文档库 最新最全的文档下载
当前位置:文档库 › 11.固液界面的微观结构

11.固液界面的微观结构

11.固液界面的微观结构
11.固液界面的微观结构

一,固液界面的微观结构

固液界面微观结构分类:

根据用显微镜观察生长着的晶体的界面状况,可以将其微观结构分为两类,即光滑界面和粗糙界面

()一光滑界面:

1.从显微尺度来看,光滑界面呈参差不齐的锯齿状,界面两侧的固液两相是截

然分开的,在界面的上部,所有的原子都处于液体状态,在界面的下部,所有的原子都处于固体状态,即所有的原子都位于结晶相晶体结构所规定的位置上。

2.这种界面通常为固相的密排晶面。由于这种界面呈曲折的锯齿状,所以又称

为小平面界面。

3.当从原子尺度观察时,这种界面是光滑平整的。

()一光滑界面图2.19:

1.原子尺度看:

a)界面光滑平整,

b)固液两相截然分开,

c)界面上固相原子位于固相晶体结构所规定的位置上,

d)形成平整的原子平面

2.在光学显微镜下,光滑界面由曲折的若干小平面组成,所以又称为

()二粗糙界面:

1.从原子尺度观察时,这种界面高低不平,并存在几个原子间距厚度的过渡层。

在过渡层中,液相和固相的原子犬牙交错的分布着

2. 由于过渡层很薄,在光学显微镜下,这类界面是平直的,又称为非小平面界

除了少数透明的有机物之外,大多数材料包括金属材料是不透明的,因此不能依赖直接观察的方法确定界面的性质

那么如何判断材料界面的微观结构类型呢,杰克逊对此进行了深入的研究 当晶体与液体处于平衡状态时的固液界面:

当晶体与液体处于平衡状态时,从宏观上看,其界面是静止的。但是从原子尺度看,晶体与液体的界面不是静止的,每一时刻都有大量的固相原子离开界面进入液相,同时又有大量液相原子进入固相晶格上的原子位置,与固相链接起来,只不过两者的速率相等。

光滑界面和粗糙界面的定义:

1. 设界面上可能具有的原子位置数为N ,其中A N 个位置为固相原子所占据,那么界面上被固相原子占据位置的比例为N

N x A =

,被液相原子占据的位置比例则为x -1。

2. 如果界面上有近50%的位置为固相原子所占据,即%50≈x ,这样的界面即

为粗糙界面。

3. 如果界面上有近0%或100%的位置为晶体原子所占据,则这样的界面称为光

滑界面

界面的平衡结构应当是界面能最低的结构

当在光滑界面上任意添加原子时其界面自由能的变化s G ?可以用下式表示: ()()()x x x x x x NkT G m s --++-=?1ln 1ln 1α式中,k 为波尔茨曼常数,m T 是熔点,α是杰克逊因子

取不同的α值作m

s NkT G ?与x 的关系线2.19 1. 当2≤α时,在5.0=x 处,界面能处于最小值,即相当于相界面上的一半位

置为固相原子所占据,这样的界面即对应于粗糙界面;

2. 当5≥α时,在x 靠近0处或1处,界面能最小,即相当于界而上的原了位置有

极少量或极大量为固相原子所占据,这样的界面正是对应于光滑界面。 各种材料的杰克逊因子和界面性质:

1. 纯金属与合金和某些有机物的杰克逊因子2≤α,其固液界面为粗糙型界面,

2. 许多有机化合物的5≥α,其固液界面为光滑型界面

3. 少数材料如Si Ge Sb Bi ,,,和氢化物晶体等的5~2=α,处于中间状态,情况

比较复杂,其固液界面呈混合型,且与界面的取向有关

材料微观结构观察实验报告

材料微观结构观察开放实验报告 学院:系:专业:年级: 姓名:学号:实验时间:注明日期和第几节课 指导教师签字:成绩: 一、实验目的和要求 1.了解材料微观结构观察与分析技术的实际应用; 2.了解光学金相显微镜的基本原理、主要部件的功能和显微镜的正确操作;3.了解制作金相试样的步骤; 4.观察工程材料典型的微观结构,了解微观结构与材料性能之间的关系。 二、实验原理 观察材料的微观结构时,首先对试样进行研磨和拋光,得到一平整镜面。然后对试样的抛光表面进行适当的化学浸蚀处理,由于不同微观结构的腐蚀程度不同,使得腐蚀后的试样抛光面对入射光线反射强弱不同,因此借助各部分的明暗差异,便可在光学显微镜下观察到材料内部的微观结构形貌。 不同材料具有不同的微观结构,同种材料经过不同加工处理后其微观结构也会发生变化,从而使材料具有不同的性能。 三、主要仪器设备及材料 光学金相显微镜、台虎钳、镶嵌机、预磨机、抛光机、金相砂纸、浸蚀剂、吹风机、金相试样(45钢、铸铁和铝合金等) 四、制备金相试样和观察试样微观结构的主要过程。 首先有专门的试件样品,将一平面稍微用力放在有磨砂纸的转盘上,同时磨砂纸转盘旋转,进行研磨,砂纸转盘上还有一些起润滑作用的液体,在试件表面和磨砂纸之间均匀分布。研磨要进行多次,并且砂纸也要更换,从最粗糙的砂纸开始磨起,一直到精细的砂纸。最后要将试件样品磨好的面在酸性液体里浸泡下,

残余杂质会被洗掉。最后可以在光学显微镜等观测仪器下进行观测了~ 五、实验后的收获。 材料是科技进步的核心,开发和使用材料的能力是衡量社会技术水平和未来技术发展的尺度,材料就存在于我们的周围,生活中我们会接触或使用各种各样的材料。本实验通过真实事例介绍材料微观结构观察与分析技术在人们生活和工作中的重要应用,以及光学金相显微镜的原理和正确操作,动手制作金相试样,并在显微镜下观察材料的微观结构形象,将奇妙,变幻多端的材料微观实世界展现在我眼前,增加我对身边材料的了解,拓展和识面。

浙教2011版科学八年级下册《第2章 粒子的模型与符号 第2节 物质的微观粒子模型》_5

第2节物质的微观粒子模型 要点详解 知识点1 构成物质的粒子模型 1.分子的构成 (1)水的电解模型如图所示。 水电解的实质是水分子分解成原子和原子,氢原子和氧原子重新组合成氢气分子和氧气分子。 (2)分子的定义:分子是由原子构成的,分子可以直接构成物质。在由分子构成的物质中,分子是保持物质的最小粒子。 (3)原子的定义:原子是中的最小粒子(在化学变化中原子不能再分)。原子也可以直接构成物质。 (4)分子与原子的区别与联系: 2. 不同的分子 (1)不同种类、不同数目的原子能构成不同的分子。构成分子的原子可以是同种原子,也可以是不同种原子。如1个氧分子由2个氧原子构成,1个臭氧分子由3个氧原子构成,1个水分子由2个氢原子和1个氧原子构成。 (2)不同的分子能构成不同的物质。如水由水分子构成,二氧化碳由构成,氢气由氢分子构成。 (3)同种原子在直接构成物质时,如果原子的不同,所形成的物质结构就不同。如金刚石和石墨都是由碳原子直接构成的,但碳原子的排列方式不同,所以金刚石和石墨的结构也就不同。 例1 (上海市闵行区模拟)对于如图,理解错误的是() A.原子可结合成分子 B.氢分子的形成过程可表示为: C.物质都是由分子构成

D.化学变化的实质是分子的分解和原子的重新组合 知识点2 粒子的大小与质量 1.分子和原子的大小 (1)原子的半径:一般在m数量级。 (2)直观感受分子、原子的大小: ①1mL水约有20滴水,一滴水约含有1021个水分子。 ②如果把水分子放大到乒乓球那么大,乒乓球就要放大到地球那么大。 ③铅笔留下的黑色笔迹是碳原子的堆积,一个句号竟有1018个碳原子。 结论:原子很小,分子也很小。单个的分子和原子无法用肉眼看到,也无法用放大镜和光学显微镜看到,只有用现代最先进的扫描隧道显微镜才能看到一些较大的分子。 2.分子和原子的质量 (1)1个氢原子的质量:1.674×10-27kg;1个氧原子的质量:2.657×10-26kg;1个碳原子的质量:1.993×10-26kg。 (2)1个氢分子的质量:3.348×10-27kg;1个二氧化碳分子的质量:7.307×10-26kg。结论:分子和原子的质量都很小。 说明不同种类的分子和原子质量不同,体积也不同。分子与构成该分子的原子相比,分子的质量(体积)比原子大。但不是所有分子的质量(体积)都比原子大。 例2 (丹东中考)下列关于分子和原子的说法正确的是() A.分子可分,原子不可分 B.分子间有间隔,原子间没有间隔 C.分子的质量一定比原子的质量大 D.分子、原子都可以直接构成物质 易错点拨 易错点利用分子与原子的性质分析和解决问题 例3 (毕节中考)物质是由分子、原子等微粒构成的。用分子的相关知识解释下列现象,正确的是() A.缉毒犬能根据气味发现毒品,是由于分子在不断运动 B.变瘪的乒乓球放入热水中能鼓起来,是由于分子受热变大 C.水降温会结冰,是因为结冰时水分子静止不动 D.将石块研磨成粉状,说明分子变小了 综合应用 例4 下图是电解水(水→氢气+氧气)模型图,据图填空。 (1)在这个过程中,水分子最终变成了和,这说明发生了(填“物理”或“化学”)变化。 (2)在这一过程中,分子的种类发生了变化,水分子已经变成了其他分子,水分子已经不能再保持水的(填“物理”或“化学”)性质。 (3)在这个模型图中,可以看到一种比分子更小的微粒,这种微粒在这一变化中保持不变,

镁铝双金属连接及界面微观结构

镁铝双金属连接及界面微观结构 面对日益严峻的环境污染以及能源危机,汽车的轻量化越来越重要,而轻质的镁、铝合金成为实现汽车轻量化,达到节能环保目标的首选材料。固-液复合铸造的方式是制造形状复杂的汽车气缸体的一种非常简单有效的手段。 本课题是以镁合金AZ91D和铝合金ZL105为基本材料,实验前在铝合金基体上采用基本预处理、化学浸锌、电镀锌以及热浸锡等四种处理方法,并设计浇注温度、保温温度、保温时间等铸造参数,通过固-液复合铸造的方法使镁、铝合金连接起来。铸造实验完毕后通过金相观察、扫描能谱分析、显微硬度分析以及 XRD物相分析,详细地了解连接界面的组织构成及分布,通过数据分析探究界面 行为和镁铝双金属连接的机理。 结果表明:在一定的温度和时间下保温,镁铝双金属可以通过在铝基体上进 行基本预处理、化学浸锌、电镀锌以及热浸锡等方法以固-液复合铸造的方式连接起来。镁铝合金之间主要是通过扩散、反应相变两种机制互相结合而连接起来的。 扫描、能谱以及XRD物相数据分析表明:对于保温30min的试样,保温30min 基本预处理试样从AZ91D镁合金至ZL105铝合金之间的界面组织过渡区可分为3个小的扩散过渡区,其主要组织为:δ-Mg固溶体+Mg17Al12相→Mg17Al12相 +Mg2Al3相+Mg2Si相→Mg2Al3相+Mg2Si相+α-Al固溶体;而保温30min化学浸锌与电镀锌试样的过渡区组织却有着很大的差别,其含有保温30min基本预处理试样中不具有的β-Zn固溶体,而保温30min基本预处理试样却含有保温30min 化学浸锌和电镀锌试样中不具有的Mg2Al3相及Mg2Si相,这表明化学浸镀或者电镀的Zn层限制了 Al元素及Si元素的扩散。此外,在扩散层厚度方面:基本预处

高中物理-晶体的微观结构、固体新材料

高中物理-晶体的微观结构、固体新材料 A级抓基础 1.下列晶体中属于金属晶体的是( ) A.金刚石和氧化钠B.锗和锡 C.银和氯化钠D.镍和金 解析:根据晶体的结合类型可知氧化钠和氯化钠是离子晶体;锗、锡和金刚石是原子晶体;银、镍和金是金属晶体.故选D. 答案:D 2.(多选)晶体表现出各向异性是由于( ) A.晶体在不同方向上物质微粒的排列情况不同 B.晶体在不同方向上物质微粒的排列情况相同 C.晶体内部结构的无规则性 D.晶体内部结构的有规则性 解析:组成晶体的物质微粒是有规则排列的,由于在不同方向上物质微粒的排列情况不同,造成晶体在不同方向上的物理性质不同,选项A、D正确.答案:AD 3.(多选)纳米材料具有许多奇特效应,如( ) A.电光效应B.量子尺寸效应 C.高硬度D.表面和界面效应 解析:由纳米材料的良好性能表现知B、D项正确. 答案:BD 4.(多选)下列说法中正确的是( ) A.化学成分相同的物质只能生成同一种晶体 B.因为石英是晶体,所以由石英制成的玻璃也是晶体 C.普通玻璃是非晶体 D.一块铁虽然是各向同性的,但它是晶体 解析:一种元素可以生成多种晶体,因为其分子可能排成几种空间点阵结构.玻璃为非晶体,而石英为晶体,所有的金属都为多晶体,故C、D正确.答案:CD 5.下列说法正确的是( )

A.新材料特殊的性能不仅包括特殊的物理性能,也包括一些特殊的化学性能B.制作集成电路时,尽管对硅单晶片的完整性有很高的要求,但是可以允许单晶片内原子的规则排列出现微小的缺陷 C.纳米是长度单位,1 nm=10-10 m D.金属薄膜可以配合读写磁头设计的改进,增大磁记录的密度 解析:新材料的特殊性能是指物理性能,A错;制作集成电路的硅单晶片是不允许硅单晶片内原子的规则排列出现微小的缺陷的,B错;1 nm=10-9 m,C错;由于金属薄膜的晶粒尺寸小、晶粒各向异性大,晶粒间的相互交换作用弱,是可以配合读写磁头的改进增大磁记录的密度的,D正确. 答案:D B级提能力 6.(多选)下列新型材料中,可用作半导体材料的有( ) A.高分子合成材料B.新型无机非金属材料 C.复合材料D.光电子材料 解析:高分子合成材料有合成橡胶、塑料和化学纤维等:新型无机非金属材料有工业陶瓷、光导纤维、半导体材料;复合材料分为结构复合材料和功能复合材料;光电子材料有光电子半导体材料、光纤和薄膜材料、液晶显示材料等,故B、D正确. 答案:BD 7.纳米晶体材料在现代科技和国防中具有重要的应用.下列关于晶体的说法正确的是( ) A.晶体内的微观粒子在永不停息地做无规则热运动 B.晶体内的微观粒子间的相互作用很强,使各粒子紧紧地靠在一起 C.晶体的微观粒子在不同方向上排列情况不同 D.晶体的微观粒子在空间排列上没有顺序,无法预测 解析:

八年级物理全册:7.5物质结构的微观模型知识归纳练习题

八年级物理全册:7.5物质结构的微观模型知识归纳练习题 姓名:________ 班级:________ 成绩:________ 一、单选题 1 . 自来水笔吸墨水时,只要按几下弹簧片,墨水就进入橡皮管里了,这是由于()A.弹簧片作用使墨水进入橡皮管B.手的压力使墨水进入橡皮管 C.橡皮管的吸力使墨水进入橡皮管D.大气压作用使墨水进入橡皮管 2 . 下列说法正确的是() A.物体温度降低,一定要放出热量B.燃料燃烧越充分,热值一定越大C.两物体温度相同时不会发生热传递D.热水的内能一定比冷水内能大 3 . 下面对宇宙和微观世界的描述中,错误的是() A.宇宙是一个有层次的天体结构系统B.分子是构成物质的最小微粒 C.物质是由大量分子组成的D.分子处于不停的运动中 4 . 下面哪种现象或实验说明了原子是由更小的粒子组成,且这些粒子有的是带电的()A.固体有一定的体积B.摩擦起电现象 C.卢瑟福散射实验D.美味佳肴香味扑鼻 5 . 下列有关热的说法正确的是 A.晶体在熔化过程中温度不变,内能也不变 B.内燃机的压缩冲程,主要是用热传递的方法增加了气缸内的物质的内能 C.用高压锅煮饭是为了降低气压,提高水的沸点 D.长时间压在一起的铅板和金板互相渗入,这种现象是扩散现象 6 . 在物体没有发生物态变化的前提下,下列各种说法正确的是() A.温度较高的物体,所含的热量较多 B.质量相同的物体,温度较高的,所含的热量较多 C.同一物体温度较高时,所含的热量较多

D .同一物体温度升高较大时,所吸收的热量较多 7 . 今年的“5.18”海交会两岸交流更加广泛,来自台湾阿里山的桧木聚宝盆散发出的芬芳奇香,吸引人们在十几米外就能闻香而去,这主要是因为桧木芳香的分子 A .相互之间存在引力 B .相互之间存在斥力 C .相互之间存在间隙 D .在不停地做无规则运动 8 . 关于分子热运动,下列说法正确的是( ) A .扩散现象只能发生在气体之间、液体之间 B .可以近似地认为,气体的分子之间除了相互碰撞之外,没有相互作用 C .物体的运动速度越大,其分子做无规则运动的速度也一定大 D .分子间引力和斥力并不是同时存在的 9 . 临沂兰陵牛蒡茶一面打扫毒素,一面以营养成分进行滋养和调节身体,风行国际茶叶市场。泡茶、喝茶中包含很多物理知识, 下列说法中错误的是( ) A .打开茶叶盒, 茶香飘满屋———茶叶的升华现象 B .泡茶时, 部分茶叶上浮———茶叶受到的浮力大于自身的重力 C .茶水太烫, 吹一吹凉得快———吹气加快了茶水的蒸发 D .透过玻璃茶杯看到手指变粗———装水的茶杯相当于一个放大镜 10 . 关于分子,下列认识中正确的是 A .红墨水在水中散开说明分子间有斥力 B .吸盘能牢牢吸在玻璃上,说明分子间存在引力 C .尘土飞扬,说明分子在不停地运动 D .封闭在容器内的液体很难被压缩,说明分子间有斥力 11 . 如图所示的四种物理现象属于汽化的是 A .春天冰雪融化 B .水烧开时冒出“白气”

固液界面的吸附

实验四 固液界面上的吸附 一.实验目的 1. 了解固体吸附剂在溶液中的吸附特点。 2. 做出在水溶液中用活性炭吸附醋酸的吸附等温线,求出Freundlich 等温式中的经验常数。 3. 通过测定活性炭在醋酸溶液中的吸附,验证弗伦特立希(Freundlich )吸附等温式对此体系的适用性。 二、实验原理 (一)计算依据: 当一溶液与不溶性固体接触时,固体表面上溶液的成分常与体相溶液内部的不同,即在固-液界面发生了吸附作用。由于溶液中各组分被固体吸附的程度不同,吸附前后溶液各组分的浓度将发生变化,根据这种变化可计算出吸附量。 Γ=V (C 0-C )/m (1) 式中:m ——吸附剂的质量(g ) C ——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol ) C 0——被吸附物质的初始浓度(1 -?L mol ) V ——所用溶液的总体积(L ) 在 V 、C 0 、m 已知的情况下,Γ和C 的关系如何呢? 活性炭是一种高分散的多孔性吸附剂,在一定温度下,它在中等浓度溶液中的吸附量与 溶质平衡浓度的关系,可用Freundlich 吸附等温式表示:Γ=n kC m x 1 = (2) 式中:m ——吸附剂的质量(g ) x ——吸附平衡时吸附质被吸附的量(mol ) m x ——平衡吸附量(1 -?g mol ) C ——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol )

k 、n ——经验常数(与吸附剂、吸附质的性质和温度有关)。将式(2)取对数,得 k C n m x lg lg 1 lg += (3) 以m x lg 对c lg 作图,可得一条直线,直线的斜率等于n 1,截距等于k lg ,由此可求得n 和 k 。 (二)本实验操作原理: 本次实验是在活性炭—醋酸体系中,验证Freundlich 吸附等温式的适用性,并求出经验常数n 和k : NaOH+HAc==NaAc+H 2O 根据这个中和反应,计量滴定所用的NaOH 的量,可知HAc 的浓度c ,再根据 (1)式计算Γ值,即可作图。 三、仪器试剂 仪器:150ml 磨口具塞锥型瓶6个,150ml 锥型瓶6个,长颈漏斗6个,称量瓶1个,50ml 酸式、碱式滴定管各1支,5ml 移液管1支,10ml 移液管2支,25ml 移液管3支,电子天平1台,恒温振荡器1套,定性滤纸若干。 试剂:活性炭(20~40目,比表面300~400m 2/g ),0.41 -?L mol HAc 溶液,0.10001 -?L mol NaOH 标准溶液,酚酞指示剂。 四、实验步骤 1. 打开恒温振荡器的开关,预热10分钟,调节温度为25℃。 2. 将6个干净的磨口具塞锥型瓶编号,并各称入1.0克活性炭。 3. 用移液管按下表分别加入0.41 -?L mol HAc 和蒸馏水,并立即盖上塞子,置于25℃恒温振荡器中,调节好速度,摇荡一小时。 4. 从各号瓶中按下表所规定的平衡取样量V 取样,放入1~6标号的小锥形瓶中,各加入5滴酚酞指示剂,用NaOH 标准溶液各滴定两次(滴至粉红色刚好不褪去),碱量取平均值记入下表。 5. 用过的活性炭回收于托盘中,清洗仪器,关闭电源,整理实验台。 五、数据记录及处理 1. 将实验数据记入表,计算吸附前各瓶中醋酸的初浓度C 0和吸附平衡时的浓度C ,并按(1)式计算吸附量一同填入表.

高分子材料微观结构

高分子材料是以高分子化合物为主要组分的材料。高分子化合物是分子量很大的化合物,每个分子可含几千、几万甚至几十万个原子。 在元素周期表中只有ⅢA、ⅣA、ⅤA、ⅥA中部分非金属、亚金属元素(如N、C、B、O、P、S、Si、Se等)才能形成高分子链。由于高聚物中常见的C、H、O、N等元素均为轻元素,所以高分子材料具有密度小的特点 (1)高分子链的几何形态 1)线型分子链由许多链节组成的长链,通常是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好,硬度低,是热塑性材料的典型结构。 2)支化型分子链在主链上带有支链。这类结构高聚物的性能和加工都接近线型分子链高聚物。 3)体型分子链分子链之间由许多链节相互横向交联。具有这类结构的高聚物硬度高、脆性大、无弹性和塑性,是热固性材料的典型结构。 (2)高分子链的构象及柔顺性 由于单链内旋转所产生的大分子链的空间形象称为大分子链的构象。由于构象变化获得不同卷曲程度的特性。这种能拉伸、回缩的性能称为分子链的柔性,这是聚合物具有弹性的原因。 (3)高聚物的聚集态结构 高分子化合物的聚集态结构是指高聚物内部高分子链之间的几何排列或堆砌结构,也称超分子结构。依分子在空间排列的规整

性可将高聚物分为结晶型、部分结晶型和无定型(非晶态)三类。 在实际生产中大多数聚合物都是部分晶态或完全非晶态。晶态结构在高分子化合物中所占的质量分数或体积分数称为结晶度。结晶度越高,分子间作用力越强,因此高分子化合物的强度、硬度、刚度和熔点越高,耐热性和化学稳定性也越好;而与键运动有关的性能,如弹性、伸长率、冲击韧性则降低。 陶瓷亦称无机非金属材料,是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(、氧化物、碳化物、硅化物等)为原料,经粉碎、配置、成型和高温烧制而成的无机非金属材料。陶瓷的基本相结构主要有:晶相、玻璃相、气相等。 晶体相是陶瓷的主要组成相:主要有硅酸盐、氧化物和非氧化物等。它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。 玻璃相是一种非晶态物质。其作用:①粘连晶体相,填充晶体相间空隙,提高材料致密度;②降低烧成温度,加快烧结;③阻止晶体转变,抑制其长大;④获得透光性等玻璃特性;⑤不能成为陶瓷的主导相:对陶瓷的机械强度、介电性能、耐热耐火性等不利。 气相是陶瓷内部残留的孔洞;成因复杂,影响因素多。陶瓷根据气孔率分致密陶瓷、无开孔陶瓷和多孔陶瓷。气孔对陶瓷的性能不利(多孔陶瓷除外)。普通陶瓷气孔率5%~10%,特种陶瓷气孔率5%以下,金属陶瓷气孔率低于0.5%。 工程材料的性能 金属材料的物理性能主要有密度、熔点、导热导电性、热膨胀性

11.固液界面的微观结构

一,固液界面的微观结构 固液界面微观结构分类: 根据用显微镜观察生长着的晶体的界面状况,可以将其微观结构分为两类,即光滑界面和粗糙界面 ()一光滑界面: 1.从显微尺度来看,光滑界面呈参差不齐的锯齿状,界面两侧的固液两相是截 然分开的,在界面的上部,所有的原子都处于液体状态,在界面的下部,所有的原子都处于固体状态,即所有的原子都位于结晶相晶体结构所规定的位置上。 2.这种界面通常为固相的密排晶面。由于这种界面呈曲折的锯齿状,所以又称 为小平面界面。 3.当从原子尺度观察时,这种界面是光滑平整的。 ()一光滑界面图2.19: 1.原子尺度看: a)界面光滑平整, b)固液两相截然分开, c)界面上固相原子位于固相晶体结构所规定的位置上, d)形成平整的原子平面 2.在光学显微镜下,光滑界面由曲折的若干小平面组成,所以又称为 ()二粗糙界面: 1.从原子尺度观察时,这种界面高低不平,并存在几个原子间距厚度的过渡层。 在过渡层中,液相和固相的原子犬牙交错的分布着

2. 由于过渡层很薄,在光学显微镜下,这类界面是平直的,又称为非小平面界 面 除了少数透明的有机物之外,大多数材料包括金属材料是不透明的,因此不能依赖直接观察的方法确定界面的性质 那么如何判断材料界面的微观结构类型呢,杰克逊对此进行了深入的研究 当晶体与液体处于平衡状态时的固液界面: 当晶体与液体处于平衡状态时,从宏观上看,其界面是静止的。但是从原子尺度看,晶体与液体的界面不是静止的,每一时刻都有大量的固相原子离开界面进入液相,同时又有大量液相原子进入固相晶格上的原子位置,与固相链接起来,只不过两者的速率相等。 光滑界面和粗糙界面的定义: 1. 设界面上可能具有的原子位置数为N ,其中A N 个位置为固相原子所占据,那么界面上被固相原子占据位置的比例为N N x A = ,被液相原子占据的位置比例则为x -1。 2. 如果界面上有近50%的位置为固相原子所占据,即%50≈x ,这样的界面即 为粗糙界面。 3. 如果界面上有近0%或100%的位置为晶体原子所占据,则这样的界面称为光 滑界面 界面的平衡结构应当是界面能最低的结构 当在光滑界面上任意添加原子时其界面自由能的变化s G ?可以用下式表示: ()()()x x x x x x NkT G m s --++-=?1ln 1ln 1α式中,k 为波尔茨曼常数,m T 是熔点,α是杰克逊因子

《混凝土-微观结构性能和材料》笔记

笔记之前: 1.这本书是译著。原著名:《CONCRETE Microstructure,Properties,and Materials》由库玛·梅塔( Mehta)和保罗 .蒙特罗(Paulo )合著。 2.本笔记所选摘的都是普通教材中可能忽略的地方,不体现混凝土科学的主要框架,只以本书的体色为主:细致,深入,全面。 3.作为思考混凝土某一方面研究的借鉴,目的是拓宽思路。 笔记: 第一篇硬化混凝土的微结构和性能 第一章绪论 第二章混凝土的微结构(提出了混凝土中过渡区的重要性) 第三章强度(见附图1影响混凝土强度各个因素的相互作用) 第四章尺寸稳定性 “需要注意,混凝土构件通常处于被约束的状态,约束有时来自路基的摩擦和端部的其他构件,但更多还是来自钢筋和混凝土内、外部的应变差。” “混凝土在约束状态下,干缩应变诱发的弹性拉应力和粘弹性行为带来的应力松弛之间的交互作用,是大多数结构变形和开裂的核心。” “不是所有变量都以同一种方式控制混凝土的强度和弹性模量(通常,粗骨料的弹性模量越高、用量越大,混凝土的弹性模量就越大。低强或中强 混凝土的强度不受骨料孔隙率正常变化的影响。)” (附图2 影响混凝土弹性模量的不同参数) 第五章耐久性 (附图3 混凝土劣化的物理原因) “在一种冻融环境中耐冻的混凝土在另一种组合条件下却可能被摧毁。” “经显微镜观测证实:当冰在气孔(而不是毛细孔道)中形成时,水泥浆体会收缩” “对一种骨料,临界尺寸(在一定的孔径分布、渗透性、饱和度与结冰速率条件下,大颗粒骨料可能会受冻害,但小颗粒的同种骨料则不会)并非 单一值,因为他还取决于结冰速率、饱和度和骨料的渗透性。” (附图4 化学反应引起混凝土劣化的模型) (附图5 常见环境条件下混凝土损伤的整体模型) “氯化物对硫酸盐膨胀的影响清楚地表明:我们在模拟材料行为时经常犯错误,即为了简单起见只考虑单一因素的影响,而没有充分考虑其他可能 会显著改变这种影响的因素的存在。” 第二篇混凝土原材料、配合比和早龄期性能 第六章水硬性水泥 区分水泥熟料的化学组成(氧化钙、二氧化硅、三氧化二铝、三氧化二铁、水等)与矿物组成(硅酸三钙、硅酸二钙、氯酸三钙、铁铝酸四钙等); “任何化学反应的主要特征包括物质变化、能量变化和反应速率三个方面” “水化水泥浆体的电子显微研究表明,水泥早期,水化主要以完全溶解机理为主;水化后期,由于溶液中离子的迁移受阻,剩余水泥颗粒的水化则 主要按固相反应机理进行”

几种材料微观结构分析方法简介

几种材料微观结构分析方法简介 Introduction to several materials microstructure analysis method 黑道梦境间谍 指导教师:XXX 摘要:材料的微观世界丰富多彩,处处蕴含着材料之美.然而如何分析材料的微观结构是一个很重要的问题.本文章将介绍几种分析材料微观结构的方法, 通过微观结构分析仪器来对微观材料结构进行探索 关键词:材料微观结构X射线激光拉曼光谱电子显微分析方法

1 引言 材料科学在21世纪的地位愈发重要,各种各样的材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。材料科技是未来高科技的基础, 而微观材料分析方法是材料科学中必不可少的实验手段。因此, 微观材料分析方法对材料科学甚至是整个科技的发展都具有重要的意义和作用. 2 X射线分析 X射线是一种波长很短的电磁波,这是1912年由劳埃M.von Laue指导下的著名的衍射实验所证实的。X射线衍射是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法。这种方法是建立在一定晶体结构模型基础上的间接方法,即根据与晶体样品产生衍射后的X射线信号的特征去分析计算出样品的晶体结构与晶格参数,并且可以达到很高的精度。然而由于它不是显微镜那样可以直接观察,因此也无法把形貌观察与晶体结构分析微观同位地结合起来。由于X射线聚焦的困难,所能分析样品的最小区域(光斑)在毫米数量级,因此对微米及纳米级的微观区域进行单独选择性分析也是无能为力的。 通常获得X射线是利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(A,称为靶)和阴极(C,灯丝)密封在一个玻璃-金属管壳内,阴极通电加热,在阳极和阴极间加以直流高压U(数千伏至数十千伏),则阴极产生的大量热电子e将在高压电场作用下飞向阳极,在它们与阳极碰撞的瞬间产生X射线,如图1.1所示。 因此,产生X射线的条件是: 1产生自由电子; 2使电子作定向的高速运动; 3在其运动的路径上设置一个障碍物使电子突然减速或停止。 用仪器检测此X射线的波长,发现其中包含两种类型的波谱,即连续X射线波谱和特征X射线波谱。 其中特征X射线是:当加于X射线管两端的电压增高到与阳极靶材相应的某一特定值UK时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材料的标志或特征,故称为特征X射线谱。特征谱只取决于阳极靶材元素的原子序数。 3 激光拉曼光谱分析 拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射 (Rayleighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉

第五章固液界面解析

第五章固-液界面 要求:掌握Young 方程和接触角;了解粘附功和内聚能,Young-Dupre公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman理论,Debye-Hukel 对Gouy-Chapman公式的近似处理,Stern对Gouy-Chapman和Debye-Hukel 理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。 §5.1 Young方程和接触角 1、固体表面的润湿 固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。 根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示三种情况。 三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。 σ和平衡接触角或接触角θ:三相平衡周边任意一点上的液气界面张力 lg σ之间的夹角,叫润湿接触角θ,如图5-2所示。 液固界面张力 ls

接触角θ可定量描述固体被液体润湿的大小,接触角越小,润湿性越好,接触角越大,润湿性越差。一般分下面三种情况: (1)θ< 90o 时:被润湿,润湿过程对外做功,有放热现象; (2)θ= 90o 时:中等,无现象; (3)θ> 90o 时: 不被润湿,外界对系统做功,有吸热现象。 3、Young 方程 如图5-2 所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有: 0cos lg =-+sg ls σθσσ θ σσσc o s lg +=ls sg (5-1) 上述方程即为Young 方程,它是研究固液润湿作用的基础方程。 §5.2 粘附功和内聚能 设有α,β两相,其相界面张力为αβσ,如图5-3所示,在外力作用下分离 为 独立的α,β两相,表面张力分别为βασσ,。在这一过程中,外界所作的功为a W : αββασσσ-+=a W (5-2) a W 是将结合在一起的两相分离成独立的两相外界所作的功,叫粘附功。 若将均相物质分离成两部分,产生两个新界面,如图5-4所示,则上式中,

材料微观结构与性能分析报告

实用标准 完成时间:2016年XX月XX日

摘要 材料分析检测技术,是关于材料成分、结构、微观形貌的检测技术及相关理论基础的研究,在众多领域的研究和生产中被广泛应用。本报告以Mg/Al扩散焊接接头的检测分析为例,分别介绍了扫描电镜(SEM)、X光衍射技术(XRD)、电子探针(EPMA)等材料微结构表征手段和显微硬度、断裂强度测试等材料力学性能测试手段的具体应用。 关键词:材料分析;微观形貌;力学性能 Abstract Material analysis and testing technology are detection technologies and theoretical foundations about material composition, structure, microstructure. They are widely used in many fields of research and production. This report introduce the detection of Mg/Al diffusion bonding joint as an example, and discusses the application progress of X-ray diffraction technology in material analysis, such as SEM, XRD, EPMA which are used for material microstructure analysis and microhardness, breaking strength which are used for mechanical properties testing. Keywords: materials analysis; microstructure; mechanical properties

固液界面的吸附

固液界面的吸附

————————————————————————————————作者:————————————————————————————————日期:

实验四 固液界面上的吸附 一.实验目的 1. 了解固体吸附剂在溶液中的吸附特点。 2. 做出在水溶液中用活性炭吸附醋酸的吸附等温线,求出Freu nd lic h等温式中的经验常数。 3. 通过测定活性炭在醋酸溶液中的吸附,验证弗伦特立希(Freund lich)吸附等温式对此体系的适用性。 二、实验原理 (一)计算依据: 当一溶液与不溶性固体接触时,固体表面上溶液的成分常与体相溶液内部的不同,即在固-液界面发生了吸附作用。由于溶液中各组分被固体吸附的程度不同,吸附前后溶液各组分的浓度将发生变化,根据这种变化可计算出吸附量。 Γ=V(C 0-C)/m (1) 式中:m ——吸附剂的质量(g) C——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol ) C0——被吸附物质的初始浓度(1 -?L mol ) V ——所用溶液的总体积(L ) 在 V 、C 0 、m 已知的情况下,Γ和C 的关系如何呢? 活性炭是一种高分散的多孔性吸附剂,在一定温度下,它在中等浓度溶液中的吸附量 与溶质平衡浓度的关系,可用Freun dlich 吸附等温式表示:Γ=n kC m x 1 = (2) 式中:m ——吸附剂的质量(g ) x ——吸附平衡时吸附质被吸附的量(mo l) m x ——平衡吸附量(1-?g mol )

C——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol ) k、n ——经验常数(与吸附剂、吸附质的性质和温度有关)。将式(2)取对数,得 k C n m x lg lg 1 lg += (3) 以m x lg 对c lg 作图,可得一条直线,直线的斜率等于n 1,截距等于k lg ,由此可求得n 和 k。 (二)本实验操作原理: 本次实验是在活性炭—醋酸体系中,验证Freu ndl ich 吸附等温式的适用性,并求出经验常数n 和k: Na OH+HAc ==NaAc+H2O 根据这个中和反应,计量滴定所用的NaOH 的量,可知HAc 的浓度c ,再根据 (1)式计算Γ值,即可作图。 三、仪器试剂 仪器:150ml 磨口具塞锥型瓶6个,150ml 锥型瓶6个,长颈漏斗6个,称量瓶1个,50ml 酸式、碱式滴定管各1支,5m l移液管1支,10ml 移液管2支,25ml 移液管3支,电子天平1台,恒温振荡器1套,定性滤纸若干。 试剂:活性炭(20~40目,比表面300~400m2 /g),0.41-?L mol HAc 溶液,0.10001 -?L mol NaOH 标准溶液,酚酞指示剂。 四、实验步骤 1. 打开恒温振荡器的开关,预热10分钟,调节温度为25℃。 2. 将6个干净的磨口具塞锥型瓶编号,并各称入1.0克活性炭。 3. 用移液管按下表分别加入0.41 -?L mol HA c和蒸馏水,并立即盖上塞子,置于25℃恒温振荡器中,调节好速度,摇荡一小时。 4. 从各号瓶中按下表所规定的平衡取样量V 取样,放入1~6标号的小锥形瓶中,各加入5滴酚酞指示剂,用N aOH 标准溶液各滴定两次(滴至粉红色刚好不褪去),碱量取平均值记入下表。 5. 用过的活性炭回收于托盘中,清洗仪器,关闭电源,整理实验台。 五、数据记录及处理 1. 将实验数据记入表,计算吸附前各瓶中醋酸的初浓度C0和吸附平衡时的浓度C,并按(1)

晶体生长第六章 界面的微观结构

第六章 界面的微观结构 §1. 晶体的平衡形状 1. 界面能极图与晶体的平衡形状 γ(n)—界面能 γ(n)dA=最小 液体 γ(n)= γ=常数——球形 晶体 ——界面能最低的晶面所包围(低指数面) §2. 邻位面与台阶的平衡结构 1. 奇异面(低指数面、原子密排面、界面能最低的面) 邻位面 非奇异面 界 面 能 极 图

2. 邻位面台阶化 邻位面→台阶(总界面能最低) §2. 台阶热力学性质 1. 台阶——奇异面的一条连续曲线,线之间则有一个原子的高 度差。 台阶是起止于晶体边缘或形成闭合曲线,不会终止在晶面内。 hk y Z tg -=??=θ

2. 台阶棱边能:单位长度台阶具有的自由能(产生单位长度台 阶所作之功)台阶有线张力(棱边能大小),使台阶缩短。 3. 台阶棱边能的各项异性——台阶扭折化 h tg k /θ= 4. 台阶的平衡结构 台阶上的扭折取决于台阶取向,当θ=0(台阶和密排方向一致),k →0,这只在0k 时成立。热涨落可在台阶上产生扭折。 扭折有正负号。 扭折产生与台阶吸附空位或原子有关。 α+=α- α++α-+α0=1 α+:产生正扭折机率 台 阶 的 扭 折 化

α- :产生负扭折机率 α0:不产生扭折的机率 细微平衡原理(The principle of detailed balancing )求扭折形成能 a: 2Φ1 2扭折 b: 4Φ1 4扭折 一个扭折形成能为Φ1 c: 0 0 )/exp(//10 0kT Φ-==∴-+αααα 台阶任意位置产生扭折的总机率(正和负)为: )/exp(210kT Φ-=+=-+αααα 台阶有n 原子,a 为原子间距,台阶长na,台阶上的扭折数为: n (α++α- ) 扭折平均距离: +-+-+=+=+=α αααα2)(0a a n na X 由于α++α-+α0=α0+2α+=1 即: )(1 αααα+=++ }2){exp(210+Φ=∴kT a X X 0>>a , )exp(210kT a X Φ≈∴ T →0k 时,X 0→∞ 扭折密度为零

固液界面的吸附

实验四固液界面上的吸附 1. 了解固体吸附剂在溶液中的吸附特点。 2. 做出在水溶液中用活性炭吸附醋酸的吸附等温线,求出Freundlich等温式中的经验常数。 3. 通过测定活性炭在醋酸溶液中的吸附,验证弗伦特立希(Freundlich )吸附等温式对此体系的适用性。 二、实验原理 (一)计算依据: 当一溶液与不溶性固体接触时,固体表面上溶液的成分常与体相溶液内部的不同,即在固-液界面发生了吸附作用。由于溶液中各组分被固体吸附的程度不同,吸附前后溶液各组分的浓度将发生变化,根据这种变化可计算出吸附量。 r =V (C0-C)/m ⑴ 式中:m 吸附剂的质量(g) C――吸附平衡时被吸附物质留在溶液中的浓度(mol I,) C0――被吸附物质的初始浓度(mol丄‘) V ――所用溶液的总体积(L) 在V、C O、m已知的情况下,r和C的关系如何呢? 活性炭是一种高分散的多孔性吸附剂,在一定温度下,它在中等浓度溶液中的吸附量与 1 x — 溶质平衡浓度的关系,可用Freundlich吸附等温式表示:r = kC n m ⑵ 式中:m 吸附剂的质量(g) x ----- 吸附平衡时吸附质被吸附的量(mol) ---- 平衡吸附量(mol g ')

m C――吸附平衡时被吸附物质留在溶液中的浓度(mol L^ ) k、n――经验常数(与吸附剂、吸附质的性质和温度有关)。将式(2)取对数,得 x 1 lg lg C lg k (3) m n x 1 以lg 对lg c作图,可得一条直线,直线的斜率等于,截距等于lgk,由此可求得n和m n k。 (二)本实验操作原理: 本次实验是在活性炭一醋酸体系中,验证Freundlich吸附等温式的适用性,并求出经验常数n 和k: NaOH+HAc==NaAc+H2O 根据这个中和反应,计量滴定所用的NaOH的量,可知HAc的浓度c,再根据(1)式计 算r值,即可作图。 三、仪器试剂 仪器:150ml磨口具塞锥型瓶6个,150ml锥型瓶6个,长颈漏斗6个,称量瓶1个,50ml 酸式、碱式滴定管各1支,5ml移液管1支,10ml移液管2支,25ml移液管3支,电子天平1台,恒温振荡器1套,定性滤纸若干。 试剂:活性炭(20?40目,比表面300?400m2/g) , 0.4 mol I* HAc溶液, 0.1000 mol L NaOH标准溶液,酚酞指示剂。 四、实验步骤 l. 打开恒温振荡器的开关,预热10分钟,调节温度为25 C。 2. 将6个干净的磨口具塞锥型瓶编号,并各称入 1.0克活性炭。 3. 用移液管按下表分别加入0.4mol L 4HAc和蒸馏水,并立即盖上塞子,置于25C恒温振 荡器中,调节好速度,摇荡一小时。 4. 从各号瓶中按下表所规定的平衡取样量V取样,放入1~6标号的小锥形瓶中,各加入5 滴酚酞指示剂,用NaOH标准溶液各滴定两次(滴至粉红色刚好不褪去),碱量取平均值记 入下表。 5. 用过的活性炭回收于托盘中,清洗仪器,关闭电源,整理实验台。

固液界面吸附实验报告

固液界面吸附实验报告 物理化学实验报告 姓名: 学号: 活性炭在醋酸水溶液中对醋酸的吸附 一、实验目的 1、了解固体吸附剂在溶液重点吸附特点。 2、通过测定活性炭在醋酸溶液中的吸附,验证弗劳因特立希(Freundlich)吸附等温式。 3、作出在水溶液中用活性炭吸附醋酸的吸附等温式,求等温式中的经验常数。二、实验原理 固液界面吸附分为分子吸附和离子吸附。分子吸附就是非电解质及弱电解质中的吸附;而离子吸附是指强电介质溶液中的吸附。通常,把被吸附的物质称为吸附质,把具有吸附作用的物质称为吸附剂。充当吸附剂的物质一般都是多孔性的,也就是具有较大的比表面吉布斯函数。本实验采用活性炭作为吸附剂,在一定温度下,根据弗劳因特立希(Freundlich)吸附等温式,研究活性炭在中等醋酸溶液中的吸附情况: 1xn,ke m x衡时,吸附质被吸附的物质的量(mol);为式中m为吸附剂的质量(g);为吸附平xm-1-1平衡吸附量(mol?g);c为吸附平衡时吸附质在溶液中的浓度(mol?L);k和n是与吸附质、吸附剂及温度有关的常数。 对上式两边取对数: x1lg,lgc,lgk mn

xlg以对作图,得到一条直线,根据直线斜率和截距,就可以求出n和k。lgcm 【实验试剂和仪器】 三、实验仪器试剂: 振荡器1台;磨口具塞锥形瓶6个;锥形瓶6个;长颈漏斗6个;电子天平1台(0.01)移液管1支(25mL);移液管2支(10mL);移液管1支(5mL);酸式滴定管1支;碱式滴定管1支; -1HAc溶-1NaOH粉末活性炭;0.4 mol?L液;0.1000 mol?L标准溶液;定性滤纸若干; 四、实验步骤 1 取6个干洁的具塞锥形瓶并编号,用电子天平准确称量2. 0g活性炭分别倒入锥形瓶。 -1HAc和然后按表1-1分别用酸式滴定管和碱式滴定管加入0.4mol?L蒸馏水,并立即用塞子盖上,置于25?恒温振荡器中振荡1小时。 2 滤去活性炭,用锥形瓶接收滤液。如果锥形瓶内有水,可用初滤液10mL分两次洗涤弃去。 3 按下表要求,从相应锥形瓶中用移液管取规定体积的样液,以酚酞作指示剂,用 -1的标准N0.1000 mol?LaOH滴定两次,碱量平均值记录在表中。 物理化学实验报告 五、实验数据及其结果 1、将实验数据记录在下表中。 2、计算吸附前醋酸的初始浓度和吸附平衡时的浓度。并根据下面公式计算平衡cc0 x吸附量: m

相关文档
相关文档 最新文档