文档库 最新最全的文档下载
当前位置:文档库 › 正激变换器脉冲变压器的优化设计

正激变换器脉冲变压器的优化设计

正激变换器脉冲变压器的优化设计
正激变换器脉冲变压器的优化设计

小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计 张 利 郑文利 路 杰3 王国栋 刘相华 (东北大学 沈阳 110006) (沈阳化工学院3  沈阳 110021)摘要 采用模块编程技术,应用电磁学原理及用C 语言开发了一个基于Windows 平台 的功能较强的小型变压器(单相20kVA 以下,三相50kVA 以下)的CAD 系统,该系 统主要包括变压器的铁心选择、绕组的排列、几何参数和电磁参数的计算、总体结构 优化设计及参数化绘图等功能. 关键词: 小型变压器; 计算机辅助设计; 优化设计 分类号: TP 391.72 现代电器工业的发展要求小型变压器的设计具有更高的可靠性、快速性、灵敏性和精确性.国内各小型变压器厂尽管在单台容量和安装容量方面满足了生产实践的需要,但采用的设计方法基本上还是传统的手工设计方法,常用的方法有两种,即计算法和图解法.设计人员往往感到设计重复量大、设计效率低、精确性差.因此,我们开发了小型变压器(单相20kVA 以下,三相50kVA 以下)的计算机辅助优化设计系统,从而可以缩短设计周期,创造较好的经济效益,提高工厂的竞争能力. 1 系统结构 本系统参考了国内外有关小型变压器的设计方面的最新理论,应用计算机技术完成了1998年3月1日收稿 第12卷 第2期 1998.6沈 阳 化 工 学 院 学 报JOURNAL OF SHEN Y AN G INSTITU TE OF CHEMICAL TECHNOLO GY Vo.12 No.2J um.1998

总体功能的设计.在使用本系统时,只需输入初级电压、次级电压、次级电流、电源频率等数据,设计者便可按照计算机的提示进行变压器的铁心形式选择、绕组排列、铁心、绕组、导线等几何参数及电磁参数的计算.在此基础上,采用改进复合形法进行优化设计和采用ADS 进行参数化绘图.本系统分为8个模块,它们既相互独立,又可以通过数据文件的方式相互传递数据(如图1所示).这8个模块是: (1) 数据信息模块: 用来输入数据和保存数据. (2) 铁心参数计算: 选择铁心形式,计算铁心截面、窗口尺寸等参数. (3) 绕组计算模块: 主副绕组设计(正弦分布绕组) . 图1  软件模块 图2 设计框图 041沈 阳 化 工 学 院 学 报 1998年

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

对干式和油浸式变压器优化设计的研究

对干式和油浸式变压器优化设计的研究 发表时间:2017-07-04T15:28:50.517Z 来源:《电力设备》2017年第7期作者:刘建萍[导读] 摘要:我国干式变压器和油浸变压器的优化设计,是社会进步发展的必然选择。本文根据我国目前使用的干式变压器以及油浸变压器的特点,结合最新的科学技术,优化变压器的系统,并且对设计内容进行研究和阐述。 (山东泰开箱变有限公司 271000) 摘要:我国干式变压器和油浸变压器的优化设计,是社会进步发展的必然选择。本文根据我国目前使用的干式变压器以及油浸变压器的特点,结合最新的科学技术,优化变压器的系统,并且对设计内容进行研究和阐述。 关键词:干式变压器;油浸式变压器;优化设计 1. 干式和油浸式变压器优化的原因 变压器是电力系统的重要组成部分,其工作效率、工作能耗、生产成本是影响电力系统运行效率、运行线损、运行成本的关键。当前我国电力系统中干式和油浸式变压器占有极高比例,因此采用计算机辅助设计和最优化方法对上述两种变压器进行优化设计具有鲜明的显示意义。 2. 干式和油浸式变压器优化设计理念 我国较早使用的变压器系统设计工具是CAD。随着社会和科技的不断发展,CAD系统和技术也在不断地研发,加快了变压器的改革和优化进程。同时电力需求的增加,远距离、跨区域输变电工程大力建设发展,对变压器的要求也越来越高。所以我国需要优化变压器,我们秉承的理念是节约材料,,力求科学与自然地融合,提高干式变压器和油浸变压器的工作效率,实现远距离低损耗输电以及环境保护的目的。 3. 干式和油浸式变压器优化设计分析以及方法 3.1 干式和油浸式变压器优化设计分析 3.1.1 变压器优化设计使用工具 变压器的结构和系统比较复杂,尤其传统的变压器设计方法,其中的数据是分散式的,并不集中,对于变压器的控制和管理,以及设计都十分的不利。“工欲利其事,必先利其器”,所以想要优化变压器的设计方法,首先需要确定设计变压器的工具,使用正确的变压器设计工具,能够有效的提高变压器的设计效率,利用UML语言,以及变压器数据计算和IE型电源变压器自动设计软件,根据变压器系统的特点,以及数据模型的支持,可以制作有关数据计算的软件,体改手工计算。比如编制一个程序和公式,通过计算机,把电磁计算等流程的过程简化,加快计算效率和准确率。 3.1.2 变压器优化设计的理论依据 决定变压器性能的参数主要涉及电、磁、热以及结构,也就是说,变压器的优化也是根据这几方面来决定的。只要能够设计出这几方面的优化计划,就可以改变现有的变压器的系统和结构。因此,新型的变压器首先需要确定计算公式,根据计算公式来确定需要修改的参数和标准值,然后根据电、磁、热以及结构四方面理论,加入节能低碳等约束条件等,设置相关的离散型数值。因为变压器设计本身的特点,虽然设计系统使用的数值比较分散,但是在系统的管理之下,可以确定变压器系统使用的标准值,比如圆形铁心柱直径,就可以通过现有的系统进行计算得到。使用的公式为 通过公式可以知道,f(x)为目标函数,其中,变量为x1,x2,......xn,其中gi(x)为约束条件,首先需要根据约束条件,控制变压器的材料选择,这样能够改变变压器的工作功率。其中,约束条件就是技术性指标,也就是说,是硬性指标,该指标包括变压器的电压比,阻抗电压、空载耗损、空载电流只有变压器达到一定的标准,才能为商户和居民提供高质量的电能。比如,变压器的电阻比,主要是根据电阻率来计算的,即ρ=RS/L。常用单位几种金属导体及其在20℃时的电阻率 (Ω m) 为铜 1.75 × 10-8 ,铝 2.83 × 10-8 ,铁 9.78 × 10-8 。同种材料导电能力是和截面积成正比,与长度成反比。选择不同的变压器材质,对变压器的性能会产生不同的影响。 其次是材料性能约束,也就是说,变压器在设计的过程中,材料的选择需要满足国家和国际的标准。材料的性能不能影响到变压器的技术性能,选择的绝缘物质,也不能发生导电。不同绝缘材料的特性不同,其需要的电阻值以及绕组温升的值也不同,只有确定其范围,才能在保证变压器的设计优化更加合理科学。变压器的铜耗与铁耗与自身的材质是有关系的。在材料上的优化上,如果选择非晶态磁性材料,这种变压器能够大幅度的降低电损和涡损。

正激变换器及其控制电路的设计及仿真

正激变换器及其控制电路的设计及仿真 电气工程 张朋 13S053081

设计要求: 1、输入电压:100V(±20%); 2、输出电压:12V; 3、输出电流:1A; 4、电压纹波:<70mV(峰峰值); 5、效率:η>78%; 6、负载调整率:1%; 7、满载到半载,十分之一载到半载纹波<200mV。 第一章绪论 1.课题研究意义: 对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本DC/DC变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC变换器。而正激变化器就实现了这种功能。 2.课题研究内容: 1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。 2、正激变换器的控制方式主要通过闭环实现。其中闭环方式又分为PID控制和fuzzy控制。本文分别针对开环、PID控制,fuzzy控制建立正激变换器的Matlab仿真模型,并进行仿真分析了,最后对得出的结果进行比较。 第二章:正激电路的参数计算 本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。 1、正激变换器的等值电路图 图1 正激变换器等值电路图 2、参数计算 (1)变比n 根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比:

n= D U U out in ?=4.012 100 ?=3.3 (2) 最大、最小占空比 最大占空比D max 定义为 D max = ()n U U U in d out 1 min ? +, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。 最小占空比D min 定义为 D min = ()n U U U in d out 1 max ? +, 式中U in(max) =120V , 所以D min =0.333。 (3) 电容 电容的容量大小影响输出纹波电压和超调量的大小。取开关频率f=200KHZ ,则T=5×10-6 s , 根据公式: C=ripple ripple V f I ??81 , 式中取I ripple =0.2A ,V ripple =0.07mV , 所以C=1.79μF 。为稳定纹波电压,放大电容至50μF 。 (4) 电感 可使用下列方程组计算电感值: U out =L ×dt di , dt= f D m in 1-, 式中U out =12V ,di 取为0.2A ,D min =0.333, 所以L=0.334mH 。 第三章 正激变换器开环的Matlab 仿真 本章首先建立了正激变换器开环下的Matlab 仿真模型,然后对其进行了仿真分析。

电力变压器铁芯柱截面的优化设计

A 题 电力变压器铁心柱截面的优化设计 电力变压器的设计中很重要的一个环节就是铁心柱的截面如何设计。我国变压器制造业通常采用全国统一的标准铁心设计图纸。根据多年的生产经验,各生产厂存在着对已有设计方案的疑问:能否改进及如何改进这些设计,才能在提高使用效果的同时降低变压器的成本。 现在以心式铁心柱为例试图进行优化设计。 电力变压器铁心柱截面在圆形的线圈筒里面。为了充分利用线圈内空间又便于生产管理,心式铁心柱截面常采用多级阶梯形结构,如图1所示。截面在圆内上下轴对称,左右也轴对称。阶梯形的每级都是由许多同种宽度的硅钢片迭起来的。由于制造工艺的要求,硅钢片的宽度一般取为5的倍数(单位:毫米)。因为在多级阶梯形和线圈之间需要加入一定的撑条来起到固定的作用,所以一般要求第一级的厚度最小为26毫米,硅钢片的宽度最小为20毫米。 铁心柱有效截面的面积,等于多级铁心柱的几何截面积(不包括油道)乘以叠片系数。而叠片系数通常与硅钢片厚度、表面的绝缘漆膜厚度、硅钢片的平整度以及压紧程度有关。设计时希望有效截面尽量大,既节省材料又减少能量损耗。显然铁心柱的级数愈多,其截面愈接近于圆形,在一定的直径下铁心柱有效截面也愈大。但这样制造也工艺复杂,一般情况下铁心柱的级数可参照表1选取。 图1 铁心柱截面示意图

表1 铁心柱截面级数的选择 问题一:当铁心柱外接圆直径为650毫米时,如何确定铁心柱截面的级数、各级宽度和厚度,才能使铁心柱的有效截面积最大。 问题二:实际生产中线圈的内筒直径和铁心柱的外接圆直径不是精确地相等,而留有一定的间隙以便于安装和维修,设计的两个直径的取值范围称为各自的公差带。因此可以在设计铁心截面时稍微增加铁心柱的外接圆的直径以使得铁心柱有更好的截面形状。请结合铁心柱截面的设计而设计出二者的公差带。 问题三:铜导线在电流流过时发热造成的功率损耗简称为铜损;铁心在磁力线通过时发热造成的功率损耗简称为铁损。为了改善铁心内部的散热,铁心柱直径为380毫米以上时须设置冷却油道。简单地说,就是在某些相邻阶梯形之间留下6毫米厚的水平空隙(如图2所示),空隙里充满油,变压器工作时油上下循环带走铁心里的热量。具体油道数可按表2选取。 油道的位置应使其分割的相邻两部分铁心柱截面积近似相等。 分别针对问题一和问题二的情况,增加油道要求再给出设计,并指出油道的位置。 油道 图2 带油道的铁心柱截面

单管正激变换器参数确定

第二章 方案的确定 2.1 变换器的设计指标 2.1.1 正激变换器的设计指标 输入电压:DC41V ~DC51V 输出电压:DC12V 输出电流:5A 效率: η≥80% 电压调整率:Su ≤1.5% 负载调整率:S I ≤1.5% 2.1.2 辅助电源(反激)的设计指标 输入电压:DC41V ~DC51V 输出电压:DC17V 输出电流:0.5A 效率: η≥87% 第三章 正激电路设计 这里UC3844的振荡器选择R T =R 8=12k Ω,C T =C 19=1000PF ,则 KHZ C R f T T osc 15010100010128.18.112 3=???==- (3-1) 所以6脚的输出频率(驱动频率)为: KHZ f f osc 752 1== (3-2) 3.3 主电路设计 主电路的设计主要包括变压器、电感和MOS 管的设计。 3.3.1 主电路中变压器的设计 变压器是利用互感应实现能量或信号传输的器件。在开关电源主电路中,变压器用于输入输出之间隔离及电压变换。开关电源中使用磁性元件比较多,这其中包括作为开关电源核心的高频功率变压器、驱动变压器、电流互感器、低压辅助电源变压器以及各种滤波电感等,通常把这些统称为电子变压器,他们是电力电子电路中储能、转换以及隔离所必备的元件。磁性元器件在整个的开关电源中所占的比重很大,对于开关电源的质量、体积、成本以及效率都有很显著的影响,特别是高频功率变压器,它对于整个开关电源的性能更是有着举足轻重的影响

[16]。 高频变压器具有电压变化、电气隔离和能量传输三项主要功能,是开关电源 的核心部件,它的设计和计算也是最复杂的。在能量传输方面,高频变压器有两种方式:一是变压器传输方式,即加在一次绕组上的电压,在磁心中产生了磁通变化,使二次绕组产生感应电压,从而达到使能量从变压器的一次侧传输到二次侧的目的;另一种是电感器传输方式,即在一次绕组上施加电压,会产生励磁电流并且使磁心磁化,并将电能转变成磁能存储起来,而后通过去磁可以使二次绕组产生感应电压,从而达到将磁能变换为电能释放给负载的效果,下面就是变压器设计的过程[17]。 1.铁芯材料的选取 在设计高频变压器的时候,应当首先从选择磁心开始,然后再确定绕组的匝 数。在设计的过程中,需要了解与磁心相关的多种特性以及参数,并且需要进行多种参数的计算和校验。不同工作频率的变压器,可以选择不同磁性材料的铁芯和不同的铁芯规格。选择铁芯的材料和规格,除了根据变压器的工作频率和功率容量以外,还要考虑铁芯的损耗和温升,并在合理控制变压器体积的基础上,尽量降低其成本。目前广泛应用的磁性材料主要有硅钢片、铁氧体、非晶态合金、微晶合金和铁粉芯等。 铁氧体的电阻率可以做得很高,因此高频损耗小,工作频率高。另外铁氧体 工艺性能好,价格便宜,性价比高。比较适应十中小功率的脉冲变压器的设计。本次设计选用的是磁性材料是PC40,其Bs=0.39T ,Br=0.055T ,所以取T B B B r s 335.025.0=-<=?,满足条件。 2.AP 公式 在开关电源中,高频变压器的磁心尺寸的选择与其工作频率、输出功率、电 路结构以及绕组匝数等许多的因素都有关系,是整个高频变压器设计工作的难点。而在设计高频变压器的时候,面积乘积法是最为常用的方法,通常也简称AP 法。 由电磁感应定律得: dt NAedB dt d N dt d d di L E Vin t L =Φ====? (3-3) B Ae VinDT AedB Vindt Np ?== (3-4) 另外从窗口能否够用得: KpKuAw Np J I prms = (3-5) 其中J 为电流密度,prms I 为电流有效值,10<

高频变压器的设计与实验研究

高频变压器的设计与实验研究 刘修泉1,曾昭瑞2,黄平2 (1.广州番禺职业技术学院,广东广州511483;2.华南理工大学机械与汽车工程学院, 广东广州510640) 摘要:给出了感应电能传输系统高频变压器的设计方法,并进行了实验和分析。关键词:高频变压器;感应电能传输;损耗;温升中图分类号:TM402 文献标识码:B 文章编号:1001-8425(2009)03-0013-04 Design and Experimental Research of HF Transformer LIU Xiu 蛳quan 1,ZENG Zhao 蛳rui 2,HUANG Ping 2 (1.Guangzhou Panyu Polytechnic,Guangzhou 511483,China; 2.South China University of Technology,Guangzhou 510640,China ) Abstract :The design method of HF transformer for inductive electric energy transmission system is presented.The experiment and analysis are made. Key words :HF transformer ;Inductive electric energy transmission ;Loss ;Temperature rise 基金项目:广州市科技攻关项目(2005Z3-E0341) 1引言 移动机电设备,如电力机车和城市电车等,其传统供电方式一般为滑动接触方式,存在磨损和电火花等一系列问题。由此一种新的能量供应方式感应电能传输被提出来。感应电能传输系统可以无接触供电,消除了传统接触供电的安全隐患,提高了系统供电的灵活性[1]。感应电能传输系统主要是利用变压器来传递能量,利用耦合式电磁感应原理,电磁耦合结构相当于一个分离变压器,即变压器初级和次级绕组是分离的,存在空隙的。工频交流电经整流且逆变成高频交流电提供给初级绕组,根据电磁感应定律,次级绕组两端产生高频的感应电动势,经过整流和稳压等环节之后,为用电负载供应电能,实现电能传输。 感应电能传输系统变压器初、次级绕组的频率很高,其绕组参数受频率影响很大,电感和电阻均随着频率变化而变化,电感变化一般很小,但电阻变化很大,称为交流电阻,是直流电阻的几倍、几十倍甚至更大[2,3]。因此,高频变压器设计是感应电能 传输系统的核心。 笔者介绍了高频变压器设计中主要考虑的因素,根据面积法给出了设计高频变压器的一般方法,并对其进行了实验和分析。 2高频变压器设计中考虑的因素 在高频变压器的设计中,对铁心有以下要求:(1)高的饱和磁通密度或高的振幅磁导率。(2)在工作频率范围有低的铁心总损耗。软磁铁氧体满足上述要求,因此高频变压器铁心选择铁氧体PC30。但是在设计中必须考虑铁心损耗、绕组损耗和温升等问题,才能获得高效的系统。 2.1铁心损耗 铁心损耗取决于磁感应增量、频率和温度,在这里忽略温度的影响。软磁铁氧体铁心总损耗通常由三部分构成:磁滞损耗P h 、涡流损耗P e 和剩余损耗P r 。每种损耗产生的频率范围是不同的。但是铁心总损耗为[4]: P coreless =K p V core f m B n (1) 式中 K p ——— 铁心损耗系数,忽略温度变化时为常数第46卷第3期2009年3月 TRANSFORMER Vol.46March No.32009

正激变压器设计

单端正激变压器的设计 开关电源变压器是高频开关电源的核心元件。其作用为:磁能转换、电压变换和绝缘隔离。开关变压器性能的好坏不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。高频开关变压器的设计主要包括两部分:绕组设计及磁芯设计。本文将对应用在高频下的单端正激变压器的设计方法及磁芯的选择给出较为详细的论述。 1 单端正激变压器原理单端正激变压器的原理图如图1所示。 单端正激变压器又称"buck"转换器。因其在原边绕组接通电源Vi的同时把能量传递到输出端而得名。正激式变压器的转换功率通常在50~500 W之间。输出电压Vo由匝比n、占空比D 和输入电压Vi确定。 当PWM控制器输出正脉冲,功率开关导通,变压器的初级绕组通过电流,此电流由两部分组成,一部分为磁化电流即流经等效开环电感上的电流,另一部分足与输出电流等效的初级电流,他和初次级匝比成正比,和输出电流成正比。储存在电感上的能量必须在功率开关关断后下一次开启前泄放掉,以便使磁通复位。N3为去磁绕组 2 变压器磁芯的选用原则 高频开关电源中的变压器从性能价格比考虑,MnZn功率铁氧体材料是最佳的选择。应用于高频开关电源变压器中的铁氧体应具有以下磁特性:高饱和磁通密度或高的振幅磁导率,在工作频率范围有低的磁芯总损耗,较低的温度系数,较高的居里温度。 磁芯损耗Pc主要由磁滞损耗Ph和涡流损耗Pe(包括剩余损耗Pr)组成,即: 磁滞损耗Ph正比于直流磁滞回线的面积,并与频率成正比关系。即: 对于工作频率在100kHz以下的功率铁氧体磁芯,降低磁滞损耗是最重要的,为降低损耗,即要降低矫顽力Hc、剩余磁感应强度。要达到此目的,须从两方面着手,一是从配方成分方面,

变压器优化设计软件开发

变压器优化设计软件开发 摘要:本软件编程语言为Visual Basic和C++,编程语言和变压器设计原理相结合。采用分层遗传算法实现变压器的优化设计,并以220kV两圈变压器为实例进行验证,改进的MLGA比单层传统GA成本节省了3.02%,比手工设计方案节约9.48%。开发了10-220kV等级变压器的优化设计软件及界面,实现变压器设计人员由手工计算向计算机软件计算转变。 关键词:Visual Basic;变压器设计原理;分层遗传算法;变压器优化设计 1 概述 变压器优化设计软 件节约设计成本,提高设计质量,缩短产品的开发周期,将人工智能技术、数据库技术应用于设计中去,快速设计其结构方案,进一步提高公司的技术水平、企业形象和在市场中的核心竞争力。研究基于知识工程的计算机集成系统对变压器制造企业在“以市场需求为中心”的激烈竞争中有着很强的应用价值,对我国变电设 备制造企业和国民经济的发展有重要的现实意义[1]。 2 分层遗传算法的原理 本软件采用改进的分层遗传算法进行优化设计,传统的遗传算法是将所有设计优化变量进行编码形成一个向量(染色体),然后由染色体组成一个种群进行进化操作;分层遗传算法的基本思想是将设计优化变量根据工程实际权重或优化先后顺序分类并进行独立编码,放置在不同的层中,每层中可以有多个种群进行并行的遗传操作,因此每个种群可以采用不同的遗传算子、不同的遗传参数,并行的设计。不失一般性,这里以三层遗传优化算法为例,简要介绍分层遗传算法原理[2]。如图1所示。 第一层GA1是控制其他模块的独立遗传算法,第二层GA2和第三层GA3分别由一系列的模块组成,每个模块对应一个子问题,每个子问题对应一个独立的GA,且同一层中的各个模块的编码相同。一个独立的GA可以用以下格式来描述: GA=(PO,PS,IS,FIT,SO,CO,MO) (1)其中PO、PS、IS、FIT,分别表初始种群、种群大小、编码长度以及适应度值,SO、CO、MO分别代表选择、交叉、变异,故分层遗传算法可以用下式描述: GAij=(POij,PSij,ISij,FITij,SOij,COij,MOij) (2) 其中下标i和j表示分层遗传算法第i层第j个模块,GAij表示用独立遗传算法求解第i层第j个模块。由于上层和下层以及同层相邻模块之间的影响,考虑上层和下层之间的影响,GAij可以表示为式(3)。 GAij={POij(GAi-1,j),PSij(GAi-1,j),ISij(GAi-1,j),FITij(GAi-1,j),SOij (GAi-1,j),COij(GAi-1,j),MOij(GAi-1,j)}(3) 如果考虑同层相邻模块的影响则GAij表示为式(4)。 GAij={POij(GAi-1,j,GAi-1,j,GAi-1,j),PSij(GAi-1,j,GAi,j-1,GAi,j +1), ISij(GAi-1,j,GAi,j-1,GAi,j +1),FITij(GAi-1,j,GAi,j-1,GAi,j +1), SOij(GAi-1,j,GAi,j-1,GAi,j +1),COij(GAi-1,j,GAi,j-1,GAi,j +1), MO(GAi-1,j,GAi,j-1,GAi,j +1)}(4)

1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计 正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法: 规格: 输入电压Vin=400V(一般在输入端会有CCM A PFC将输入电压升压在稳定的DC400V左右) 输出电压Vout=12V 输出功率Pout=1200W 效率η=85% 开关频率Fs=68KHz 最大占空比Dmax=0.35 第一, 第一,选择磁芯的材质 选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下: 因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB

得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB 的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T 第二,确定磁芯规格 根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku) 其中: Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数 对正激变换器,视在功率Ps=Pout/η+Pout 电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2 铜窗口占用系数Ku取0.2 ΔB=0.20T,J=600A/cm2,Ku=0.2 代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4 查磁芯规格书,选用磁芯ETD49,其相关参数如下: 第三,计算匝比、匝数 1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf) 其中Vf为输出二极管正向压降,取0.8V 得匝比N=(400*0.35)/(12+0.8)=10.9375, 取匝比N=11验算最大占空比Dmax, 最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352 2. 根据公式Np=Vin*Ton/(ΔB*Ae)

简析500kV变电站所用变压器的优化设计

简析500kV变电站所用变压器的优化设计 发表时间:2016-07-01T15:15:50.023Z 来源:《电力设备》2016年第7期作者:龙晓慧罗栋梁邵贤[导读] 500kV电网系统的加强,设计和制造技术的提高及产品的不断改进。 龙晓慧罗栋梁邵贤(国核电力规划设计研究院)0引言500kV电网系统的加强,设计和制造技术的提高及产品的不断改进,所用电系统的可靠性也越来越高,通过对山东省已运行的3座500kV变电站所用电系统实际应用情况进行了调查、分析、研究,有必要对所用电系统中的所用变压器容量、台数及其一次接线方式作进一步优化设计。1所用变压器容量及台数的选择500kV变电站远景规模一般为2~4台主变压器,500kV出线4~回,220kV出线10~16回,主变压器低压侧接6~12组无功补偿装置,所用变压器容量大多在630~1000kVA之间[1-3]。安装3台所用变压器,近期安装2台所用变压器,其容量均按100%负荷考虑。所用变压器容量按下式计算[4]:S≥K1.P1+P2+P3 式中:S—所用变压器容量(kVA);K1—所用动力负荷换算系数,一般取K1=0.85;P1—所用动力负荷之和(kW);P2—所用电热负荷之和(kW);P3—所用照明负荷之和(kW)。根据变电站负荷统计及计算结果,在500kV变电站设计中,站用变压器一般选择630kVA或800kVA。由于负荷计算均按远景规模,而近期建设规模主变压器最多为2台,如淄博500kV变电站为2台主变压器;济南、潍坊500kV变电站均为1主变压器。主变压器各侧电压等级的出线回路也较少,这样所用变压器所带负荷也相对较少,如果所用变压器容量选择较大就不利于所用变压器的经济运行。从调查已运行的变电站所用电系统负荷情况与按远景规模所用负荷计算的结果相比较看,按远景规模所用负荷计算的结果要大的多, 主要原因如下: (1)真空滤油机和真空泵负荷,一般在主变压器大修时才使用。(2)主变压器冷却负荷,在计算负荷时按ODAF冷却方式,全部冷却器都运行,而实际情况主变压器负荷轻只有部分冷却器运行。(3)各电压等级配电装置断路器、隔离开关操作机构等加热负荷,由于各电压等级单元数量较少,达不到远景计算负荷。从所用变低压侧380V/220V接线方式来考虑,一般均采用单母线分段接线,一段母线上接一台工作所用变,正常运行时两台所用变分裂运行,基本上各带一半全所用电负荷。重要负荷都按双回路设计,另外随着制造厂技术水平不断提高,主变压器的可靠性越来越高,主变压器大修的可能性变的更少。鉴于上述分析的情况及所用变压器本身故障率极小,500kV变电站所用变压器我们推荐选用2所用变压器。每台所用变压器容量按全所负荷的100%考虑。若仍选用3台所用变压器,其一,考虑实际所用电负荷应用情况。其二,考虑低压侧380V/220V一般采用单母线分段接线,一段接一台工作所用变,备用所用变低压侧有两台自动开关分别接两段母线上。正常工作时两台工作所用变同时运行,分段开关断开。任一台工作所用变故障、退出或检修时可投入备用所用变;当仅有一台所用变运行时合上分段开关,此时一台所用变带全所负荷。一台所用变压器运行的可能性是非常小的,这种情况的出现只有在一台主变压器检修时才会出现上述情况,即便如此,在考虑其它负荷的同时率后,一台所用变带全所负荷也是适宜的。因此我们建议采用3台所变时,从初期到远景每台所用变压器容量都按全所负荷66.7%来选择。 2所用变压器一次接线方式对于选用2台所用变压器,初期建设只有1台主变压器时,装设1台从所外可靠电源引接的所用变压器。当第二台主变压器安装后,此外引的所用变压器从第二台主变压器低压侧引接。因为两台主变压器同时故障的可能性很小,若出现这种可能,我们从接线方式上考虑外引电源通过隔离刀闸与主变压器低压母线上引接隔离刀闸,相互切换来实现对全所供电。其接线方式如下: 这种接线方式,正常时由主变压器低压母线供电;母线或主变压器故障检修时,由外引电源来供电。母线隔离刀闸与外引电源进线隔离刀闸之间可实现电气闭锁,来保证母线或主变压器故障检修时,其低压侧不带电。当500kV变电站最终规模选用3台所用变压器时,与以往工程接线相同,即两台工所用变高压侧分别接于主变压器三次侧母线上,备用所用变压器采用外引电源。3技术经济比较从技术上来讲,选用两台所用变压器是完全可行的,正常时,两台所用变压器同时向全所负荷供电;当一台所用变压器故障、检修退出运行时,另一台所用变压器可带全所负荷。从经济上来讲,选用两台所用变压器可节省一台所用变压器约16,一台带套管电流互感器的断路器约12.5万元,另外还可适当节约占地,共计节省投资约30万元左右。4结论

电力变压器铁芯柱截面的优化设计

电力变压器铁芯柱截面的优化设计 摘要 针对变压器铁心柱截面优化设计,建立数学模型,利用动态规划法计算变压器铁心柱截面最优解,通过matlab程序实现。当直径为650毫米,叠片系数为0.98的时候,计算出级数为14级的时候有效面积最大,铁心柱截面的最大有效面积为314163.5平方毫米,面积利用率为94.72%。 运用动态规划方法计算任何铁心直径截面的最优解,既准确又快捷。利用vb进行编程,导出可执行软件。只要输入铁心柱的直径,级数,最小片宽还有叠片系数就能很快的算出铁心几何面积和有效截面积,以及各级的宽度和厚度。 而对于线圈的内筒直径和铁心柱的外接圆的公差带的设计,结合前一题的铁心柱截面的设计,对铁心柱直径的基本尺寸至500mm的,我们根据二者的最优配合,得出其上下偏差和公差,继而得到它们的公差带。对于基本尺寸500mm至3150mm的没有推荐的最优配合,综合考虑各因素的影响,可采用其常用配合,得出他们的公差带。同样利用vb进行编程,导出可执行软件,只用输入基本尺寸,然后选择公差代号和过程等级,就可上下偏差和公差。 根据铁心柱直径确定要增加的油道数,根据油道使分割相邻两边的面积近似相等,算出各个被分割的面积的大小,确定油道的位置。 关键词:动态规划最优解公差带基本尺寸有效面积 一问题的重述 电力变压器的设计中很重要的一个环节就是铁心柱的截面如何设计 为了充分利用线圈内空间又便于生产管理,心式铁心柱截面常采用多级阶梯形结构,截面在圆内上下轴对称,左右也轴对称。阶梯形的每级都是由许多同种宽度的硅钢片迭起来的。如何构造各个小矩形,使几何截面积最大?这就是电力变压器铁心柱截面积的优化问题。 为了改善铁心柱内部的散热,在某些相邻阶梯形之间留下一些水平空隙,放入冷却油。油道的位置应使其分割的各部分铁心柱截面积近似相等。因此在确定各级的设计后,还要考虑油道的设计。 问题一:当铁心柱外接圆直径为650毫米时,如何确定铁心柱截面的级数、各级宽度和厚度,才能使铁心柱的有效截面积最大。 问题二:实际生产中线圈的内筒直径和铁心柱的外接圆直径不是精确地相等,而留有一定的间隙以便于安装和维修,设计的两个直径的取值范围称为各自的公差带。因此可以在设计铁心截面时稍微增加铁心柱的外接圆的直径以使得铁心柱有更好的截面形状。请结合铁心柱截面的设计而设计出二者的公差带。 问题三:铜导线在电流流过时发热造成的功率损耗简称为铜损;铁心在磁力线通过时发热造成的功率损耗简称为铁损。为了改善铁心内部的散热,铁心柱直径为380毫米以上时须设置冷却油道。简单地说,就是在某些相邻阶梯形之间留下6毫米厚的水平空隙,空隙里充满油,变压器工作时油上下循环带走铁心里的热量。具体油道数可按表2选取。油道的位置应使其分割的相邻两部分铁心柱截

正激式高频变压器的设计

电子报/2007年/8月/5日/第012版 资料 正激式高频变压器的设计 成都立新 由于高频变压器在开关电源中已被广泛的使用,所以,高频变压器的设计是一重要课题。 按照高频变压器的工作方式,可分为正激式和反激式两种。高频变压器工作时是利用一电子开关的高速通断,从而使变压器进行能量传输。当电子开关导通时,变压器进行能量传输,称为正激式;反之,即电子开关截止时,变压器进行能量传输,称为反激式。 这里,笔者介绍正激式高频变压器的设计方法,如图1所示。该变压器一般设计的使用功率为50~500W。图1中已标明变压器T各绕组安装时规定的同名端,以便以下分析。 当功率开关管M1接通时(给M1栅极上外加脉冲开关信号,在变压器T的主绕组N1中有电流通过),其自感电动势a点为+,b点为-,这样在变压器的N1中就储存了磁能。该能量传输到次级绕组N2上(e点为+,f点为-),使二极管D2正向偏置,有电流通过D2、电感L和负载RL。而此时D3是处于反向偏置,所以无电流通过D3。 当功率开关M1截止时(M1栅极开关信号为“0”电平),变压器T所有绕组以及L的感应电压都反向,D2也处于反向偏置状态。由于电感器L的电流不能突变,D3(是续流管)导通,负载RL仍有电流通过。此时,次级绕组中无电流通过。由此可见,变压器T从初级到次级的能量传输是在开关M1导通时完成的,这一过程通常称为正激式变换(反之,若上述的能量传输是在M1截止时完成,称为反激式变换,这里不讨论)。 在上述的变压器T正激式变换中,为了避免变压器T或电感器L产生饱和,要求开关管M1导通时的电压与时间的乘积(U×T)应等于M1截止时的反向电压与时间的乘积。为此,设定M1时间为T ON,T初级绕组电压设为Uin (初级绕组电流由N1的a流到b),由此时的电压×时间:Uin×Ton……(1)。 然而,当电子开关M1截止时,没有电流流过变压器T,结果是电压与时间的乘积就会不平衡,这种不平衡将导致变压器T饱和。为了解决变压器可能饱和的问题,在变压器T中增加了第三绕组N3和一只快恢复二极管D1。抗饱和的工作原理是当M1瞬时截止时,第三绕组N3的感应电压。c~d反向,此时c点为正,d点为负,且其感应电压高于Uin,因此D1开始导通,这就平衡了铁芯的电压和时间的乘积,这一过程称为铁芯的去磁或复位。 设N1、N2、N3分别是初级绕组、次级绕组和第三绕组的匝数,再设M1导通时,次级绕组的感应电压为:

正激变压器的设计

正激变压器的设计 本文以一个13.8V 20A的汽车铅酸电池充电器变压器计算过程为例,来说明正激变压器的计算过程 1、相關規格参数(SPEC): INPUT: AC 180V~260V 50Hz OUTPUT: DC 13.8V (Uomax=14.7V) 20A Pout: 274W (Pomax=294W) η≧80%, fs: 60KHZ; 主电路拓扑采用单管正激自冷散热 2、選擇core材質.決定△B 选择PC40材质Core,考虑到是自冷散热的方式,取ΔB=0.20T 3、確定core AP值.決定core規格型號. AP=AW×Ae=(Ps×104)/(2×ΔB×fs×J×Ku) Ps : 變壓器傳遞視在功率 ( W) Ps=Po/η+Po (正激式) Ps=294/0.8+294=661.5W J : 電流密度 ( A) .取400 A/cm2 Ku: 銅窗占用系數. 取0.2 AP=(661.5×104)/(2×0.20×60×103×400×0.2)≈3.4453 cm2 選用CORE ER42/15 PC40.其參數為: AP=4.3262cm4 Ae=194 mm2 Aw=223mm2Ve=19163mm3

AL=4690±25% Pt=433W (100KHz 25℃) 4、計算Np Ns. (1). 計算匝比 n = Np /Ns 設 Dmax= 0.4 n = Np / Ns = Vi / Vo = [Vin(min) ×Dmax]/ (Vo+Vf) Vf :二极管正向壓降取1V Vin(min)=180×0.9×√2-20=209 VDC Vin(max)=260×√2=370VDC n=(209*0.4)/(13.8+0.7)=5.766 取5.5 CHECK Dmax Dmax=n(Vo+Vf)/Vin(min)= 5.5 (13.8+1)/209=0.3868≈0.387 Dmin=n(Vo+Vf)/Vin(max)= 5.5 (13.8+1) /370=0.218 (2). 計算Np Np=Vin(min) ×ton/(ΔB×Ae) Ton:MOS管导通时间ton= Dmax/ fs=0.387/60×103=6.33uS Np = (209×6.33)/( 0.20×194)=34.1 取34TS (3). 計算Ns Ns = Np / n = 34÷5.5=6.18 取整为6 TS (4). CHECK Np (以Ns驗算Np) Np = Ns×n = 6×5 .5=33TS 取 Np = 33TS

有载调容变压器在运行中的优化设计研究

有载调容变压器在运行中的优化设计研究 摘要本文介绍了一种新型有载调容组合式变压器的优化设计,其具有节能效果明显、智能化程度高、故障率低、安装维护方便等特点。笔者从变压器的本体及开关进行优化设计的说明,并通过试验论证,此种有载调容变压器的节能效果明显、运行中本体和开关故障低,特别适用于10KV以下配电网。 关键词有载调容变压器;优化设计;节能 1 有载调容变压器设计原理 笔者所提及的此种变压器在设计时具备大小两个额定容量。高压绕组在大容量时为三角形连接,低压绕组为段2与段3并联(段2和段3匝数相同)然后和段1串联(段1导线截面积约为段2(或3)的2倍),此时低压绕组的匝数为段1的匝数与段2(或3)。在小容量时,高压绕组改为星形连接,匝电压为原来的1/3,低压线圈则改成段1、段2、段3串联,合理选择匝数,其匝电压也要改为原来的1/3,以保证输出电压不变。 显然,由于匝电压大幅降低,铁芯中磁通密度亦大幅降低,使变压器在小容量状态下其空载损耗大大降低,实现了节能之目的。它特别适用于季节性用电不均和时段性负荷差异大的农村电网[1]。 2 有载调容变压器本体的优化设计 有载调容变压器在运行中出现的最严重也是最致命的就是变压器短路故障。因此笔者特意就此方面进行优化设计说明。 变压器在运行过程中,由于运行环境不断恶化,电网容量越来越大、短路电流逐年增大,抗短路能力不足已成为有载调容变压器事故的首要原因。在电路发生突然的短路时,线圈中流过的电流比额定电流大几十倍,因此负载损耗将比额定运行时大几百倍,线圈温度将在短时间内迅速上升,若不能及时排除故障,则变压器就有被烧坏的可能。因此笔者从绕组设计和装配工艺改进两个方面进行优化设计,以提高有载调容变压器的抗短路能力。 (1)在绕组导线的选用上,采用半硬漆包铜导线(屈服强度σ0.2=140~180MPa),增大单根导线的尺寸,在保证损耗等性能指标的前提下,内绕组尽量增大单根导线辐向尺寸(采用箔式绕组),外绕组加大导线截面,提高导线自身的机械强度。 (2)绕组采用圆筒式结构,冲击电压分布好,油道散热效率高。 (3)减小安匝不平衡程度。轴向力是由辐向漏磁引起的,辐向漏磁大小取决于安匝不平衡程度,设计时使绕组安匝尽可能平衡。高压绕组有分接匝时,将

相关文档