文档库 最新最全的文档下载
当前位置:文档库 › 异氰酸酯的其它反应

异氰酸酯的其它反应

异氰酸酯的其它反应
异氰酸酯的其它反应

异氰酸酯的其它反应

2.1.9.1 异氰酸酯与羧酸的反应

异氰酸酯与羧酸反应,先生成热稳定性差的羧酸酐,然后分解,生成酰胺和二氧化碳(如下式)。COOH与NCO的反应活性比OH低得多。

这类反应比较少见,不过在含-COOH的聚酯体系或含侧羧基的离聚体体系,过量的异氰酸酯可与羧基反应。

芳香族异氰酸酯与羧酸反应,主要生成酸酐、脲和二氧化碳:

2ArNCO+2R-COOH→ArNHCONHAr+RCOOCOR+CO2

2.1.9.2 异氰酸酯与环氧树脂的反应

异氰酸酯与环氧基团在胺类催化剂的存在下生成含噁唑烷酮(oxazolidone)环的化合物(见下式)。噁唑烷酮环具有较高的耐热性,含噁唑烷酮基的聚合物具有较高的耐热性。

二异氰酸酯与二环氧化合物在催化剂作用下可竹成聚噁唑烷酮;含羟基的环氧树脂。如低环氧值的双酚A环氧树脂与二异氰酸酯(含端NCO预聚体)生成聚氨酯-噁唑烷酮;在过量多异氰酸酯、环氧树脂及三聚催化剂的存在下,可生成聚氨酯-噁唑烷酮-异氰脲酸酯聚合物,这些反应可用于制造耐高温硬质聚氨酯。

2.1.9.3 异氰酸酯与羧酸酐的反应

异氰酸酯基与酸酐反应,生成具有较高耐热性的酰亚胺环,二异氰酸酯能与二羧酐反应生成耐热性高的聚酰亚胺。酰亚胺基的耐热性与异氰脲酸酯相当:

异氰酸酯还可以与许多化合物反应,例如:与氰酸反应可生成亚氨乙内酰脲,继而再与异氰酸酯反应制得聚乙内酰脲:异氰酸酯与氨基酸或与其有关酯反应可合成出乙内酰脲。若再与异氰酸酯反应,可制得聚乙内酰脲;与氨反应生成单取

代脲,并可继续反应;与肼(联氨)反应生成二脲(见下式);还可与硫醇、卤化氢等反应;等等。

RNCO+NH3→RNHCONH2

RNCO+RNHCONH2→RNHCONHCONHR

RNCO+NH2-NH2→RNHCONHNHCONHR

RNCO+R′SH→RNHCOSR′

异氰酸酯与氨基反应

异氰酸酯与氨基反应 异氰酸酯跟活泼氢反应,一般来说可以是羟基,氨基等,羟基可以是醇羟基、酚羟基,活泼氢的反应里氨基反应的活性很高水的反应性也很高,通常来讲在较低的温度下就可以发生异氰酸酯和氨基的反应了,当然和水的反应在合成时候我们是不愿意看到的,而在潮气固化的时候我们就需要它,我做合成的时候尝试过在室温下用乙二胺的扩链,这个也是可以实现的,当然反应时间比在40多度时候要稍稍长一些,而羟基相对来讲活性低一些所以需要的温度比较高,文献上60度出现的比较多,但是个人实践表明在温度可控性较好的情况下在90度下反应也是可行的,我一般控制在75-80度,脂肪族的异氰酸酯我会在反应之初就在较高温度反应且加入催化剂,否则反应的转化率太低,而芳香族的我一般在60度左右不加催化剂反应一段时间再升高温度加入催化剂,另外就是氨基甲酸酯与异氰酸酯的反应,这个反应需要在较高的温度下发生(100多度具体多少我忘了),这个也就是为什么我们需要控制反应温度的原因,避免温度过高发生副反应而凝胶。 胺基与异氰酸酯的反应是聚氨酯制备中较为重要的反应之一。凡是伯胺基及仲胺基的化合物,除具有较大位阻的外,基本都能与异氰酸酯反应。异氰酸酯与胺反应生成取代脲。总的来说,胺基与异氰酸酯的反应较其它活性氢化合物为高。异氰酸酯与胺伯化合物的反应活性除了受异氰酸酯结构影响外,还受胺类化合物结构的影响。强碱性的胺活性大。脂肪族伯胺与异氰酸酯的活性相当大。在0~25度就能和异氰酸酯快速反应,生成脲类化合物。脂肪族伯胺与芳香族异氰酸酯的反应太快,来不及控制,很少使用。在聚氨酯制备中,因伯胺活性太大,一般应在室温下反应。 脂肪族仲胺和芳香族伯胺与异氰酸酯反应就比脂肪脂肪族伯胺慢。对于芳香族胺,若苯环的邻位上有取代基,由于存在空间位阻效应,反应活性要比无邻位取代基的小;其中存在吸电子取代基者使胺基的活性大大降低。而对位存在吸电子取代基的芳胺的活性比无取代基的活性高,这是因为它通过苯环使得胺基的碱性增强,容易失去质子。 常用的二胺化合物是活性较缓和的芳香族二胺,如3,3ˊ-二氯-4,4ˊ二氨基二苯甲烷等,二氨基二苯甲烷氨基的邻位Cl原子的空间位阻基电子诱导效应使得NH2的活性较低。下表为几种芳香族二胺与端基NCO聚氨酯预聚体反应的凝胶时间。 胺类名称凝胶时间∕min温度 对苯二胺1室温 3,3ˊ-二甲基-4,4'-联苯二胺3室温(在溶剂中) 多亚甲基多苯胺0.5128度(熔融状态) 4,4ˊ二氨基二苯甲烷3室温(在溶剂中) 联苯二胺5室温 15~20 3,3ˊ-二氯-4,4ˊ二氨基二苯 甲烷 3,3'-二甲氧基-4,4'-二氨基 5室温 苯甲烷 3,3ˊ-二氯-4,4ˊ-联苯二胺〉15~20

异氰酸酯

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。 2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH2) 6-NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼.

6、二环己基甲烷二异氰酸酯(H12MDI) 是一种常用的脂肪族二异氰酸酯。 上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄: 还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜. 另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式C3H3O ,分子量61.0 ,结构式(CH3)2-CHOH ,它是正丙醇CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重 0.7851 、熔点- 88 ℃、沸点 8 2.5 ℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限 3.8 ~10.2%( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下

异氰酸酯化学结构

异氰酸酯化学结构 Prepared on 24 November 2020

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH 2) 6 -NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼. 6、二环己基甲烷二异氰酸酯(H 12 MDI) 是一种常用的脂肪族二异氰酸酯。

上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄:还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜.另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式 C3H3O ,分子量,结构式(CH3)2-CHOH ,它是正丙醇 CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重、熔点- 88 ℃、沸点℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限~ %( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下可代替乙醇使用。也可用作涂料,松香水,混合脂等方面;无色透明;纯天然产品。 PS 聚苯乙烯化学和物理特性大多数商业用的PS都是透明的、非晶体材料。PS具有非常好的几何稳定性、热稳定性、光学透过特性、电绝缘特性以及很微小的吸湿倾向。它能够抵抗水、稀释的无机酸,但能够被强氧化酸如浓硫酸所腐蚀,并且能够在一些有机溶剂中膨胀变形。典型的收缩率在~%之间。

多异氰酸酯

异氰酸酯 中文名称:异氰酸酯[1] 中文别名:异氰酸 英文名称:isocyanicacid 英文别名:Isocyanicacid;Hydrogenisocyanide;Polyisocyanates; CAS号:75-13-8 分子式:CHNO 分子量:43.0247 密度:1.04g/cm3 沸点:39.1℃ 闪点:<-15℃(闭杯) 自燃点:534℃ 蒸汽压:6750mmHgat25°C 外观:无色清亮液体,有强刺激性。 溶解性:15℃时水中溶解度:1%;20℃时6.7%。 用途:用于家电、汽车、建筑、鞋业、家具、胶粘剂等行业。 危险性:除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 化学反应:容易与包含有活泼氢原子的化合物:胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳;在过量水存在时,甲胺再与MIC反应生成1,3-二甲基脲,在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下,发生自聚反应并放出热能。 遇热、明火、氧化剂易燃。燃烧时释出MIC蒸气、氮氧化物、一氧化碳和氰化氢。 高温(350~540℃)下裂解可形成氰化氢。

遇热分解放出氮氧化物烟气。 制备方法:工业上主要采用伯胺光气法生产异氰酸酯,其反应如下:由二胺光气法可制得二异氰酸酯:随着科技的进步和合成理论的不断深入,硝基化合物直接与一氧化碳高温高压催化合成异氰酸酯的工艺越来越来成熟。 由于异氰酸酯结构中含有不饱和键,因此具有高活性,容易与一些带活性基团的有机或无机物反应,生成聚氨酯弹性体。 (1)与羟基化合物的反应:如与多元醇、聚醚、聚酯酰胺、蓖麻油等含活性羟基化合物反应生成氨甲基酸酯。 (2)与含氨基化合物的反应:与胺类化合物反应通常生成取代脲,如果进一步发生反应则最终生成缩二脲。 (3)与水反应:与水反应生成胺和二氧化碳,胺进一步与异氰酸酯反应生成取代脲。 (4)与含羧基化合物的反应:与有机羧酸、末端为羧基的聚酯等化合物反应,先生成混合酸酐,最后分解放出二氧化碳而生成酰胺。 (5)与氨基甲酸酯的反应:反应生成脲基甲酸酯。 此外,异氰酸酯在适当的条件下还可以发生自聚反应,形成二聚体或高分子量的聚合物,因此,异氰酸酯一般要求在低温、无光照条件下储存。 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(TolueneDiisocyanate,简称TDI);二苯基甲烷二异氰酸酯(MethylenediphenylDiisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的1,6-己二异氰酸酯(HDI)。

异氰酸酯的其它反应

异氰酸酯的其它反应 2.1.9.1 异氰酸酯与羧酸的反应 异氰酸酯与羧酸反应,先生成热稳定性差的羧酸酐,然后分解,生成酰胺和二氧化碳(如下式)。COOH与NCO的反应活性比OH低得多。 这类反应比较少见,不过在含-COOH的聚酯体系或含侧羧基的离聚体体系,过量的异氰酸酯可与羧基反应。 芳香族异氰酸酯与羧酸反应,主要生成酸酐、脲和二氧化碳: 2ArNCO+2R-COOH→ArNHCONHAr+RCOOCOR+CO2 2.1.9.2 异氰酸酯与环氧树脂的反应 异氰酸酯与环氧基团在胺类催化剂的存在下生成含噁唑烷酮(oxazolidone)环的化合物(见下式)。噁唑烷酮环具有较高的耐热性,含噁唑烷酮基的聚合物具有较高的耐热性。 二异氰酸酯与二环氧化合物在催化剂作用下可竹成聚噁唑烷酮;含羟基的环氧树脂。如低环氧值的双酚A环氧树脂与二异氰酸酯(含端NCO预聚体)生成聚氨酯-噁唑烷酮;在过量多异氰酸酯、环氧树脂及三聚催化剂的存在下,可生成聚氨酯-噁唑烷酮-异氰脲酸酯聚合物,这些反应可用于制造耐高温硬质聚氨酯。 2.1.9.3 异氰酸酯与羧酸酐的反应 异氰酸酯基与酸酐反应,生成具有较高耐热性的酰亚胺环,二异氰酸酯能与二羧酐反应生成耐热性高的聚酰亚胺。酰亚胺基的耐热性与异氰脲酸酯相当: 异氰酸酯还可以与许多化合物反应,例如:与氰酸反应可生成亚氨乙内酰脲,继而再与异氰酸酯反应制得聚乙内酰脲:异氰酸酯与氨基酸或与其有关酯反应可合成出乙内酰脲。若再与异氰酸酯反应,可制得聚乙内酰脲;与氨反应生成单取

代脲,并可继续反应;与肼(联氨)反应生成二脲(见下式);还可与硫醇、卤化氢等反应;等等。 RNCO+NH3→RNHCONH2 RNCO+RNHCONH2→RNHCONHCONHR RNCO+NH2-NH2→RNHCONHNHCONHR RNCO+R′SH→RNHCOSR′

异氰酸根的反应

异氰酸酯的各种常见反应 一、异氰酸酯与醇的反应 带有端羟基的聚醇(如聚酯、聚醚及其他多元醇)与多异氰酸酯反应,生成聚氨酯类聚合物,这是合成聚氨酯最基本的反应。 根据研究得知:氨基甲酸酯基团是内聚能较大的特性基团,空间体积较大,在聚台物中具有硬链段特征,而由碳碳链作为主链的聚醇,具有较强的挠曲作用,成为聚合物的软链段?聚氨酯实际上就是由刚性基团(链段)和软链段构成的嵌段共聚物,显然,使用分子量较大的聚醇,将会使聚合物刚链段比例下降、刚性基团间隔增加。在实际合成中,应根据产品不同性能要求和应用场合,选择不同分子量的聚醇品种。不同分子量的聚醇对PUR性能的影响及不同分子量的聚醚品种对与MDI反应的速度都是不一样。 在使用聚醇与异氰酸酯反应时,除原料品种和分子量等因素外,更重要的影响因素是彼此反应基团数的比例,即-NCO/-OH比例,它决定了生成聚合物的分子量太小,这对于二步法合成聚氨酯的反应是极其重要的技术参数。跟据-NCO/-OH比不同,基本有以下情况, 1) -NCO/-OH>1 即- NCO过量,这样生成的聚合物端基为异氰酸基,在聚氨酯合成中.大多数预聚体法(二步法)是采用一NCO/_一OH>1,如PU弹性体、粘合剂,涂料以及二步法合成PU泡沫塑料等。 2) -NCO/-OH)=1 在一NCO基团和-OH基团都是双官能度时,据聚合物化学理论,生成的聚合物分子应该是无穷大 在泡沫塑料和热塑性聚氨酯材料制备中,常将-NCO/-OH控制在-NCO/-OH =1左右 3)-NCO/-OH<1 即-OH过量,生成的聚合物的两端应是羟基 此种情况的使用较少,主要用于便于贮存的生胶、粘合剂和某些中间体的制备。 二、异氰酸酯与苯酚的反应 异氰酸酯和酚的反应情况与醇相似,但由于苯环的吸电作用,使酚的羟基中的氧原子电子云密度下降、致使它与异氰酸酯的反应活性下降,该类反应主要作为异氰酸酯封闭反应 三、异氰酸酯与水的反应 该反应是制备聚氨酯泡沫塑料的重要反应。在反应中生成二氧化碳,使得水成为制备聚氨酯泡沫最廉价的化学发泡剂.但该反应放热量大,用量过大,会产生泡沫体烧芯同时,水用量过多,使得生成聚合物中脲基含量高,将会使PU软质泡沫体的手感变差,因此,在制备PU软质泡沫体时,严格控制水的音量低于4%。 对于希望出现泡沫气穴的其他聚氢酯产品,如橡胶、涂料、纤维等产品.对水的限制都非常严格,不希望因原料、溶剂,甚至潮湿空气中的水分与异氰酸酯接触而产生上述反应。 四、异氰酸酯与羟酸的反应 见第二节. 五、异氰酸酯与胺的反应 含有端氨基的化含物与异氰酸酯的反应,在聚氯酯合成中占有重要地位,由于氨基活跃,且具有一定碱性,故异氰酸酯能与任何含氨基的化合物反应,生成取代脲。 在聚氨酯材料的合成中,低分子胺类化合物常被用作链扩张剂使用.它们与异氰酸酯反应生成脲基团,与大分子中的氨基甲酸酯基团等内聚能高的基团构成了聚合物中的刚性琏段,同时,在在异氰酸酯过量的情况下,这些基团还能进一步反应,形成缩二脲等交联结构,从而使聚合物在力学性能等方面有较大的提高,使用普通聚酯进行氨化反应,可以使传统聚醚的端羟基转化为端氨基,从而开发出高活性的聚醚新品种,井由此开发出“冷热化”型聚氨酯泡沫等新品种;同时,以这类高活性的聚胺醚为基础,还开发出反应速度更快、生产效率

异氰酸酯的特征

异氰酸酯的特征 一 异氰酸酯的结构特征 异氰酸酯:分子中含有异氰酸酯基(-NCO ,即-N==C==O )的化合物,其化学活性适中。其化学活性主要表现在其特征基团-NCO 上,该基团具有重叠双健排列的高度不饱和健结构(-N=C=O),它能和各种含活泼氢的化合物进行反应,化学性质极其活泼。 共振理论:Baker 提出异氰酸酯基团的共振理论,由于异氰酸酯基的共振作用,使其电荷分布不均匀,产生亲核中心及亲电中心,共振结构电荷分布如下 在该特征基团中:根据异氰酸酯基团中N 、C 、O 元素的电负性排序:O(3.5)>N(3.0)>C(2.5),三者获得电子的能力是:O >N >C 。另外:—C=O 键键能为733kJ/mol,-C=N-键键能为553kJ/mol,所以碳氧键比碳氮键稳定。N ,C ,O 原子的电负性顺序为O>N>C 。 因此,由于诱导效应在-N=C=O 基团中氧原子电子云密度最高,氮原子次之,碳原子最低。 氧原子(O )电负性最大,是亲核中心,可吸引含活性氢化合物分子上的氢原子而生成羟基,但不饱和碳原子上的羟基不稳定,重排成为氨基甲酸酯(若反应物为醇)成脲(若反应物为胺)。 碳原子(C )电子云密度最低,呈较强的正电性,为亲电中心,易受到亲核试剂的进攻。 当异氰酸酯与醇、酚、胺等含活性氢的亲核试剂反应时,-N=C=O 基团中的氧原子接受氢原子形成羟基,但不饱和碳原子上的羟基不稳定,经过分子内重排生成氨基甲酸酯基。 异氰酸酯与活泼氢化合物的反应,就是由于活泼氢化合物分子中的亲核中心。进攻NCO 基的碳原子而引起的。反应机理如下: R N R C 1[R R 1 H O H R 1 d d d

异氰酸酯的性质及危害

异氰酸酯的性质及危害 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(Toluene Diisocyanate,简称TDI);二苯基甲烷二异氰酸酯(Methylenediphenyl Diisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI 常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的HDI 理化性质 品名:HMDI; (1,6-Hexamethylene Diisocyanate); 六亚甲基-1,6-二异氰酸酯

CAS NO.: 822-06-0 品名:MIC Methyl isocyanate; Isocyanatomethane; 异氰酸甲酯; 甲基异氰酸酯; CAS:624-83-9 分子式:C2-H3-N-O 分子量:57.06 相对密度:0.9599(20/20℃) 沸点:39.1℃ 闪点:<-15℃(闭杯)。自燃点:534℃ 蒸气密度:1.42 蒸气压:46.39kPa(348mmHg20℃) 15℃时水中溶解度:1%;20℃时6.7% 无色清亮液体, 有强刺激性。 除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。 尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 容易与包含有活泼氢原子的化合物: 胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳; 在过量水存在时, 甲胺再与MIC 反应生成1,3-二甲基脲, 在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下, 发生自聚反应并放出热能。

异氰酸酯的毒害作用

异氰酸酯的毒害作用 有机异氰酸酯是一种有毒的化学药品。它对人体的伤害有两条途径:一是挥发在空气中的蒸汽对人呼吸道和眼睛的刺激作用;二是异氰酸酯液体接触到身体皮肤和黏膜所产生的损害。 许多种多异氰酸酯用于聚氨酯行业,其中有些液体二异氰酸酪具有较高的挥发性,例如在软质聚氨酯泡沫塑料制造中常用的甲苯二异氰酸酷(TDI),在涂料行业常用的六亚甲基二异氰酸酯(HDI),都有较高的挥发毒性,在加热时挥发性更大。TDI在20。C的蒸气压约为1.33Pa,在120。C的蒸气压高达133DPa,所以在连续法软泡生产线附近的-TDI蒸汽毒害尤其严重,必须做好防护措施。相对而言,MDI和PAPI的蒸气压很低,25℃的蒸气压仅为2. 1×10-7Pa。 二异氰酸酯原料、预聚体半成品和刚从生产线切割下来的软泡产品,散发出来的有毒二异氰酸酯气体,能够刺激眼部和呼吸系统。一般症状为流泪、口千及喉痛,受毒较深者,咳嗽厉害并觉胸闷。在某种特别情况下,异氰酸酉苯二异氰酸酯的浓度超过O. 05mg/m,时,对入体呼吸道分泌液作用就能引起咳嗽。当人体感到甲苯二异氰酸酯的臭味时,其浓度已超过0.4mg/m3,嗅觉敏锐的人其感觉浓度为0. 05 ~O. lmg/m3。短期接触者可恢复健康。若身体组织吸收到有机异氰酸酯,对人体内脏器官有影响,起到障碍作用。异氰酸酪对人体的造血功能有伤害,部分从事聚氨酯生产和科研人员的血小板数减少。 为了避免异氰酸酯蒸气对人体的危害,各国均规定了空气中二异氰酸酯的最高允许浓度。国际上对TDI的允许浓度规定为0.02 X10-6。美国国家职业安全防护学会(NIOSH)则更严格规定工作场所的TWA (按每周40h工作)的浓度极限值为5X10-9, 即每立方米大气中含TDI极限为35ug、MDI为50ug、HDI为35ug、IPDI为45ug、HMDI为55ug。我国规定车间空气中TDI的鼠高允许浓度为O. 2mg/m',并将甲苯二异氰酸酯列为对入体健康具有高度危害的物质。 为此,对生产与使用有机异氰酸酯的车间要搞好通风条件与设施,严格安全操作。 甲苯二异氰酸酪等有机异氰酸酯具有较强的化学活性,极易和水分和蛋白质结合,黏附在皮肤或黏膜上。特别是TDI等芳香族有机异氰酸酯,呼吸进气管和肺部,经过与水分反应、水解,可产生芳香族胺,据称芳香族胺有一定的致癌可疑,所以长期接触异氰酸酯的职工更应加强自我防护意识。 操作注意事项 为了生产安全和入体的安全,在操作有机异氰酸酯时要注意以下几点。 ①异氰酸酯有极强的反应性,所以在操作时必须七分谨慎。由于异氰酸酯和胺、醇、水等含有活泼氢钠化合物极易反应,因此在操作和贮存中必须严格避免与这些物质接触。 异氰酸酯接触潮气会变质,生成不溶性的脲类化合物并放出二氧化碳,造成容器鼓桶(若容器中有水分且已密闭)并致黏度升高。异氰酸酯中的NCO实际含量减少会影响化学计量准确性。长期接触水分的异氰酸酯会凝固、报

催化剂对异氰酸酯反应活性的影响

催化剂对异氰酸酯反应活性的影响 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有... 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有机金属化合物。 聚氨酯合成中所采用的催化剂,都是既能催化与羟基的反应,也能催化与水的反应,但所有催化剂对这二个反应的催化活性各不相同。一般,叔胺类催化剂对异氰酸酯与水的反应(即通常所说的“发泡反应”)的催化效率大于对异氰酸酯与羟基反应(即所谓所的“凝胶反应”)的催化效率,有机金属类催化剂对凝胶反应的催化效率更显著,即各催化剂都有其选择性。 2.2.1.1 异氰酸酯反应的催化机理 一般认为,异氰酸酯与羟基化合物反应的催化机理是,异氰酸酯或羟基化合物先与催化剂生成不稳定的络合物,然后发生反应,生成聚氨酯。但这种络合催化反应理论也有几种说法,至今还不是十分清楚。 一种公认的催化机理是基于异氰酸酯受亲核的催化剂进攻,生成中间络合物,再与羟基化合物反应。如二异氰酸酯与二元醇的反应机理如下:

另外,有人认为金属有机化合物的催化机理与叔胺类不同,是形成一种三元活化络合物。有人提出羟基化合物与催化剂形成四节环活化络合物,再与异氰酸酯反应生成氨基甲酸酯。 2.2.1.2 叔胺催化剂酸碱性对反应活性的影响 在聚氨酯制备反应中,一般很少用酸类催化剂,酸性催化剂(如苯甲酰氯、无机及有机酸)对氨基甲酸酯及脲基甲酸酯生成反应有较低的催化作用,但重要的是它们能抑制缩二脲的生成反应,因而抑制交联反应。若聚醚中尚有微量碱(开环聚合用的KOH)未被除去,则与二异氰酸酯反应时,碱金属化合物会催化交联副反应,发生凝胶。因而可加入酸中和,并且若酸稍过量,则抑制交联反应,可使预体能长期储存。 叔胺类催化剂对异氰酸酯与羟基化合物反应的影响,除了其碱性程度外,还有位阻效应等因素。一般来说,碱性大、位阻小,则催化能力强。叔胺对水与异氰酸酯反应的催化活性的影响比羟基与异氰酸酯反应的催化活性大(见图2-2),故叔胺催化剂一般用于聚氨酯泡沫制备。在所有叔胺类催化剂中,三亚乙基二胺是一种结构特殊的催化剂,由于它是杂环化合物,叔胺N原子上没有位阻,所以它对发泡反应及凝胶反应都具有较强的催化性能,是聚氨酯泡沫塑料常用的催化剂之一,也可用于聚氨酯胶粘剂、弹性体等的制备。据估计,在水/醇混合体系中,它对羟基催化能力占80%,对水占20%,对羟基与异氰酸酯反应的催化活性比水大,具有类似有机金属化合物的催化性能,不仅广泛用于泡沫,而且也用于聚氨酯弹性体、胶粘剂、涂料。 不同的异氰酸酯对各种反应有不同的催化活性。有人研究了两种催化剂对异氰酸酯-端伯羟基聚醚、异氰酸酯-端仲羟基聚醚及异氰酸酯-水反应速率常数及活化能进行了比较,实验结果见表2-7。表中K1、K2及K3分别为TDI与普通PPG聚醚(端基为仲羟基)、EO封端聚醚(伯羟基)和水的反应速率常数[单位L/(g·mol·h)]。 表2-7 氨基甲酸酯及脲生成反应的速率常数K及活化能E

聚氨酯化学反应

异氰酸酯的化学反应 异氰酸酯与OH的反应 RNCO + R′OH →RNHCOOR′ 这个反应属于二级反应,反应速度随着羟基含量而变化,不随异氰酸酯浓度而改变。 异氰酸酯与羟基的摩尔比,一般称异氰酸酯指数,R值。 R值>1,端NCO封端的聚氨酯预聚体。对二异氰酸酯和二元醇而言,R 值大于2,体系中含有未反应的游离异氰酸酯,此时称之为半预聚体或改性异氰酸酯。 例:各类弹性体预聚体、跑道铺地胶、聚氨酯密封胶等 R值<1,端OH封端的预聚体。大多聚氨酯胶黏剂的主剂及聚氨酯弹性体生胶。 例:软包装复合胶、聚氨酯油墨连结料、PU革的浆料、磁带胶、鞋胶等 R值=1,理论上生成分子量无穷大的高聚物,实际上由于水分、杂质等影响不可能。R值越靠近1,分子量越大,体系粘度越大。 异氰酸酯与水的反应 2RNCO + H2O →RNHCONHR + CO2↑ 1个水分子与2个NCO基团反应得到取代脲,水可以看做一种扩链剂或固化剂。这点对聚氨酯的生产及储存具有重要的指导意义。原材料和产品都需要严格控制水分含量。 反应放出二氧化碳气体,可用在聚氨酯泡沫的生产中,还有湿固化的聚氨酯胶黏剂和涂料。 异氰酸酯与胺基的反应 RNCO + R′NH2→RNHCONHR′ RNCO + R′NHR〞→RNHCONR′R〞 脂肪族伯胺反应速度太快,一般很少用。脂肪族仲胺和芳香族伯胺反应速度稍慢,常用来固化NCO封端的预聚体。 MOCA、E-300、unilink4200等 不同活性氢与异氰酸酯的反应活性

理论上,异氰酸酯可以和所有可以提供活性氢的化合物反应,属亲核反应。在含活性氢的化合物中,亲核中心的电子云密度越大,其电负性越强,它与异氰酸酯反应活性越高,反应速度越快。

异氰酸酯容易和醇反应但是要在强碱性引发剂下才能发生自身聚合的原因

异氰酸酯容易和醇反应但是要在强碱性引发剂下才能发生自身聚合的原因: 与醇类反应时异氰酸酯参加反应的基团实际上是碳氧双键,最终产物中碳氧双键仍然存在的原因是分子的重排。碳原子同时连接氮原子和羟基时由于碳氮双键不如碳氧双键更加稳定所以通过重排又产生了碳氧双键。所以异氰酸酯与醇反应的实质是碳氧双键的破裂与重排。异氰酸酯自身反应的实质也是碳氧双键的破裂与重排。由于碳氧单键不如碳氮单键更加稳定所以反应最终生成的是碳氮单键。 R=C-OH RH-C=O (不饱和碳上羟基重排) 根据路易斯酸碱理论: 在反应中提供电子的是碱,夺取电子的是酸。在异氰酸酯和醇的反应中异氰酸酯的上的氧原子可以提供电子,异氰酸酯作为提供电子的一方可以看做是碱。醇上的氢原子可以夺取电子形成共用电子对,醇是夺取电子的一方可以看作是酸。二者发生反应可以视为路易斯酸碱的中和反应。 在异氰酸酯自身聚合时反应物都是异氰酸酯都可以提供电子因此都是碱,而且由于碱性强弱完全相同所以相互之间反应不易进行。异氰酸酯聚合的产物中碳氧双键上的碳原子连接两个氮原子形成两个碳氮单键所以双键上的氧原子供电子能力下降碱性比单一的异氰酸酯弱。这个反应就可以看做是强碱制弱碱。所以异氰酸酯可以自身聚合但是条件苛刻要在强碱性引发剂下才可以进行。 从电子云的角度来看: 异氰酸酯中氧原子电负性最大,氮原子电负性次之,碳原子电负性最小。由此可知道氧原子电子云密度最高。在醇羟基中氢原子电负性小于氧原子电子云向氧原子靠近氢原子电子云密度小。因此二者之间反应容易进行。利用强碱性引发剂引发异氰酸酯自身反应时由于二者电子云密度都是比较大的所以只有用强碱引发反应才能成功。

异氰酸酯的自加聚反应

异氰酸酯的自加聚反应 异氰酸酯可发生自加成反应,生成各种自聚物,包括二聚体三聚体及各种多聚体,其中最重要的是二聚反应和三聚反应。 2.1.6.1 异氰酸酯的二聚反应 一般来说只有芳香族异氰酸酯能自聚形成二聚体,而脂肪族异氰酸酯二聚体未见报道。这是因为芳香族异氰酸酯的NCO反应活性高。芳香族异氰酸酯即使在高温下也能缓慢自聚,生成二聚体。生成的二聚体是一种四元杂环结构,这种杂环称为二氮杂环丁二酮,又称脲二酮(uretdione)。芳香族异氰酸酯二聚反应是可逆反应,二聚体不稳定,在加热条件下可分解成原来的异氰酸酯化合物。二聚体可在催化剂存在下直接与醇或胺等活性氢化合物反应,所用的催化剂和单体异氰酸酯所用的催化剂基本相同。芳香族异氰酸酯二聚反应的通式如下: 在聚氨酯行业中,MDI、TDI在室温下可缓慢产生二聚体,但无催化剂存在时此反应进行得很慢。具有邻位取代基的芳香族异氰酸酯,例如2,6-TDI,由于位阻效应,在常温下不能生成二聚体。而4,4′-MDI由于NCO邻位无取代基,活性比TDI的大,即使在无催化剂存在下,在室温也有部分单体缓慢自聚成二聚体。这就是MDI在室温贮存不稳定、熔化时出现白色不熔物的原因。用它制备聚氨酯制品会影响质量,故除了向MDI中加稳定剂外,尚需将其在5℃以下贮存。实验室做精确的合成试验时,常常把MDI及TDI进行减压蒸馏,目的是在高温蒸馏过程中将二聚体破坏,并除去杂质。 可用三烷基膦、吡啶、叔胺作二聚反应的催化剂。常用的膦化合物,如二甲基苯基膦用量极微就可产生良好的催化效果,还可用吡啶,它兼作溶剂,以便移去大量的反应热。

2,4-TDI二聚体是一种特殊的二异氰酸酯产品,降低了TDI单体的挥发性。TDI二聚体是一种固体,熔点较高,室温下稳定,甚至可与羟基化合物的混合物在室温下稳定贮存。它主要用于混炼型聚氨酯弹性体的硫化剂。也可利用二聚反应的可逆特性制备室温稳定的高温固化聚氨酯弹性体、胶粘剂。例如制备含二聚体杂环的热塑性聚氨酯,在热塑性聚氨酯的加工温度下,NCO基团被分解,参与反应,生成交联型聚氨酯。2,4-TDI二聚体的制备反应式为: TDI二聚体加热至150~175℃时,即使在无催化剂存在下,也能分解成TD I单体。而在有三烷基膦催化剂存在下,当加热至80℃,在苯溶液中即能100%分解。 2.1.6.2 异氰酸酯的三聚反应 (1)三聚反应催化剂芳香话或脂肪族(包括脂环族异氰酸酯均能于加热及催化下自聚为三聚体,三聚体的核基是异氰脲酸酯(isocyanurate)六元杂环。三聚反应晃可逆反应。下面为二异氰酸酯的三聚反应反应式:

异氰酸酯计算

聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 : 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为,水份含量%,酸值12,求聚酯羟值 羟值校正 = + + = 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 ? 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 … 羟值 官能度分子量1000 1.56??= 3366 50 1000 31.56=??= 分子量

如二乙醇胺,其结构式如下: CH 2CH 2OH HN < CH 2CH 2OH 分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105 & 5. 异氰酸基百分含量 异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。 式中42为NCO 的分子量 对预聚体及各种改性TDI 、MDI ,则是通过化学分析方法测得。 有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的脲时,1克分子胺消耗的异氰酸酯的克数。 胺当量和异氰酸酯百分含量的关系是: 6. 当量值和当量数 当量值是指每一个化合物分子中单位官能度所相应的分子量。 @ 如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值 在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。 %48174 2 42%=?=NCO TDI 的%6.33250 2 42%=?= NCO MDI 的% 4200NCO = 胺当量官能度 数均分子量当量值= 10003 3000 == 聚醚三元醇当量值

异氰酸酯 msds

异氰酸酯 MSDS 基本信息 中文别名:異氰酸 英文别名:Polyisocyanates;Hydrogen isocyanate 中文别名:異氰酸 英文别名:Polyisocyanates;Hydrogen isocyanate 物理化学性质 异氰酸酯是异氰酸的各种酯的总称。包含一异氰酸酯R—N=C=O和二异氰酸酯O=C=N—R—N=C=O。一般是不愉快气味的液体。一异氰酸酯易与氨或胺作用而成脲类,易与醇作用而成氨基甲酸酯(如氨基甲酸乙酯) 沸点(℃):83~84 分子式:C4H7NO 分子量: 85.11 饱和蒸气压(kPa): 6.65/19℃闪点(℃): 26 燃烧性:易燃 溶解性:不溶于水相对密度(水=1): 0.91 相对蒸气密度(空气=1):2.93 外观与性状:无色液体,带有葱的气味。 禁配物:水、醇类、强碱、酸类、强氧化剂。 化学反应:容易与包含有活泼氢原子的化合物: 胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳; 在过量水存在时, 甲胺再与MIC反应生成1,3-二甲基脲, 在过量MIC时则形成 1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下, 发生自聚反应并放出热能。 遇热、明火、氧化剂易燃。燃烧时释出MIC蒸气、氮氧化物、一氧化碳和氰化氢。 高温 (350~540℃)下裂解可形成氰化氢。 遇热分解放出氮氧化物烟气。 异氰酸酯产品用途

单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(Toluene Diisocyanate,简称TDI);二苯基甲烷二异氰酸酯(Methylenediphenyl Diisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的1,6-己二异氰酸酯(HDI)。 制备方法 工业上主要采用伯胺光气法生产异氰酸酯,其反应如下:由二胺光气法可制得二异氰酸酯:随着科技的进步和合成理论的不断深入,硝基化合物直接与一氧化碳高温高压催化合成异氰酸酯的工艺越来越来成熟。 由于异氰酸酯结构中含有不饱和键,因此具有高活性,容易与一些带活性基团的有机或无机物反应,生成聚氨酯弹性体。 (1)与羟基化合物的反应:如与多元醇、聚醚、聚酯酰胺、蓖麻油等含活性羟基化合物反应生成氨甲基酸酯。 (2)与含氨基化合物的反应:与胺类化合物反应通常生成取代脲,如果进一步发生反应则最终生成缩二脲。

异氰酸酯化学结构

几种重要的异氰酸酯原料2-3 名称代号 分子量 -NCO 含量% 外观 甲苯二异氰酸酯TDI 174.16 48 白或浅黄色液体 二苯基甲烷二异氰酸酯MDI 250.26 33 白色固体结晶M39℃ 液化MDI:[MDI与聚醚二醇(M W600)10/1混合,50-60℃反应5小时] 聚醚改 性MDI - ~26 M~25℃ 苯二亚甲基二异氰酸酯XDI 188.19 44 无色透明液体 萘二异氰酸酯NDI 210 40 白蜡状固体M126℃不泛黄类二异氰酸酯 甲基环已基二异氰酸酯[由80%2,4-甲 苯二胺和20%的2,6甲苯二胺混合加氢 后经光气化制得] HTDI 180 46 无色液体 二环已基甲烷二异氰酸酯HMDI 262 32 无色液体 已二异氰酸酯HDI 168.2 49 无色或浅黄液体 异佛尔酮二异氰酸酯[3-异氰酸酯基亚 甲基三甲基环已基二异氰酸酯] IPDI 222.3 37.8 无色或浅黄液体 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。 2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH2) 6-NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼.

异氰酸酯化学结构

异氰酸酯化学结构 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH 2) 6 -NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼. 6、二环己基甲烷二异氰酸酯(H 12 MDI) 是一种常用的脂肪族二异氰酸酯。

上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄:还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜.另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式 C3H3O ,分子量,结构式(CH3)2-CHOH ,它是正丙醇 CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重、熔点- 88 ℃、沸点℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限~ %( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下可代替乙醇使用。也可用作涂料,松香水,混合脂等方面;无色透明;纯天然产品。 PS 聚苯乙烯化学和物理特性大多数商业用的PS都是透明的、非晶体材料。PS具有非常好的几何稳定性、热稳定性、光学透过特性、电绝缘特性以及很微小的吸湿倾向。它能够抵抗水、稀释的无机酸,但能够被强氧化酸如浓硫酸所腐蚀,并且能够在一些有机溶剂中膨胀变形。典型的收缩率在~%之间。

相关文档