文档库 最新最全的文档下载
当前位置:文档库 › 蛋白类药物缓释系统在眼部应用的研究进展论文

蛋白类药物缓释系统在眼部应用的研究进展论文

蛋白类药物缓释系统在眼部应用的研究进展论文
蛋白类药物缓释系统在眼部应用的研究进展论文

万方数据

万方数据

万方数据

万方数据

药店管理系统毕业论文1

药店管理系统毕业论文1 目录 第1章绪论 1 第2章系统开发技术基础 2 2.1 关于开发语言C# 2 2.2 关于本系统的关系数据库设计 2 第3章药店销售管理系统总体设计 3 3.1 药店销售管理系统结构设计 3 3.2 药店销售管理系统数据结构和数据库设计 6 3.2.1 需求分析 6 3.2.2 概念结构设计9 3.2.3 概要设计10 第四章药店销售管理系统的实现12 4.1登陆界面及主界面12 4.2销售统计模块12 4.2.1窗体界面12 4.3药品入库模块13 4.3.1窗体界面13 4.4库存维护模块14 4.4.1窗体界面14 4.4.4功能描述14 4.5采购计划模块16 4.5.1窗体界面16 4.5.2算法描述16 4.6入库统计模块16 4.6.1窗体界面16 4.6.2功能描述17 4.7主要存储过程设计17 4.8 生成安装与部署程序19 结论20 致谢21 参考文献22 第1章绪论 目前国内药店经营管理手段落后,而国家对这些药店规范管理,实施GSP认证已是大势所趋,为提高自身竞争力和顺利达标,使用专业管理软件是这些药店的必由之路,所以说药店管理软件市场潜力巨大,商机无限. 本系统是根据国内药店的实际运营情况及国家药监局GSP认证规范与XXXX药店联合设计开发,适合各种规模的国内药店使用,加强药品进销存的规范化管理.该软件是目前针对国内药店最专业、最实用的管理软件,可以帮助药店由原来的手工处理改为通过计算机处理从而提高药店的工作效率,规范经营,为顺利通过GSP认证提供强有力的保障. 另外,Visual https://www.wendangku.net/doc/2010730031.html,是微软推出的新一代开发平台,拥有许多特性,其中一些特性是

蛋白质药物口服机制及方法研究

目录 摘要 (1) 1 引文 (2) 2 蛋白质药物口服吸收的机制及途径 (2) 2.1 载体转运 (2) 2.2 胞饮作用和M 细胞途径 (2) 3 蛋白质药物吸收的主要屏障 (3) 3.1酸屏障 (3) 3.2酶屏障 (3) 3.3膜屏障 (3) 4 保护口服蛋白质药物活性的方法 (4) 参考文献 (5)

蛋白质药物口服机制及方法研究摘要:由于蛋白质药物的无损伤性传输系统以及作用位点专一等特点,已成为临床治疗疾病的重要药物,但受到酸屏障、酶屏障和膜屏障的影响,限制了这类药物的口服吸收。但蛋白质药物口服给药方便、可提高患者依从性。所以目前世界上对蛋白质口服药物研究很多。本文对蛋白质药物口服的吸收机制以及影响因素,通过查阅中外文资料,寻找一种保护口服蛋白质药物活性的方法。 关键词:蛋白质类药物,纳米脂质体,口服 1.引言 生物技术药物在人类疾病的治疗中正发挥着越来越重要的作用,而生物技术药物大多数为蛋白质类药物。该类药物在胃肠道中不稳定,易被胃肠道苛刻的pH环境和丰富的酶系统破坏,同时由于其具有分子量大、对胃肠道黏膜的渗透性低的特点,导致该类药物的胃肠道用药生物利用度极低。为了避免蛋白质在胃肠道中的降解及吸收困难的问题,蛋白质类药物主要采用注射的方式给药,给患者带来了极大不便。因而开发该类药物的无损伤性传输系统已成为药剂领域的研究热点。以往人们已投入大量的精力开发蛋白质类药物的非注射给药剂型,其中口服剂型以其良好的患者依从性吸引了大批研究者的关注,但酶和pH 环境对蛋白质的降解、破坏以及蛋白质在胃肠道的低渗透性,使得蛋白质类药物的吸收障碍亦成为蛋白质类药物胃肠道给药研究的瓶颈。为此,本文在查阅近年国内、外研究论文基础上,寻找一种不破坏蛋白质活性的药物剂型。 2.蛋白质药物口服吸收的机制及途径 2.1 载体转运 小分子药物的转运以简单扩散为主,而大分子蛋白质口服给药经过胃肠道主要依靠载体转运介导通过细胞旁路转运至小肠黏膜内,如图1 所示,随后由淋巴回流进入血液循环系统。未被消化酶降解的多肽与肠表面膜基底外侧的H+ 依赖型多肽载体结合,以H+ 梯度和膜电位差为动力,经多肽载体转运进入基底膜内侧,由于H+ 与多肽是共同通过上皮细胞膜的,这一系统又称为H+ -依赖型肠多肽转运系统。 图1 治疗用多肽与蛋白质药物分布机制: 载体转运的作用超过简单扩散. 2.2 胞饮作用和M 细胞途径

细胞内蛋白质的合成与运输_论文

细胞内蛋白质的合成与运输 摘要:蛋白质是一切生命的物质基础,这不仅是因为蛋白质是构成机体组织器官的基本成分,更重要的是蛋白质本身不断地进行合成与分解。这种合成、分解的对立统一过程,推动生命活动,调节机体正常生理功能,保证机体的生长、发育、繁殖、遗传及修补损伤的组织。根据现代的生物学观点,蛋白质和核酸是生命的主要物质基础。 关键字:多肽链、蛋白质、翻译、核糖体、运输途径、运输方式,研究前景 前言:国家重大科学研究计划对中国的四项重要科学研究所涉及的领域分别作了详细说明,四个项目分别是蛋白质研究,量子调控研究,纳米研究,发育与生殖研究。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 一、蛋白质生物合成过程

遗传密码表在mRNA的开放式阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸或其他信息,这种三联体形势称为密码子(codon)。如图,通常的开放式阅读框架区包含500个以上的密码子。 遗传密码的特点 一方向性:密码子及组成密码子的各碱基在mRNA序列中的排列具有方向性(direction),翻译时的阅读方向只能是5ˊ→3ˊ。 二连续性:mRNA序列上的各个密码子及密码子的各碱基是连续排列的,密码子及密码子的各个碱基之间没有间隔,每个碱基只读一次,不重叠阅读。 三简并性:一种氨基酸可具有两个或两个以上的密码子为其编码。遗传密码表中显示,每个氨基酸都有2,3,4或6个密码子为其编码(除甲硫氨酸只有一个外),但每种密码子只对应一个氨基酸,或对应终止信息。 四通用性:生物界的所有生物,几乎都通用这一套密码子表 五摆动性:tRNA的最后一位,和mRNA的对应不完全,导致了简并性 氨基酸活化 在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA合,带到mRNA 相应的位置上,这个过程靠tRNA合成酶催化,此酶催化特定的氨基酸与特异的tRNA 相结合,生成各种氨基酰tRNA.每种氨基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用A TP供能,在氨基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的氨基酸臂(即3'-末端CCA-OH)上(图1)。原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。前面讲过运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对tRNA识别的特异性较低。氨基酰tRNA合成酶是如何选择正确的氨基酸和tRNA 呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的tRNA进入合成酶的相应位点,才能合成正确的氨酰基tRNA。现在已经知道合成酶与L形tRNA的内侧面结合,结合点包括接近臂,DHU臂和反密码子臂(图2)。氨基酰-tRNA合成酶与tRNA的相互作用,可见氨酸接受柄、乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些tRNA也确实如此,然而对于大多数tRNA来说,情况并非如此,人们早就知道,当某些tRNA上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和Schimmel的实验证明丙氨酸tRNA酸分子的氨基酸臂上G3:U70这两个碱基发生突变时则影响到丙氨酰tRNA合成酶的正确识别,说明G3:U70是丙氨酸tRNA分子决定其本质的主要因素。tRNA分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰tRNA合成酶可以识别以一组同功tRNA,这说明它们具有共同特征。例如三种丙氨酸tRNA

蛋白质药物的研究现状

蛋白质药物的研究现状 郭世江20123762 制药二班 摘要:蛋白质药物可分为多肽和基因工程药物、单克隆抗体和基因工程抗体、重组疫苗;本文主要着重讲解多肽和基因工程药物。与以往的小分子药物相比,蛋白质药物具有高活性、特异性强、低毒性、生物功能明确、有利于临床应用的特点。由于其成本低、成功率高、安全可靠,已成为医药产品中的重要组成部分。1982年美国Likky公司首先将重组胰岛素投放市场,标志着第一个重组蛋白质药物的诞生。一种新型生物技术候选药物,它具有高效抗肿瘤、抗病毒功能。经中国药品生物制品标准化研究中心检测证实,其抗肿瘤活性较同类产品高246.7倍,抗病毒活性高10倍以上,可用于治疗多种恶性肿瘤和病毒感染性疾病。 关键词:多肽,基因工程药物,单克隆抗体,基因工程抗体,重组疫苗,高活性,低毒性,抗肿瘤,抗病毒。 Abstract:Polypeptide and protein drugs can be divided into genetic engineering drugs, monoclonal antibodies and genetically engineered antibodies, recombinant vaccine; paper mainly focuses on explaining polypeptides and genetic engineering drugs. Compared with conventional small molecule drugs, protein drugs with high activity and specificity, low toxicity, biological features a clear, beneficial characteristics of clinical applications. Because of its low cost, high success rate, safe and reliable pharmaceutical products has become an important part. 1982 United States Likky company first recombinant insulin market, marking the birth of the first recombinant protein drugs. A new biotech drug candidates, it is an efficient anti-tumor, anti-viral function. By the China Research Center of Pharmaceutical and Biological Products Standardization tests confirmed that the anti-tumor activity of 246.7 times higher than similar products, high antiviral activity more than 10 times, can be used to treat a variety of malignancies and viral infections. Keywords:Peptides, genetic engineering drugs, monoclonal antibodies, genetically engineered antibodies, recombinant vaccine, high activity and low toxicity, anti-tumor, anti-viral 一、前言 生物技术的发展促进了大分子生物活性物质的发现,用于治疗或诊断的多肽、蛋白质、酶、激素、疫苗、细胞生长因子及单克隆抗体等药物不断出现,国外已批准上市的生物技术药物产品约90 多种,进入临床实验的生物技术药品有369种,占美国临床实验药品的1/3,正在研究发展的大分子活性物质或药物达千种以上,生物技术药物的销售增长率在1998 年到2004 年每年增长12%~15%,生物技术药物已涉足于200多种疾病,其研究多数是针对癌症治疗,以及传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、艾滋病、自体免疫性疾病、皮肤病等。早在上世纪90年代,美国FDA即已批准可以进行临床研究的基因疗法达72种,年初国家食品药品监督管理局也批准了重组人p53腺病毒注射液的生产。由于半衰期短,生物技术药物的基本剂型是冻干注射剂或注射液,需要长期频繁注射给药,面对生物大分子在稳定性及吸收等方面的困难,在研究和生产高质量的冻干粉针及溶液型注射剂的同时,发展多种途径给药的新剂型是制剂工业和研究的重要任务[1]。

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

蛋白质结构及性质论文

蛋白质结构及性质论文 ——动科一班黄细旺(1207010127)&冯志(1207010126) 摘要:蛋白质结构及其理化性质 关键词:蛋白质、结构、理化性质 前言: 蛋白质分子是由许多氨基酸通过肽键相连形成的生物大分子。人体内具有生理功能的蛋白质都是有序结构,每种蛋白质都有其一定的氨基酸百分组成及氨基酸排列顺序,以及肽链空间的特定排布位置。因此由氨基酸排列顺序及肽链的空间排布等所构成的蛋白质分子结构,才真正体现蛋白质的个性,是每种蛋白质具有独特生理功能的结构基础。 蛋白质结构 蛋白质分子结构分成一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。并非所有的蛋白质都有四级结构,由一条肽链形成的蛋白质只有一级、二级和三级结构,由二条或二条以上多肽链形成的蛋白质才可能有四级结构。 1.蛋白质的一级结构 蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构。一级结构的主要化学键是肽键,有些蛋白质还包含二硫键,它是由两个半胱氨酸巯基脱氢氧化而成。 2.蛋白质的二级结构 蛋白质的二级是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肪酸主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链构象。 (一)肽单元20世纪30年代末L.Panling和R.B.Cory应用X线衍射技术研究氨基酸和寡肽的晶体结构其目的是要获得一组标准键长和键角以推导肽的构象最终提出了肽单元概念。他们发现参与肽健的6个原子位于同一平面Cα1和Cα2在平面上所处的位置为反构型,此同一平面上的6个原子构成了所谓的肽单元其中肽键(C-N)的键长为0132nm.介于C-N的单健长(0149nm)和双键长(0127nm)之问,所以有一定程度双键性能,不能自由旋转。而Cα分别与N和羰基碳相连的键都是典型的单键可以自由旋转。 (二)α-螺旋Paulαing和Core根据实验数据提出了两种肽链局部主链原子空间构象的分子模型,称为α-螺旋和β-折叠,它们是蛋白质二级结构的主要形式,在α-螺旋结构中多肽键的主链围绕中心轴是有规律的螺旋式上升,螺旋的走向为顺时钟方向即右手螺旋,其氨基酸恻键伸向螺旋外侧。每36个氨基酸残基螺旋上升一圈,螺距为0.54nm。a一螺旋的每个肽键N-H和第四个的羧基氧形成氨键,氢键的方向与螺旋长轴基本平行。肽链中的全部肽键都可形成氢键以稳固α-螺旋结构。肌红蛋白和血红蛋白分子中有许多肽链段落呈a一螺旋结构,毛发的角蛋白、肌肉的肌球蛋白以及血凝块中的纤维蛋白它们的多肽链几乎全长

药品管理系统研究论文

药品管理系统研究论文 【关键词】药品管理 随着计算机技术的飞速发展,医院信息系统(HospitalInformationSystem)的开发和应用也日趋广泛,从2002年底起,全武警的医院系统推行[1]军队医院信息管理系统工程,即“军卫一号工程”。现将药局网络系统概述如下。 1药局网络系统概述 该工程的药品管理分系统包括药库管理模块,药房库存管理模块,科室小药柜模块,中心摆药模块,处方录入模块,处方发药模块,处方打印模块,综合查寻模块,以及自己开发供静脉输液配制中心使用的输液标签打印模块。根据我院及药局的实际情况和网络布线情况,药局工作站的分布为:药库2台,门急诊药房2台,中药房1台,住院药房2台,静脉输液配制中心2台。 药局各部门的模块配制根据实际的工作性质而定,药库的配置为:药库管理模块,综合查寻模块。住院药房的配置为:药房库存管理模块,科室小药柜模块,中心摆药模块,处方录入模块。门诊药房的配制为:药房库存管理模块,处方录入模块,处方发药模块,处方打印模块。中药房的配置为:药房库存管理模块,处方录入模块,处方发药模块,处方打印模块。静脉输液配制中心的配置为:中心摆药模块,输液标签打印模块。各模块功能上相互独立,各工作部门间可以相互组合以适应自己的要求。各部门以不同的部门代码使用相同的模块就可区分各自的操作,如药房库存管理模块在门诊药房,中药房,住院药房都有,它们可以各自向药库申请领药,便于工作。 采用计算机管理系统有十分明显的优点,在药品管理方面,如采用人工管理药库,往往不能准确知道各种药品的库存数量、各个科室的消耗量,难以制定出合理的采购计划,造成供应不及时,同时无法对药品的有效期进行严格管理,从而造成过期浪费;采用计算机管理药品后,由于数量完全在控制之下,为加强内部职员管理提供了有力的工具,不仅可以减少无意的浪费,还可以杜绝工作人员的私用和盗用。在住院部收费方面,由于采用“交押金-记帐-结算”的工作方式,在没有采用计算机时,不能及时统计出每个病人所用的费用是否已经超过所交押金,会造成许多欠款,给医院的财务管理带来麻烦;同时,由于帐单明细汇总后

蛋白质组学课程论文

蛋白质组学关键技术研究进展 摘要:蛋白质组学是对蛋白质特别是其结构和功能的大规模研究,是在90年代初期,由Marc Wikins 和学者们首先提出的新名词。蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。本文综述了蛋白质组学的一些关键技术的应用研究进展。 关键词:蛋白质组学;蛋白质组技术;研究方法 蛋白质组学的概念[1]最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。近年来,高通量蛋白质分离与鉴定技术,如双向电泳、生物质谱、蛋白质芯片、酵母双杂交系统、生物信息学等相继建立并日趋完善,加速了蛋白质组学的发展。 1蛋白质组学概述 随着人类基因组计划的完成和功能基因组时代的到来,蛋白质结构与功能研究越来越重要,蛋白质组学、生物信息学等相关学科已逐渐成为生命科学的前沿。 随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。 目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA、mRNA、蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control),翻译水平调控(Translational control),翻译后水平调控(Post-translational control)。从mRNA 角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相

毕业设计-基于JAVA的药品管理系统

摘要 药品管理系统是现代化在线医药管理必不可少的基础设施与技术支撑环境。本系统前台采用MyEclipse开发,后台采用MySql 作为数据库开发工具,这些技术目前相对比较成熟,方便产品的维护。本系统可以实现用户在线注册、登录、修改密码,用户进行药品添加和管理、供应商的添加和管理,还可查询供应商提供的药品清单。 JSP(Java Server Pages)是由Sun Micrososystems公司倡导的、许多公司参与的一起建立的一种动态网页技术标准,JSP技术是在Servlet技术基础上发展起来的,它在飞速发展过程中,现在已经成为Java服务器编程的重要组成部分。虽然它未成型,但是它必然将和J2EE一起发展。 MySql是一种高效的关系数据库系统,它与Windows NT/2000及Windows 9x等操作系统紧密集成。这种安排使MySql能充分利用操作系统所提供的特性。对于今天复杂的客户/服务器系统来说,MySql是一个很好的选择。 关键字:药品管理系统;Java;MySql;

Abstract The medical administrative system is the modernized online medicine management system, which is the essential infrastructure and technological back-up environment. This systematic front desk adopts DreamWeaver development, and the backstage supporter adopts MySql as the database developing instrument. These technologies are relative mature at present, facilitate the maintenance of the products. This system can realize user's online registration , log-in , revision of personal information , selection and order of medicines, examination of the detailed information of medicines , submittal of the order information, maintenance and management of medicines, classification of the medicines ,user’s information and order information online. JSP (Java Server Pages ) is advocated by Sun Micrososystems Company, a kind of dynamic webpage technical standard of setting-up together which a lot of companies participate in. JSP technology is developed on Servlet technological foundation. In the course of developing at full speed, it have already become the important component of server programming of Java now. Though it does’t shape, it must develop with J2EE. MySql is an efficient relation database system. It is close integrated with Windows 2000/NT and Windows 9X OS. MySql can utilize fully the characteristics provided by OS .MySql is a good choice for the complicated Cilent/Server systems nowaday. Key Word: Medical Administrative System;JSP;MySql

长效重组蛋白药物的研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(2):79~82 综 述 长效重组蛋白药物的研究进展 戚 楠3  马清钧 (军事医学科学院生物工程所 北京 100850) 摘要 重组蛋白药物经静脉和皮下注射后通常半衰期较短,目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物分子量;2、利用血浆药物平衡;3、减少免疫原性。针对构建突变体、PEG 化修饰和与血清白蛋白融合三种延长重组蛋白药物半衰期的方法,及其已上市的和正在研发中的长效重组蛋白药物的特征、半衰期和免疫原性问题进行了综述。 关键词 长效重组蛋白药物 半衰期 分子量 药物平衡 免疫原性 突变体 PEG 化 血清 白蛋白 中图分类号 Q819 收稿日期:2005212223 修回日期:20052122263电子信箱:qinan_8@hot m ail .com 重组蛋白药物是生物技术药物中很重要的一类,临床上一般通过静脉和皮下注射给药。经静脉和皮下注射后常伴有蛋白质降解,导致活性降低,生物利用度低,要达到需要的血药浓度和治疗效果需要反复给药,不仅给患者带来不便,且易产生耐受性,耐药性及免疫原性等不良反应,因此临床上需要研制长效的重组蛋白药物。 目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物的分子量,减少肾小球滤过率;2、利用游离型药物和结合型药物在血浆内形成平衡的特点,缓慢释放游离型蛋白药物,使结合型药物和游离型药物的平衡向游离型药物方向移动;3、减少异源蛋白的免疫原性,从而减少其体内清除率。现将常用延长半衰期技术应用于重组蛋白药物的进展作一介绍。 1 构建突变体 通过构建突变体延长蛋白药物半衰期,常用方法有1、增加蛋白药物的糖基化程度,通过糖基化一方面在蛋白药物表面增加了侧链,增加蛋白质稳定性,阻碍了蛋白酶对蛋白药物的降解作用,另一方面使蛋白药 物分子量增大,减少了肾小球滤过;2、通过形成缓释的微沉淀物,使释放游离型药物的时间延长。其已经研制成功并上市的药物如重组人EPO 突变体(Amgen 公司的A ranes p )和重组人胰岛素的突变体(Aventis 公司的Lantus )。 重组人EP O 有3个N 糖基化位点(as p24,as p38, as p83),1个O 糖基化位点(Ser126)。重组人EP O 的O 糖基化与否与体内外活性及体内清除速率无关,而N 糖基化不完全的重组人EPO 体外活性正常,体内活性则降低到体外活性的1/500,且其体内清除率也明显加快。N 糖基化EPO 对热和pH 变化稳定,等电点P I 为 4.2~4.6,而未经糖基化EP O 等电点P I 为9.2 [1,2] 。由 此可以看出,N 糖基化对维持重组人EP O 活性和减少体内清除率有重要作用,在此基础上构建了重组人 EPO 突变体A ranesp 。A ranes p 有165个氨基酸,采用定 点突变技术,将其中5个氨基酸位点进行了改变,而与重组人EPO 不同,即A la30A sn,H is32Thr,Pro87Val, Trp88A sn 和Pro90Thr,N 连接的寡糖链从原来的3条增 加到5条 [3] ,除as p24,asp38,as p83位点外,在30和 88两个位点多了两个N 连接寡糖链,从而使分子量从 原来的30kDa 增加到50kDa,在慢性肾衰病人中半衰期 由原来的4~13h 延长到平均49h [4] (27~89h )。 Lantus 是从大肠杆菌K12株表达的重组人胰岛素

生物化学论文.蛋白质doc

生物化学论文 —蛋白质 蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新 蛋白质是由α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。、 蛋白质是荷兰科学家格利特·马尔德在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存 。 蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。 人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。

药品管理系统设计及其实现

药品管理系统设计及其实现 摘要:本文以青铜峡铝业集团公司医院为例,根据上级药品监督机构的要求和自身的具体情况,针对药品仓库管理工作,通过计算机来代替以前的手工管理模式,实现医院上千种药品及其他医用材料的入库、出库、药品验收记录,监测药品的失效期、盘库、财务统计等,使医院的药品管理实现科学化、规范化、高效率,提高了医院药品管理工作水平和工作效率。 关键词:药品管理系统 一、系统需求分析 1、业务需求。医院原来使用的是人工管理模式,药品的买卖、出入全部采用手工方式清点核查,工作内容繁琐、工作量大,容易出现差错。浪费了大量的人力、物力、财力,也不能及时的对药品的流动进行管理,并且不能为会计核算、管理决策等提供精确的有价值的统计数据。老式的管理己不能满足现在的形式,计算机管理的适时出现有效的缓解了这一矛盾。特别是在大型医院的管理中,计算机管理己显示出它的及时高效性。有效管理了人工录入,尽量减少了繁杂的人工处理,节省了人力和财力,节约了大量的时间,使其在激烈的竞争中把握更多的机遇,争取更多的利润。 2、软件需求。对软件的需求是具有基本的浏览功能(能提供用户浏览所需的信息)、查询功能(可以根据输入条件查询与其相关的记录)、插入功能(实现新记录插入)、修改功能(对错误记录进行更正)和删除功能。对于用户界面,采用人机交互方式,多功能窗口运行。正常使用时不应出错,当用户的输入错误时应给出适当的更正提示。若运行时遇到不可恢复的系统错误,也必须保证数据库完好无损。系统要求具有严密的安全体系,以相应的权限来管理不同的用户,登录时使用相应的用户名和密码,严格控制对数据和程序的访问和修改,以保证数据的不必要删除和篡改。能够根据采购、出库和调价准确地处理药品的账目。同时由于严格的计算机管理,排除了人为的浪费问题。药品进货查询,药品销货查询,贵重药品查询等,以图表的形式给出药品在一定时期内的进出情况。 二、系统实现的功能 药品管理系统主要涉及药库和各类药房(药房分门诊中、西药房和住院病区住院药房)之间药品的进、销、存等业务,并且和门诊计价、收费等有着密切的关系。药库和药房之间虽有联系,但又相互独立,药品管理系统主要管理医院所有药品的出入和内部统计计算,为药品会计提供基础数据,同时包括对所有药品有效期的管理。药品管理系统应具备以下功能:(1)实时动态数据处理,对全院药房提供动态的药品数据。(2)网络数据共享,药品管理系统并入医院网络系统后,使药品管理系统与其他相关系统进行数据共享。(3)对药品的有效期实施了真正行之有效的报警管理和报废管理。(4)优化管理,可以使药品库存得到最优化的管理,使库存损耗降低到最小程度,实现库存自动报警。(5)丰富的查询功能输出,可以及时得到有

重组蛋白药物研究进展解析

转自<丁香园> 重组蛋白药物也称rDNA药物,不包括重组疫苗、单克隆抗体药物(抗体药物的市场和研发趋势另有文章详述[1]、检测用重组蛋白和生化提取的天然蛋白,也不包括仿制药物。重组蛋白药物虽然仅占全球处方药市场的7-8%左右,但是发展非常迅速,尤其到了21世纪其发展更是进入黄金时节,1989年的销售额为47亿美元,2001年为285亿美元,2004年达到347亿美元[2],2005年约410亿美元,是1989年的9倍。 相对小分子药物,重组蛋白药物生产条件苛刻、服用复杂和价格昂贵,但对于有些疾病的治疗是不可替代的。绝大部分重组蛋白药物是人体蛋白或其突变体,以弥补某些体内功能蛋白的缺陷或增加人体内蛋白功能为主要作用机理,其安全性显著大于小分子药物,因而具有较高的批准率,同时,重组蛋白药物的临床试验期要短于小 分子药物,专利保护相对延长,给制药公司更长的独家销售时间[3]。这些特点成为重组蛋白药物研发的重要动力。从重组蛋白药物市场的地理分布角度,美国和欧洲占有全球市场的81% [4]。重组蛋白药物研发公司6强(Amgen, Biogen IDEC, Johnson & Johnson,Eli Lily,Novo Nordisk和Roche全部来自美国或欧洲,占有75%市场份额[2]。从新药上市的数量和速度看,美国居首位,这与美国拥有较自由的药物价格环境 以及医生接受新药的需求和高速度有明显关系。欧洲近几年发展也较快,率先批准上市了转基因动物(羊生产的重组人抗凝血酶(美国GTC生物治疗公司[5],以及第一个重组蛋白药物的仿制药物(Biosimilar,通用名生物药,下通称重组药物仿制药[6,7],后者结束了多年来重组蛋白药物是否能有仿制药的争论。鉴于美国和欧洲实际上主 导着全球市场,分析其市场和研发趋势,也就能准确把握重组蛋白药物整体发展的脉搏。专家们对“新”重组蛋白药物的定义不尽相同,所以,不同文献中的新重组蛋白药 物统计数量可能存在较大的差别。 本文以在美国和/或欧洲新上市的重组蛋白药物注册品名为准(以下通称重组药 后者2005年销售额即达278亿美元,占销售总物,计有82个,包括15个“重磅炸弹”, 额的66%。目前的研发重点在于解决生产能力不足、更加合理的改变重组药物结 构和给药途径多样化。尽管重组药物发展面临着种种挑战,但是我们认为该市场会

蛋白质组学技术与药物作用新靶点研究进展

蛋白质组学技术与药物作用新靶点研究进展 [关键词]:蛋白质组学,新药发现,药物作用靶点,研究进展 药物开发是一个漫长的过程,包括以下步骤:样品制备、新化学实体的发现、靶的探测与验证、先导物选择、小分子筛选和优化以及临床前、临床试验研究等。其中药物作用靶点的探测与验证是新药发现阶段中的重点和难点,成为制约新药开发速度的瓶颈。基因组学研究表明,人体中全部药靶蛋白为1万~2万种,而在过去100年中发现的靶点,仅约有500种。因此,自1994年Wilkins等提出蛋白质组(pro- teome)和蛋白质组学(proteormcs)概念后,就迅速引起广大研究者和制药公司的兴趣和投资。近几年来,蛋白质组学技术和研究思路都有了令人鼓舞的进展,新技术的出现和发展,如多维色质联用(multidimensional liquid chromatography and tan- dem mass spectrometry, MudLC-MS/MS)、表面增强激光解吸离子化-蛋白质芯片系统(surface enhanced laser desorption ion- ization-proteinchip, SELDI-ProteinChip)、同位素亲和标签(iso- tope-coded affinity tags, ICAT)、胶上差示电泳(differential in- gel electrophoresis, DIGE)等技术,弥补了普通双向电泳上样量和检测极限的局限,自动化、特异性和重复性都得到了加强。 蛋白质组学是研究疾病发生过程中蛋白质变化、生化代谢途径改变和鉴定的有力工具。在药物开发中的作用主要表现在疾病检测、药物靶点发现、药物代谢转化、药物不良反应研究等方面。通过比较正常体与病变体、给药前后蛋白质谱的变化,蛋白质组学技术可提供疾病发生、药物作用和药物不良反应的分子机制信息。通过蛋白质组学鉴定的特异生物标记可作为排查药物的功效、抗性和优选。因此,蛋白质组学在药物研究开发中的各个方面得到了细化,如化学蛋白质组学(chemical proteomics),拓扑蛋白质组学(topological proteomics),临床蛋白质组学(clinical proteomics),毒性蛋白质组学(toxicoproteomics)和药物蛋白质组学(phamiaco- proteormcs),这些“亚蛋白质组学”技术的发展,与基因组学结合,将对药物靶标验正和药物开发引起重大变革。笔者就蛋白质组学及相关技术在药物作用靶 点的探测和验证方面的应用作一概述。 1药靶的探测 与药物作用相关的靶或蛋白质主要有3类:①疾病相关(特异性)蛋白质;②生物标记分子;③信号传导分子。蛋白质组学探测药物作用相关靶点的基本策略是蛋白质 组的比较,即健康与病变组织、细胞或体液(如血清、脊髓液、尿液和气管呼出物等)的蛋白质表达谱差异和表达量变化。蛋白质组学已成功用于肿瘤、糖尿病、艾滋病、关节炎等多种疾病相关蛋白或标记蛋白的检测,成为疾病诊断、监测、治疗的有力工具。例如丹麦人类基因组研究中心Julio Celis实验室从膀胱鳞片状细胞癌(SCC)患者的尿液中分离鉴定了一个生物标记—牛皮癣素(psoriasin),免疫组织化学分析表明该蛋白质在正常人的泌尿系统中不存在,因而成为临床检测膀胱鳞片状细胞癌的标记蛋白。 给药前后蛋白质组比较,是比较蛋白质组学的另一个重要内容,是探测新靶蛋白,深入了解药物作用机制,评价药物不良反应,更合理地设计药物的一个新途径。Chen等利用这个方法,找到了抗MCF-7人乳腺癌药物阿霉素的一个作用靶—Hsp27。 类似的方法也用于探测信号传导途径中 的药物作用靶。信号级联放大系统中信号的传递一般与蛋白质磷酸化/去磷酸化密切 相关。通过合适的预分离技术,如亚细胞蛋白质组制备或用免疫色谱分离磷酸化的亚 蛋白质组,得到与信号传导途径相关的蛋白质组以及在细胞中的定位信息,然后通过双向电泳技术分析蛋白质修饰和表达变化。利用这个方法,Stancato等在人原淋巴细胞

蛋白质的改性论文

蛋白质的改性 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。 0 前言 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1 蛋白质的功能特性 蛋白质的功能性质主要分三类: (l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。 (2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。 (3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。 (4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

相关文档
相关文档 最新文档