文档库 最新最全的文档下载
当前位置:文档库 › 城市高压天然气管道弯管曲率半径的探讨

城市高压天然气管道弯管曲率半径的探讨

城市高压天然气管道弯管曲率半径的探讨
城市高压天然气管道弯管曲率半径的探讨

曲率与挠率

曲率与挠率 摘要:三维欧氏空间中的曲线中的曲率与挠率是空间曲线理论中最基本、最重要的两个概念,分别刻画空间曲线在一点邻近的弯曲程度和离开密切平面的程度,本文中给出了曲率与挠率的定义及其计算公式,并根椐公式 实例进行计算,以及曲率和挠率关于刚性运动及参数变换的不变性. 关键词:曲率与挠率 平面特征 刚性运动 1. 曲率与挠率的定义及其几何意义 1.1曲率的解析定义 设曲线C 的自然参数方程为()s r r =,且()s r 有二阶连续的导矢量r ,称()s r 为曲线C 在弧长为s 的点处的曲率,记为()()s r s k =,并称()s r 为C 的曲率向量,当 ()0≠s k 时,称()() s k s p 1 = 为曲线在该点处的曲率半径. 1.2 挠率的解析定义 空间曲线不但要弯曲,而且还要扭曲,即要离开它的密切平面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率,为此我们先给出如下引理. 引理:设自然参数曲线C :()s r r =本向量为βα ,和γ ,则0=?α r ,即r r 垂直于α . 另一方面由于1=r ,两边关于弧于s 求导便得 0=?r r , 即r 垂直于r ,这两方面说明r 与γα ?共线,即r 与β 共线. 由()βτ s r -=(负号是为了以后运算方便而引进的)所确定的函数()s r 称为曲线C

的挠率.当()0≠s τ时,它的倒数 () 1 s τ称为挠率半径. 1.3曲率与挠率的几何意义 1.3.1 曲率的几何意义 任取曲线C :()s r r =上的一点()p s 及其邻近点()Q s s +?,P 和Q 点处的单位 切向量分别为()()s r s =α和()()s s r s s ?+=?+ α,它们的夹角设为θ?,将()s s ?+α 的起点移到()p s 点,则()()2 sin 2θ αα?=-?+s s s ,于是 ()() s s s s s s ?????=??= ?-?+θθθ θαα2 2sin 2sin 2 故 ()()s r s k = ()() s s s s s s s s ??=?????=?-?+=→?→?→?→?θθθθ ααθθ000 lim lim 2 2sin lim lim 这表明曲线在一点处的曲率等于此点与邻近点的切线向量之间的夹角关于弧长的变化率,也就是曲线在该点附近切线方向改弯的程度,它反映了曲线的弯曲程度.如果曲线在某点处的曲率愈大,表示曲线在该点附近切线方向改变的愈快,因此曲线在该点的弯曲程度愈大. 1.3.2挠率的几何意义 由挠率的定义和()γ τ =s ,因此挠率的绝对值表示曲线的副法向量关于弧长的变化率,换句话说,挠率的绝对值刻画了曲线的密切平面的变化程度.所以曲线的挠率就绝对值而言其几何意义是反映了曲线离开密切平面的快慢,即曲线的扭曲程度. 1.4 直线与平面曲线的特征

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

完整word版,各种曲率半径(通信与广电)

通信电缆的分类及特点 双屏蔽数字同轴电缆的技术要求:电缆安装敷设温度为-5—50度,储存和工作温度为-30—70度。电缆安装与运行的最小弯曲半径为电缆最大外径的7.5倍。 机房设备安装的工艺要求 电缆布放:电缆转弯应均匀圆滑,转弯的曲率半径应大于电缆直径的5倍 光缆布放:槽道内光纤应顺直、不扭绞,拐弯处曲率半径应不小于光缆直径的20倍 天馈线系统安装要求 移动基站馈线系统和室外光缆:馈线拐弯应圆滑均匀,弯曲半径应大于或等于馈线外径的20倍,软馈线的弯曲半径应大于或等于其外径的10倍 卫星地球站馈线系统:同轴电缆馈线转弯的曲率半径应不小于电缆直径的12倍,LDF4-50欧姆的同轴电缆转弯的曲率半径应不小于125mm 电源施工技术馈电母线安装和电源线信号线布放:铠装电力电缆的弯曲半径不得小于外径的12倍,塑包线和胶皮电缆不得小于其外径的6倍 线路工程通用施工技术 电缆曲率半径必须大于共外径的15倍 直埋线路施工技术 直埋光(电)缆敷设安装及保护:光缆在各类管材中穿放时,管材内径应不小于光缆外径的1.5倍 综合布线工程施工技术 电缆布放中的注意事项:应避免电缆过度弯曲,安装后的电缆弯曲半径不得低于电缆直径的8倍;对典型的六类电缆,弯曲半径应大于50mm。

气流敷设光缆技术 硅芯管道的敷设:直线段硅芯管道的路由要顺直,沟坎处应平缓过渡,转角处的弯曲半径,50/42mm、46/38塑料管的弯曲半径应大于550mm;40/30mm塑料管的弯曲半径应大于500mm。 广播电视发射工程技术 敷设低压电力电缆:10mm2以上的电缆弯曲时,其最小曲率半径为电缆外径的10倍。广播电视建筑声学施工技术 扩声、会议系统安装工程布放线要求:光缆布放时最小弯曲半径应为光缆外径的15倍,施工时应不小于20倍。

曲率半径

曲率半径 曲线的曲率。平面曲线的曲率就是是针对曲 线上某个点的切线方向角对弧长的转动率,通过 微分来定义,表明曲线偏离直线的程度。 K=lim|Δα/Δs| Δs趋向于0的时候,定义 k就是曲率。 曲率的倒数就是曲率半径。 曲率半径主要是用来描述曲线上某处曲线 弯曲变化的程度特殊的如:一个圆上任一圆弧的 曲率半径恰好等于圆的半径 ,也许可以这样理 解:就是把那一段曲线尽可能的微分,直到最后近似一个圆弧,这个圆弧对应的半径吧,个人理解 比如说 曲率/曲率半径应用题 一飞机沿抛物线路径y=(x^2)/10000(y轴铅直向上,单位为m)作俯冲飞行,在 坐标原点O处飞机的速度为v=200m/s。飞行员体重G=70kg。求飞机俯冲至最 低点即原点O处时座椅对飞行员的反力。 解: y=x^2/10000 y'=1/2x/10000=x/5000 y"=1/5000 要求飞机俯冲至原点O处座椅对飞行员的反力,令x=0,则: y'=0 y"=1/5000 代入曲率半径公式ρ=1/k=[(1+y'^2)^(3/2)]/∣y"∣=5000米 所以飞行员所受的向心力F=mv^2/ρ=70*200^2/5000=560牛 得飞机俯冲至原点O处座椅对飞行员的反力 R=F+mg=560+70*9.8=1246N 地方平均曲率半径 R=C/(V*V)=6399698.90178/(1+0.006738525*(COSA)*(COSA)),A为当地的平均纬度。 法截弧曲率半径 地球椭球体表面上某点的法截弧在该点的曲率半径。 法截弧曲率半径 地球椭球体表面上某点的法截弧在该点的曲率半径。

高斯投影长度变形 圆柱面与椭球面相切于中央子午线上,其长度不变形,其他任意处的投影长度均变化。

高斯曲率的计算公式

高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -== - 。 注意 (,,)uu r r r L n r =?= r r r r r , (,,) uv r r r M n r =?= r r , (,,) vv r r r N n r =?= r r 。 所以 2 2LN M K EG F -=- 2221[(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F =--r r r r r r r r r , 利用行列式的转置性质和矩阵乘法

性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r -r r r r r r r r r (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? r r r r r r r r r r r r u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-?????????r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-???????r r r r r r r r r r r r r r r r r r r r u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-???r r r r r r r r r r r r r r r r r r r r , (其中用到行列式按第三行展开计 算的性质。) 利用 u u r r E ?=r r ,u v r r F ?=r r ,

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

高斯曲率的计算公式汇总

第二章 曲面论 高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -==- 。 注意 (,,) uu r r r L n r =?= , (,,)uv r r r M n r =?= , (,,) vv r r r N n r =?= 。 所以 2 2LN M K EG F -= - 222 1 [(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F = -- ,

利用行列式的转置性质和矩阵乘法性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r - (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-????????? u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-??????? u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-??? , (其中用到行列式按第三行展开计 算的性质。)

关于不同类型缓和曲线 的判断及起点、终点曲率半径的计算方法

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:A^2=[(R大*R小)÷(R大-R小)]*Ls 由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,也就是R大=(A^2*R小)÷(A^2-R小*Ls)就可以

曲率 曲率半径

曲率 曲率半径 高中时期,做万有引力题时偶尔会出现非常规题,也就是行星的运动不是标准圆,而是椭圆。对于椭圆,万有引力公式是不能随便用,原因R 不是我们所理解的r ,而是曲率半径。当时以我们的知识更本无法求出R 。问老师吧,得到的结果不是,这不在高考考查的范围内,不用深究;就是,这些题的关键就是求曲率半径,而曲率半径我们根本没有学,讲了你也听不懂,不要在这上面浪费时间了。 人就是这样,越是得不到的东西越是想得到。那时我是多么想做出来证明自己的实力啊,可是就是没有人教,只剩下苦恼,郁闷。 现在已经知道了什么是曲率,怎么求曲率半径。下面仅作简述,希望拍砖! 曲率 设曲线C;y=f(x)具有连续导数。曲线C 是光滑的,点M,N 在曲线C 上,当动点M 从移动到N 时,切线转过的角度为|α?|,弧段的长度为|s ?|。用比值s ??α | |,即单位弧度上的切线转过的角度大小来表示弧段平均弯曲程度,称为弧段的平均曲率,并记为,即 || s k ??=α 当S ?趋近于0时,平均曲率的极限就是曲线C 在M 点的曲率,记作,即||0s s Lim k ???→??= α 关于曲率的求解过程就不再详细解出,只给出结果) 1(2.^| |2 3 ,,y y K += (注意:分子上是Y 的二阶导数,分母是Y 的一阶导数) 曲率半径 设曲线在点处的曲率为K (K,><0).过点M 处的曲线的法线MN ,在曲线凹的一侧取点C ,使|MC|= K 1 =R.以为圆心,为半径作圆,这个圆叫做曲线在点处的曲率圆,C 就是圆心,R 就是曲率半径。 椭圆1| 2 ^2 ^2 ^2 ^=+b Y a X 或者是双曲线1| 2^2 ^2 ^2 ^=-b Y a X 曲率半径表达式一致, b a x b y a R 4 ^4 ^2 3)(2^4^2^4^+= ;抛物线py x 22 =,P Y R 2 2 3)1(2^+= (如果对称轴在Y 轴 上,只须将x 换成y 即可)。R 的等式中的x ,y 均是要求点的坐标

曲率半径与曲率(20200511214341)

曲率半径 目录 词条定义 ____ 曲率半径解析 遵]编辑本段 词条定义 曲率的倒数就是曲率半径。

曲线的曲率。平面曲线的曲率就是是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。 K=lim| △ a / △ s| △ s趋向于0的时候,定义k就是曲率。 曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度特殊的 如:一个圆上任一圆弧的曲率半径恰好等于圆的半径,也许可以这样理解:就是把那一段曲线尽可能的微分,直到最后近似一个圆弧,这个圆弧对应的半径吧,个人理解 比如说 曲率/曲率半径应用题 一飞机沿抛物线路径y=(xT)/10000 (y轴铅直向上,单位为m)作俯 冲飞行,在 坐标原点0处飞机的速度为v=200m/s。飞行员体重G=70kg。求飞机俯冲至最低点即原点0处时座椅对飞行员的反力。 解: y=x A2/10000 y'=2x/10000=x/5000 y"=1/5000 要求飞机俯冲至原点0处座椅对飞行员的反力,令x=0,则: y'=0 y"=1/5000 代入曲率半径公式p =1/k=[(1+y'A2)A(3/2)]/ I y" I =5000 米 所以飞行员所受的向心力F=mvA2/ p =70*200八2/5000=560 牛 得飞机俯冲至原点O处座椅对飞行员的反力 R=F+mg=560+70*9.8=1246N 编辑本段 曲率半径解析 在曲线上某一点找到一个和它内切的半径最大的圆,这个圆的半径就定义为曲率半径。 比如说:直线上每一点随便都能找个圆与它相切,那么称直线上的曲率半径无意义(或称无穷大) 而在圆上,每一点与它内切的圆就是其本身,故其曲率半径为其本身 的半径。 抛物线顶点曲率半径为焦距两倍

高斯曲率的计算公式

第二章 曲面论 高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -==- 。 注意 (,,) u uu r r r L n r EG =?= , 2(,,) u uv r r r M n r EG F =?= -, (,,) u vv r r r N n r EG =?= 。 所以 2 2LN M K EG F -= - 2 22 1[(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F = --,

利用行列式的转置性质和矩阵乘法性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r - (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ? =- ? ? ? ? ???? u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-????????? u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??= ?-??????? u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??= ?- ????-???, (其中用到行列式按第三行展开计算的性质。)

曲率半径

曲线的曲率 曲线的下凸和上凸说的是曲线的弯曲方向,而曲线的曲率说的是曲线的弯曲程度。直线段没有弯曲,所以认为它的曲率为0. 一般情形下,如图9,弧 AB 的全曲率规定为起点A 处切线方向与终点B 处切线方向的偏 差θ?. 可是,弧CD 的全曲率与弧AB 的全曲率相同,但前者显 然比后者弯曲得更厉害一些。这就是说,弧的弯曲程度与弧本身 的长度有关。因此,就像测量物理量或几何量时先确定一个单位 那样,把单位长度弧的全曲率取作测量弧时曲率的单位,而把长 度为s ?的弧的全曲率θ?同弧长s ?的比值/s θ??,称为该弧的 平均曲率。它有点像质点运动的平均速度。像定义质点运动的瞬时速度那样,把极限 s s s K s d d lim lim 0A B A θ θθ=??=??=→?→ 定义为弧AB 在点A 处的曲率 (其中θ?为弧AB 的全曲率, s ?为弧AB 的长度)。 对于半径为R 的圆周来说 (图10),由于θ?=?R s , 所以圆周上任一点处的曲率都相等,且曲率为 R s s K s 1 d d lim 0==??=→?θθ (半径的倒数) 对于一般的弧来说,虽然弧上各点处的曲率可能不尽相同,但是当弧上点A 处的曲率 0A K ≠时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A 相切 (即有公切线) 且半径1/A A R K =. 这样的圆周就称为弧上点A 处的曲率圆;而它的圆心称为弧上点A 处的曲率中心。如图11中那个抛物线在原点O 或点(1,)A a 的曲率圆。请读者注意,因为曲率....有可能是负数......(在实际应用中,有时把绝对值A K 称为曲率),而曲率半径要与曲率保持相同.............的正负号....,所以曲率半径也有可能是负数.............。保留曲率或曲率半径的正负号,以便说明曲线的 对于用方程)(x y y =)(b x a ≤≤表示的弧(图12),由于 ()tan y x θ'=, a r c t a n (y x θ'= 所以,若有二阶导数()y x '',则 [] 2 () d d 1()y x x y x θ''= '+ 图10 图11 图12 )

如何计算抛物线某点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

相关文档
相关文档 最新文档