要特点:似光性和似声性、穿透性、信息性和非电离性。 微波的传统应用是雷达和通信。这是作为信息载体的应用。 微波具有频率高、频带宽和信息量大等特点。 强功率—微波加热弱功率—各种电量和非电量的测量 导行系统:用以约束或者引导电磁波能量定向传输的结构 导行系统的种类可以按传输的导行波划分为: (1)TEM(transversal Electromagnetic,横电磁波)或准TEM传输线 (2)封闭金属波导(矩形或圆形,甚至椭圆或加脊波导) (3)表面波波导(或称开波导) 导行波:沿导行系统定向传输的电磁波,简称导波 微带、带状线,同轴线传输的导行波的电磁能量约束或限制在导体之间沿轴向传播。是横电磁波(TEM)或准TEM波即电场或磁场沿即传播方向具有纵向电磁场分量。 开波导将电磁能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播,其导波为表面波。 导模(guided mode ):即导波的模式,又称为传输模或正规模,是能够沿导行系统独立存在的场型。特点: (1)在导行系统横截面上的电磁场呈驻波分布,且是完全确定的,与频率以 及导行系统上横截面的位置无关。 (2)模是离散的,当工作频率一定时,每个导模具有唯一的传播常数。 (3)导模之间相互正交,互不耦合。 (4)具有截止频率,截止频率和截止波长因导行系统和模式而异。 无纵向磁场的导波(即只有横向截面有磁场分量),称为横磁(TM)波或E波。 无纵向电场的导波(即只有横向截面有电场分量),称为横电(TE)波或H波。 TEM波的电场和磁场均分布在与导波传播方向垂直的横截面内。 第二章传输线理论 传输线是以TEM模为导模的方式传递电磁能量或信号的导行系统,其特点是横向尺寸远小于其电磁波的工作波长。 集总参数电路和分布参数电路的分界线:几何尺寸L/工作波长>1/20。 这些量沿传输线分布,其影响在传输线的每一点,因此称为分布参数。 传播常熟是描述导行系统传播过程中的衰减和相位变化的参数。 传输线上的电压和电流是由从源到负载的入射波和反射波的电压以及电流叠加,在传输线上呈行驻波混合分布。 特性阻抗:传输线上入射波的电压和入射波电流之比,或反射波电压和反射波电流之比的负值,定义为传输线的特性阻抗。 传输线上的电压和电流决定的传输线阻抗是分布参数阻抗。

工业微波技术原理及其主要特点

工业微波技术原理及其主要特点 地点:微朗科技微波实验室 单位:株洲市微朗科技有限公司 时间:2008-07-10 声明:本研究成果归株洲市微朗科技有限公司所有,仿冒必究. 微波加热主要特点: 1、加热迅速 微波加热与传统的加热方式不同,不需热传导过程,它是使被加热物料本身成为加热体,因此即使是热传导性较差的物料,也可以在极短的时间内达到加热温度。 2、均匀 无论物体各部位形状如何,它是使物料表里表里同时均匀渗透电磁波而产生热能,不受物体形状限制,所以加热更均匀,不会出现外焦内生的现象 3、节能高效 由于含有水份的物质极易吸收微波而发热,因此,除少量的传输损耗外几乎无其它损耗。微波加热与远红外加热相比,节约能源1/3以上。 4、防霉杀菌,不破坏物料营养成分 微波加热具有热力效应和生物效应,因此,能在较低温度下杀死霉菌和细菌;传统加热方式加热时间较长,造成营养成分损失较大,而微波加热迅速,能最大限度地保存物料的活

性和食品中的营养成份。 5、工艺先进,可连续生产 只要控制微波功率即可实现加热或终止。应用PLC人机界面可进行加热工艺过程规范的可编程自动化控制,它有完善的传送系统,可确保连续化生产,节省劳力。 6、安全无害 微波是控制在金属制成的加热室内工作,微波泄漏被有效抑制,不存在放射线危害及有害气体的排放,不产生余热和粉尘污染,极不污染实物也不污染环境。 微波加热原理: 波是频率从300MHz~300GMHz的电磁波,其方向和大小随时间作周期性变化。微波与物料直接作用,将超高频电磁波转化为热能的过程即为微波加热过程。水是强烈吸收微波的物质,物料中的水分子是极性分子,在微波作用下,其极性取向随着外电磁场的变化而变化,915MHz的微波可使水分子每秒运动18.3亿次,致使分子急剧磨擦、碰撞,使物料产生热化和膨化等一系列过程而达到微波加热目的 微波杀菌机理: 微波杀菌是微波的热效应和生物效应共同作用的结果。微波对细菌的热效应是使蛋白质变性,使细菌失去营养、繁殖和生存的条件而死亡;生物效应是微波电场改变细胞膜断面的电位分布,影响细胞周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良,不能正常新陈代谢,细菌结构功能紊乱,生长发育受到抑制而死亡。此外,决定细菌正常生长和稳定遗传繁殖的核酸(RNA)和脱氧核糖酸(DNA),是由若干氢键紧密连接而成的卷曲形大分子。足够强的微波场可以导致氢键松驰、断裂和重组,从而诱发遗传基因突变,或染色体畸变,甚至断裂。

射频与微波技术原理及应用总结归纳

精心整理 射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 E D H J D B ρ ??=???=+?=?= 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电流密度矢量。方程,得到空间任何位置的电场、磁场分布。对Maxwell 方程只有公司的Ensemble 和HFSS 、Agilent 公司的Momentum Remcom 公司的XFDTD 等。 0,0J ρ==时,有 222 2 00 E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基础。传输线 理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法

低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L 、C 、R 。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U 、电流I 转化为频率f 、功率P 、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”(1)(2)(3)2、传输线方程及其解 传输线方程是传输线理论的基本方程,的微分方程。 λ),其 图图2、线元及其等效电路 11()()Z I z dz Y U z dz = (2.1) 其中Z z 1z 2U B I B z z e e e e γγγγ--++12(z)=A (z)=A { (2.2) 结论:1.电压、电流具有波的形式; 2.电压、电流由从信号源向负载传播的入射波和从负载向信号源传播的反射波叠加而 成,即(),()U z U U I z I I +-+-=+=+。 3、传输线的特性参数

微波技术的应用与发展

微波技术的应用与发展 近年来,随着我国国民经济快速的发展和技术的现代化,出现了各种新型技术,微波技术作为一种新的工业加工技术,他的出现解决了市场上的一些技术创新不足,品质滞后等问题,提高了产品的档次。 微波作为一种加工手段,它首先在食品行业中得到了应用。微波作用于食品,食品表里同时吸收微波能,使温度升高。细胞在微波场的作用下,其分子也被激化并作高频振动,产生热效应,这就是微波炉的原理。利用微波可对食品进行膨化、烘干、加热、杀菌脱腥等加工处理。目前已用于多种食品的生产中。 木材加工微波可对木板进行均匀、快速烘干,干燥只需十几分钟,且不开裂、变形小,同时杀死木材内部的卵虫和幼虫。此外,微波加工具有选择性,含水率高的部分吸收微波多,产生的热量大,反之则产生热量小。 在生产生活方面,微波被作为一种能源加以利用,微波对介质材料穿透深度远比红外的加热深度强,。微波加热的时间短且加热均匀,微波加热时,物体各部位都能均匀通过电磁波,产生热量,因此均匀性大大提高。 微波干燥是一种新型、节能的干燥方式。不需要燃料,不需要锅炉,无污染,无能耗,不需要热传导,加热均匀,物料内外同时提温,干燥速度奇快,对含水量在35%以下的化工产品,干燥速度可缩短数百倍。适用于化工原料、精细化工、新能源材料、橡胶制品、化学试剂产品等等。 微波杀菌是利用了微波对细菌的热效应使其蛋白质结构发生变化,从而失去生物活性,使菌体死亡或受到严重干扰而无法繁殖。微波的作用,使微生物在其生命化学过程中所产生的大量电子、离子和其它带电粒子的生物性排列组合状态和运动规律发生改变,亦即使微生物的生理活性物质发生变化。同时,电场也会使细胞膜附近的电荷分布改变,导致膜功能障碍,使细胞的正常代谢功能受到干扰破坏。使微生物细胞的生长受到抑制,甚至停止生长或使之死亡。微波能还能使微生物细胞赖以生存的水分活性降低,破坏微生物的生长环境。 微波通讯是微波技术的传统应用领域,最重要的应用之一就是多路通信。微波的频率很高,频带宽,比短波频带宽数十倍,能够承载的信息量大。

相关文档
相关文档 最新文档