文档库 最新最全的文档下载
当前位置:文档库 › 练习使用DIS测位移速度瞬时速度加速度学案

练习使用DIS测位移速度瞬时速度加速度学案

练习使用DIS测位移速度瞬时速度加速度学案
练习使用DIS测位移速度瞬时速度加速度学案

高二物理实验复习(2013-02-27)

A 练习使用DIS 测位移

实验器材:DIS (位移传感器(发射器、接收器)、数据采集器、计算机) 实验步骤:

实验装置如图A —1所示:

(1)连接 与计算机

(2)将位移传感器的 接入数据采集器 (3)开启电源(包括位移传感器的 电源),运行DIS 应用软件,

(4)点击DIS 实验条目上的“练习使用DIS 位移传感器”软件界面如图A —2所示。

(5)将位移传感器的发射器与 正对放置,点击“ ”,观察计算机界面上的数据变化与刻度尺的测量结果进行比较。

(6)改变 和接收器的相对距离,测量其可测的最大和最小距离。并将实验结果填入表格。

B 用DIS 测定位移

实验目的:

用DIS 测定位移,并研究变速直线运动物体的s —t 图 实验器材:

DIS ( 传感器、数据采集器、计算机)、1m 长的轨道、小车 实验步骤:

实验装置如图B —1所示: (1)将位移传感器的 固定在小车上, 固定在轨道右端(轨道稍倾斜,使小车能做匀速直线运动),将 与数据采集器相连 (2)开启电源(包括位移传感器的发射器电源),运行DIS 应用软件,点击DIS 实验条目上的“测量运动物体的位移和速度”软件界面如图B —2所示

(3)将位移传感器的发射器与接收器正对放置,点击“ ”,放开小车使其运动,计算机界面的表格内将出现对应的数据点,如图所示,从点的走向可以大致看出小车位移随时间变化的规律,

(4)点击“ 连线”得出 随时间变化的曲线,

(5)改变轨道的倾斜角,重复实验,观察不同形状的图线与小车运动状态的关系,

问题讨论:

(1)小车做变速运动时,对应的图像是怎样的?

A

A —

B —

B —2

(2)如果小车在轨道上某一位置静止,他的s —t 图像应该是图 所示。

C 用DIS 测变速直线运动的平均速度

实验目的:

用DIS 测定变速直线运动的平均速度 实验器材:

DIS ( 传感器、数据采集器、计算机)、轨道、小车 实验步骤:

实验装置如图C —1所示:

(1)将位移传感器的 固定在小车上, 固定在轨道右端(轨道稍倾斜,使小车能做匀速直线运动),将 与数据采集器相连

(2)开启电源(包括位移传感器的发

射器电源),运行DIS 应用软件,点击

DIS 实验条目上的“测量运动物体的位移和速度”软件界面 (3)将位移传感器的发射器与接收器正对放置,点击“开始记录”,放开小车使其运动,计算机界面的表格内将出现对应的数据点,从点的走向可以大致看出小车位移随时间变化的规律,

(4)点击“数据点连线”得出位移随时间变化的曲线,即s —t 图如图C —2所示

(5)点选“ ”取A 、D 两点,图中C —3直角三角形水平边为两点的时间间隔△t ,竖直边为两点的位移变化△s ,其斜边的斜率 即为平均速度值。实验界面下方速度窗口中将显示该速度的值。

(6)处理实验数据:先后将类似于图C —4的实验界面图

中“AD ”“AC ”“AB ”选定为研究区域,观察实验界面下方的速度窗口中显示的数值,并将数值填入表格内。

D 用DIS 测变速直线运动的瞬时速度

S

t

(A)

S

t

(C)

S

t

(B)

C —1

C —

C —3

C —4

实验目的:用DIS 测变速直线运动的瞬时速度 实验器材:

DIS ( 传感器、数据采集器、计算机)、轨道、 、 实验步骤:

(1)将实验装置如图D —1所示,在小车的中心位置上固定 ,将

传感器固定在轨道侧面,垫高轨道的一端,使固定有 的小车能够顺利通过,并能挡光

(2)开启电源,运行DIS 应用软件,点击DIS 实验条目上的“用DIS 测定瞬时速度”软件界面,如图D —2所示。 (3)点击“ ”,依次将与软件中△s 对应的档光片固定在小车上,让小车从轨道的同一位置由静止开始下滑,分别记录下四次挡光时间,DIS 实时计算出小车通过光电门时的平均速度。

实验记录:

将上述数据填入下面的表格中

E 用DIS 测定加速度

实验目的:测定沿轨道下滑的小车的加速度

实验器材:DIS (位移传感器、数据采集器、计算机)、轨道、小车 实验步骤:

(1)实验装置如图E —1所示,将位移传感器与数据采集器相连

(2)开启电源,运行DIS 应用软件,点击DIS 实验条目上的“用DIS 测定加速度”软件界面如图E —2所示

(3)获得v —t 图后进行数据处理的参考建议 (a )如图E —3所示,小车在轨道上运动的这段时间的v —t 图是一段倾斜的直线,反映了均匀变化的规律

D — 1

D — 2

E — 1

E —

E —

(b )移动光标键,在图像上取相距较远的两个点A (t 1,v 1),B (t 2,v 2),求出它们连线的 ,即可求出加速度 。如图E —4所示

(c)多次测量得出a 的平均值

练习

1.现代实验技术——数字化信息系统(DIS)通常由____________ _____________和_______________三部分组成.在测定小车运动的平均速度时选用的是____________传感器.在测定瞬时速度时常用____________传感器.图是实验时记录的小车运动的位移随时问变化的图象,选择区域AB 范围内平均速度为__________;选择区域AC 范围内平均速度为_____________.其中较接近A 点瞬时速度为___________(选填“前者”或“后者”). .

2.如图是“用DIS 测定加速度”实验中得到的图线.根据图上标出的AB 范围,求出该范围内的加速度值.正确读出v A =__________,v B =___________,t A ____________,t B =_____________.本次实验测得的加速度为___________.估算

0·5 s 至2.0 s 内小车的位移是__________ 3、(1)DISLab 是由____________、____________、____________和实验软件构成的新型实验系统;____________由超声波或红外线发射器和接收器两部分组成。

(2)某同学在“用DIS 测量运动物体的位移和速度”的实验中得到小车的s-t 图如图所示,从图中可知:(1)小车的运动方向是____________(填“靠近”或“接近”)传感器的接收器;(2)小车作何种运动____________;(3)小车运动的速度是___________m/s 。 (3)如图所示,用DIS 实验得到的小车从斜面上滑下的v-t 图,由图可知AB 段小车作

__________运动,小车在AB 段的加速度是________m/s 2

,位移是__________m 。

E —

4

)

(s t )

(m S )

(s t )

/(s m v

23(2)题图

23(3)题图

超重和失重的典型例题

超重和失重 问题 超重和失重是两个很重要的物理现象。当物体的加速度向上时,物体对支持物的压力大于物体的重力,这种现象叫做超重;当物体的加速度向下时,物体对支持物的压力小于物体的重力,这种现象叫做失重;当物体向下的加速度为g 时,物体对支持物的压力为零,这种现象叫做完全失重。下面通过举例说明超重和失重的有关问题。 【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2): (1)当弹簧秤的示数T 1=40N ,且保持不变. (2)当弹簧秤的示数T 2=32N ,且保持不变. (3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的 作用.规定竖直向上方向为正方向. 当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,则 0/410440211=?-=-=s m m mg T a 由此可见电梯处于静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,则 2 222/2/44032s m s m m mg T a -=-=-= 式中的负号示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升. (3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,则 2 233/1/44044s m s m m mg T a =-=-= 加速度为正值表示电梯的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降. 小结:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态. 【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N , (1)在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升 降机应具有向上的加速度 对于重物:F -m 2g=m 2 a 1,则 2 2221/2/10010001200s m s m m g m F a =-=-= (2)当升降机以a 2=2.5m/s 2的加速度加速下降时,重物失重.对于重物, F mg 图1

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

加速度与位移

加速度与位移 1.速度和时间的关系 (1)速度公式 由加速度的定义公式a=,可得匀变速直线运动的速度公式为:=+at 为末速度,为初速度,a为加速度. 此公式对匀加速直线运动和匀减速直线运动都适用.一般取初速度 的方向为正方向,加速度a可正可负.当a与同向时,a>0,表明物体的速度随时间均匀增加;当a与反向时,a<0,表明物体的速度随时间均 匀减小. 当a=0时,公式为= 当=0时,公式为=at 当a<0时,公式为=-at(此时只能取绝对值) 可见,=+at是匀变速直线运动速度公式的一般表示形,只要知道初速度和加速a,就可以计算出各个时刻的瞬时速度. 2.位移和时间的关系 (1)平均速度公式 做匀变速直线运动的物体,由于速度是均匀变化的,所以在某一段 上的平均速度应等于初、末两速度的平均值,即 此公式只适用于匀变速运动,对非匀变速运动不适用.例如图2-14中甲物体在前5s内的平均速度为3m/s,乙物体在4s内的平均速度为3m /s (2)位移公式 s为t时间内的位移. 当a=0时,公式为s=t当=0时,公式为s= 当a<0时,公式为s=t-(此时a只能取绝对值). 可见:s=t+a是匀变速直线运动位移公式的一般表示形式,只要知道运动物体 的初速度和加速度a,就可以计算出任一段时间内的位移,从而确定任 意时刻物体所在的位置. 1、选择题: 1.一物体做匀变速直线运动,下列说法中正确的是()

A.物体的末速度与时间成正比 B.物体的位移必与时间的平方成正比 C.物体速度在一段时间内的变化量与这段时间成正比 D.匀加速运动,位移和速度随时间增加;匀减速运动,位移和速度随时间减小 2.物体做直线运动时,有关物体加速度,速度的方向及它们的正负值说法正确的是( ) A.在匀加速直线运动中,物体的加速度的方向与速度方向必定相同B.在匀减速直线运动中,物体的速度必定为负值 C.在直线线运动中,物体的速度变大时,其加速度也可能为负值D.只有在确定初速度方向为正方向的条件下,匀加速直线运动中的加速度才为正值 3.物体以2m/s2的加速度作匀加速直线运动,那么在运动过程中的任意1S内,物体的( ) A.末速度是初速度的2倍 B.末速度比初速度大2m/s C.初速度比前一秒的末速度大2m/s D.末速度比前一秒的初速度大2m/s 4.原来作匀加速直线运动的物体,若其加速度逐渐减小到零,则物体的运动速度将( ) A.逐渐减小 B.保持不变 C.逐渐增大 D.先增大后减小 5.汽车以20 m/s的速度做匀速直线运动,刹车后的加速度大小为5,那么开始刹车6 s汽车的速度大 小为() A. 20 m/s B. 0 m/s C. —10 m/s D. 5 m/s 6.关于自由落体运动,下面说法正确的是() A.它是竖直向下,v0=0,a=g的匀加速直线运动 B.在开始连续的三个1s内通过的位移之比是1∶3∶5 C.在开始连续的三个1s末的速度大小之比是1∶2∶3 D.从开始运动起依次下落4.9cm、9.8cm、14.7cm,所经历的时间之比为1∶∶ 7.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的图象如图所示,则下列说法正确的是()

苏教版数学高二- 选修2-2学案《瞬时变化率—导数—瞬时速度与瞬时加速度》(二)

1.1.3 瞬时变化率导数瞬时速度与瞬时加速度学案(二) 一、学习目标 (1)理解瞬时速度与瞬时加速度的定义,掌握如何由平均速度和平均加速度“逼近” 瞬时速度与瞬时加速度的过程.理解平均变化率的几何意义;理解△x无限趋近于0的含义; (2)运用瞬时速度与瞬时加速度的定义求解瞬时速度与瞬时加速度. 二、学习重点、难点 重点:瞬时速度和瞬时加速的定义 难点:求瞬时速度和瞬时加速的的方法. 三、学习过程 【复习回顾】 1. 曲线上一点处的切线斜率:设曲线C是函数y=f(x)的图象,在曲线C上取一点P(x,y) k= 及邻近的一点Q(x +?x, f(x+ ?x)),过P、Q两点作割线,,则割线PQ的斜率为 PQ . 当?x→0时,动点Q将沿曲线趋向于定点P,从而割线PQ也将随之变动而趋向于切线PT的斜率,当△x→0时,割线PQ的斜率的极限,就是曲线在点P处的切线的斜率,即K为.在△x→0时的极限值. 练习:曲线的方程为y=x2+1,求曲线在点P(1,2)处的切线方程.

【问题情境1】 平均速度:物体的运动位移与所用时间的比称为平均速度.平均速度反映物体在某一段时间段内运动的快慢程度.那么如何刻画物体在某一时刻运动的快慢程度? 【问题情境2】 跳水运动员从10m 高跳台腾空到入水的过程中,不同时刻的速度是不同的.假设t 秒后运动员相对于水面的高度为()24.9 6.510H t t t =-++,那么我们就会计算任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少? 我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况. 问题:1.你能描述一下你算得的这些数据的变化规律吗? 关于这些数据,下面的判断对吗? 2.当t ?趋近于0时,即无论t 从小于2的一边,还是t 从大于2的一边趋近于2时,平均速度都趋近于一个确定的值-13.1s m /. 3. 靠近-13.1且比-13.1大的任何一个数都可以是某一段[]2,2t ?+上的平均速度; 4. 靠近-13.1且比-13.1小的任何一个数都可以是某一段[]t ?+2,2上的平均速度;

苏教版数学高二-数学苏教版选修2-2 瞬时速度与瞬时加速度 同步检测(二)

1.1.3《瞬时变化率——导数》同步检测 (二) 一、基础过关 1.下列说法正确的是________(填序号). ①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线; ②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在; ③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在; ④若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在. 2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是________. 3.已知f (x )=1x ,则当Δx →0时,f (2+Δx )-f (2)Δx 无限趋近于________. 4.曲线y =x 3+x -2在点P 处的切线平行于直线y =4x -1,则此切线方程为____________. 5.设函数f (x )=ax 3+2,若f ′(-1)=3,则a =________. 6.设一汽车在公路上做加速直线运动,且t s 时速度为v (t )=8t 2+1,若在t =t 0时的加速度 为6 m/s 2,则t 0=________ s. 二、能力提升 7.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12 x +2,则f (1)+f ′(1)=________. 8.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可 能是________.(填序号) 9.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________. 10.用导数的定义,求函数y =f (x )=1x 在x =1处的导数.

(完整word版)加速度练习题及答案.doc

加速度练习及答案 主要知识点: 1.加速度 ( 1)定义:加速度等于速度的跟发生这一改变所用的比值,用 a 表示加速度。 ( 2)公式: a=。 ( 3)物理意义:表示速度的物理量。 ( 4)单位:在国际单位制中,加速度的单位是,符号是,常用的单位还有cm/s2。 ( 5)加速度是矢量,其方向与速度变化的方向相同,即在加速直线运动中,加速度的方向与 在减速直线运动中,加速度的方向与方向相反。 2.速度变化量速度变化量Δv=。 3. v-t 图象 方向相同, () a v m/s b v αt 0 t/s ( 1) v-t 图象中曲线的反映了。 v tan v tan 即为直线的,即为加速度的大小, ( 2)a ,所以 a t t 典型例题: 1.关于物体的下列运动中,不可能发生的是() A. 加速度逐渐减小,而速度逐渐增大 B.加速度方向不变,而速度的方向改变 C.加速度大小不变,方向改变,而速度保持不变 D. 加速度和速度都在变化,加速度最大时速度最小;加速度最小时速度最大 2.关于速度和加速度的关系,下列说法正确的有() A. 加速度越大,速度越大 B. 速度变化量越大,加速度也越大 C.物体的速度变化越快,则加速度越大 D. 速度变化率越大则加速度越大 3.下列说法中正确的是() A. 物体运动的速度越大,加速度也一定越大 B.物体的加速度越大,它的速度一定越大 C.加速度就是“增加出来的速度” D. 加速度反映速度变化的快慢,与速度无关 4.对以 a=2 m/s2作匀加速直线运动的物体,下列说法正确的是( ) A. 在任意 1s 内末速度比初速度大2m/s B.第 ns 末的速度比第1s 末的速度大2( n-1) m/s C.2s 末速度是 1s 末速度的 2 倍 D. n s 是的速度是 (n/2)s 时速度的 2 倍 5.下列说法中,正确的是( ) A.物体在一条直线上运动,如果在相等的时间里变化的位移相等,则物体的运动就是匀变速直线运动 B.加速度大小不变的运动就是匀变速直线运动 D.加速度方向不变的运动一定是匀变速直线运动 6.做匀减速直线运动的物体,10s 内速度由20m/s 减为 5m/s.求 10s 内物体的速度变化和加速度.

速度瞬心例题

第四章平面机构的运动分析 基本要求 了解平面机构运动分析的目的和方法,以及机构位置 图、构件上各点的轨迹和位置的求法。掌握速度瞬心位置 的确定。了解用速度瞬心求解速度的方法。掌握用相对运 动图解法作机构的速度和加速度的分析。熟练掌握影像法 的应用。搞清用解析法中的矩阵法作机构的速度和加速度 的分析,最后要达到会编程序上机作习题的程度。 基本概念题与答案 1.什么是速度瞬心,机构瞬心的数目如何计算 答:瞬心:两个构件相对速度等于零的重合点。 K = N (N-1) / 2 2.速度瞬心的判定方法是什么直观判定有几种 答:判定方法有两种:直观判定和三心定理,直观判定有四种: (1)两构件组成转动副的轴心。 (2)两构件组成移动副,瞬心在无穷远处。 (3)纯滚动副的按触点, (4)高副接融点的公法线上。 3.速度瞬心的用途是什么 答:用来求解构件的角速度和构件上点的速度,但绝对不能求加速度和角加速度,在四杆机构中用瞬心法求连杆和从动件上任一点的速度和角速度最方便。 4.平面机构运动分析的内容、目的和方法是什么 答:内容:构件的位置、角位移、角速度、角加速度、构件上点的轨迹、位移、速度、加速度。 目的:改造现有机械的性能,设计新机械。 方法:图解法、解析法、实验法。 5.用相对运动图解法求构件的速度和加速度的基本原理是什么 答:基本原理是理论力学中的刚体平面运动和点的复合运动。 6.什么是基点法什么样的条件下用基点法动点和基点如何选择 答:基点法:构件上某-点的运动可以认为是随其上任选某一点的移动和绕其点的转动所合成的方法。 求同一构件上两点间的速度和加速度关系时用基点法,动点和基点选在运动要素己知多的铰链点。 7 用基点法进行运动分析的步骤是什么 答:(1)选长度比例尺画机构运动简图 (2)选同一构件上已知运动要素多的铰链点作动点和基点,列矢量方程,标出已知量的大小和方向。 (3)选速度和加速度比例尺及极点P、P′按已知条件画速度和加速度多边形,

加速度与位移

加速度与位移 1.速度和时间的关系 (1)速度公式 由加速度的定义公式a =t v v o t -,可得匀变速直线运动的速度公式为:t v =0v +at t v 为末速度,0v 为初速度,a 为加速度. 此公式对匀加速直线运动和匀减速直线运动都适用.一般取初速度0v 的方向为正方向,加速度a 可正可负.当a 与0v 同向时,a >0,表明物体的速度随时间均匀增加;当a 与0v 反向时,a <0,表明物体的速度随时间均匀 减小. 当a =0时,公式为t v =0v 当0v =0时,公式为t v =at 当a <0时,公式为t v =0v -at (此时α只能取绝对值) 可见,t v =0v +at 是匀变速直线运动速度公式的一般表示形,只要知道初速度0v 和加速a ,就可以计算出 各个时刻的瞬时速度. 2.位移和时间的关系 (1)平均速度公式 做匀变速直线运动的物体,由于速度是均匀变化的,所以在某一段上的平均速度应等于初、末两速度的平均 值,即2 t o v v v += 此公式只适用于匀变速运动,对非匀变速运动不适用.例如图2-14中甲物体在前5s 内的平均速度为3m / s ,乙物体在4s 内的平均速度为3m /s (2)位移公式 22 1)(212at t v t at v v t v v t v s o o o t o +=++=+== s 为t 时间内的位移. 当a =0时,公式为s =0v t 当0v =0时,公式为s = 221at 当a <0时,公式为s =0v t -22 1at (此时a 只能取绝对值).

可见:s =0v t+2 1a 2t 是匀变速直线运动位移公式的一般表示形式,只要知道运动物体 的初速度0v 和加速度a ,就可以计算出任一段时间内的位移,从而确定任意时刻物体所在的位置. 一、选择题: 1.一物体做匀变速直线运动,下列说法中正确的是( ) A .物体的末速度与时间成正比 B .物体的位移必与时间的平方成正比 C .物体速度在一段时间内的变化量与这段时间成正比 D .匀加速运动,位移和速度随时间增加;匀减速运动,位移和速度随时间减小 2.物体做直线运动时,有关物体加速度,速度的方向及它们的正负值说法正确的是( ) A .在匀加速直线运动中,物体的加速度的方向与速度方向必定相同 B .在匀减速直线运动中,物体的速度必定为负值 C .在直线线运动中,物体的速度变大时,其加速度也可能为负值 D .只有在确定初速度方向为正方向的条件下,匀加速直线运动中的加速度才为正值 3.物体以2m/s 2的加速度作匀加速直线运动,那么在运动过程中的任意1S 内,物体的( ) A .末速度是初速度的2倍 B .末速度比初速度大2m/s C .初速度比前一秒的末速度大2m/s D .末速度比前一秒的初速度大2m/s 4.原来作匀加速直线运动的物体,若其加速度逐渐减小到零,则物体的运动速度将( ) A .逐渐减小 B .保持不变 C .逐渐增大 D .先增大后减小 5.汽车以20 m/s 的速度做匀速直线运动,刹车后的加速度大小为5 m/s 2,那么开始刹车6 s 汽车的速度大 小为( ) A. 20 m/s B. 0 m/s C. —10 m/s D. 5 m/s 6.关于自由落体运动,下面说法正确的是( ) A .它是竖直向下,v 0=0,a=g 的匀加速直线运动 B .在开始连续的三个1s 内通过的位移之比是1∶3∶5 C .在开始连续的三个1s 末的速度大小之比是1∶2∶3 D .从开始运动起依次下落4.9cm 、9.8cm 、14.7cm ,所经历的时间之比为1∶2∶3 7.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的x t 图象 如图所示,则下列说法正确的是( ) A .1t 时刻乙车从后面追上甲车 B .1t 时刻两车相距最远 C .1t 时刻两车的速度刚好相等 D .0到1t 时间内,乙车的平均速度小于甲车的平均速度 第7题图

3.求瞬时速度和加速度

1 一、求瞬时速度 求解依据:做匀变速直线运动的物体,一段时间中间时刻的瞬时速度等于这段时间内的平均速度。 表达式:v v t =2 平均速度的两种表达形式 t x v = 20t v v v += 求中间点的瞬时速度 t x v t = 2 例如 OB OB A t x v = 求端点的瞬时速度(以O 点为例) (1)先求A v 和B v ,然后根据 2 B O A v v v += 求出A v (2)先求A v 和加速度a ,OA A O at v v -= 相比两种解法,第一种简单。 二、求加速度依据:做匀变速直线运动的物体,在相邻相等时间间隔内的位移差为恒量。 表达式 2 a T x =? 逐差法求加速度 4段 21132T a x x =- 2 2242T a x x =- 2 2 1a a a += 6段 2 1143T a x x =- 22253T a x x =- 23363T a x x =- 3 3 21a a a a ++= 1.偶数段逐差法求加速度 例 如图所示,某同学在做“研究匀变速直线运动”实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T =0.10s ,其中x 1=7.05cm 、x 2=7.68cm 、x 3=8.33cm 、x 4=8.95cm 、 x 5=9.61cm 、x 6=10.26cm ,则A 点处瞬时速度的大小是_______m/s ,小车运动的加速度计算表达式为________________,加速度的大小是_______m/s 2(计算结果保留两位有效数字)。 2.奇数段变偶数段逐差法求加速度 (01年全国)一打点计时器固定在斜面上某处,一小车拖着穿过打点计时器的纸带从斜面上滑下,如图所示.打出的纸带的一段如图所示. 已知打点计时器使用的交流电频率为50H Z ,利用纸带图给出的数据可求出小车下滑 的加速度a = . 4.00m/s 2 (3.90~4.10 m/s 2)

向心力向心加速度·典型例题解析

向心力向心加速度·典型例题解析 【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的 距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大? 解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3×0.12m/s2=0.04m/s2. 由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2. 点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解. 【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω2、求解a Q时,要用公式a=v2/r? (2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系 式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的 向心加速度a与圆周半径r的关系之间的相似之处吗? 【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么

[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心 C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反 解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心. 从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B. 点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供. 2.静摩擦力是由物体的受力情况和运动情况决定的. 【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么? 【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg 的重物B. (1)当小球A沿半径r=0.1m的圆周做匀速圆周运动,其角速度为ω= 10rad/s时,物体B对地面的压力为多大? (2)当A球的角速度为多大时,B物体处于将要离开、而尚未离开地面的临界状态?(g=10m/s2)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 , 所以Q点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有 同理 则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。 取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有 ?① ?② 当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离 当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为

例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s ) 分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m . 解:由位置关系得 1202.6s s s =+- 物体平抛运动的时间 0.7t s '= 由以上三式可得 例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大? 解:小球运动是合运动,小球在水平方向作匀速直线运动,有 0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有 2 12 L at = ② 根据牛顿第二定律列方程 sin mg ma θ= ③ 由①,②,③式解得s v v == 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37?变成53?,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用. 解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知: 由以上两式解得017.1/v m s = 9 7 t s = 物体在这1s 内下落的高度 例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;

加速度传感器测振动位移

加速度传感器测振动速度与位移方案 1. 测量方法(基本原理) 设加速度传感器测量振动所得的加速度为:()a t (单位:m/s 2) 对加速度积分一次可得速率: 1 1()()[ ]2N i i i a a v t a t dt t -=+==?∑? (单位:m/s) 对速率信号积分一次可得位移:1 1 ()()[ ]2 N i i i v v s t v t dt t -=+==?∑? (单位:m) 其中: ()a t 为连续时域加速度波形 ()v t 为连续时域速率波形 ()s t 为连续位移波形 i a 为i 时刻的加速度采样值 i v 为i 时刻的速率值 0a =0;0v =0 t ?为两次采样之间的时间差 2. 主要误差分析 误差主要存在以下几个方面: 1)零点漂移所带来的积分误差 由于加速度传感器的输出存在固定的零点漂移。即当加速度为0g 时传感器输出并不一定为0,而是一个非零输出error A 。传感器的输出值为:()a t +error A 。对error A 二次积分会产生积分累计效应。 2)积分的初始值所带来的积分误差 0a 和0v 的值并不为零,同样会产生积分累计效应。 3)高频噪声信号所带来的误差 高频噪声信号会对瞬时位移值测量精度带来影响,但积分值能相互抵销而不会带来累计。 3. 解决办法 1)零点漂移和积分初始值不为零可以加高通滤波器的方法滤除。

2)高频噪声信号的影响并不大,为了达到更高的精度,可以加一个低通滤波器。 选择高通滤波器和低通滤波器合理的截至频率,可以得到较理想的结果。 (注:高通滤波即去除直流分量;低通滤波即平滑滤波算法)。 4. 仿真研究 4.1 问题的前提背景 1.本课题研究的对象是桥梁振动的加速度()a t ,速度()v t 和位移()s t ,可以认为桥梁的加速度,速度,位移的总和为0。 即:0()0a t dt ∞ =? 0()0v t dt ∞ =? ()0s t dt ∞ =? 其离散表达式为:00()N i i a N ===∞∑ 0() N i i v N ===∞∑ 0() N i i s N ===∞∑ 2.加速度传感器测量值存在误差,它主要是在零点漂移和测量噪声两个方面。 即测量值()()()measure error a t a t a t =+ 其中:()measure a t 为加速度传感器测量加速度值 ()a t 为桥梁振动的实际加速度值 ()error a t 为传感器测量误差 3.振动速度与振动位移取决于振动加速度与振动频率,可以证明,振动速度与振动加速度成正比,与振动频率成反比;振动位移与振动速度成正比,与振动频率成反比。 4.2 仿真 1.取一组仿真用振动加速度信号:()9.8sin(240)3measure a t t π=??+,如图1所示。 其中:()measure a t 代表加速度传感器测量值

时瞬时速度与瞬时加速度

高中数学教学案 第三章 导数及其应用 第3课时瞬时速度与瞬时加速度 教学目标: 1.理解瞬时速度与瞬时加速度的定义,掌握如何由平均速度和平均加速度“逼近” 瞬时 速度与瞬时加速度的过程.理解平均变化率的几何意义;理解△x 无限趋近于0的含义; 2.运用瞬时速度与瞬时加速度的定义求解瞬时速度与瞬时加速度. 教学重点: 瞬时速度与瞬时加速度的定义 教学难点: 瞬时速度与瞬时加速度的求法 教学过程: Ⅰ.问题情境 Ⅱ.建构数学 1.平均速度: 2.位移的平均变化率: 3.瞬时速度: 4.瞬时加速度: Ⅲ.数学应用 例1:一跳水运动员从10m 高跳台腾空到入水的过程中,不同时刻的速度是不同的,假设t s 后运动员相对于水面的高度为()105.69.42++-=t t t H ,试确定2=t s 时运动员的速度. 练习:一质点的运动方程为52+=t s (位移单位:m ,时间单位:s ),试求该质点在3=t s 的瞬时速度.

例2:设一辆轿车在公路上做加速直线运动,假设t s 时的速度为()32+=t t v ,求0t t =s 时轿车的加速度. 练习:1.一块岩石在月球表面上以s m /24的速度垂直上抛,t s 时达到的高度为2240.8h t t =-(单位:m ). (1)求岩石在t s 时的速度、加速度; (2)多少时间后岩石达到最高点. 2.质点沿x 轴运动,设距离为xm ,时间为t s ,1052 +=t x ,则当t t t t ?+≤≤00时,质点的平均速度为;当0t t =时,质点的瞬时速度为;当t t t t ?+≤≤00时,质点的平均加速度为;当0t t =时,质点的瞬时加速度为. Ⅳ.课时小结 Ⅴ.课堂检测 Ⅵ.课后作业 书本P 64 1,2

平抛运动的典型例题

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是( C ) A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内( BD ) A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10mD.物体下落的高度一定比前一秒多1 0m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C) A.甲先抛出球 B.先抛出球 C.同时抛出两球D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v 0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A. B. C. D. 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D . t anφ=2tan θ 8、将物体在h=20m高处以初速度v0=10m/s水平抛出,不计空气阻力(g 取10m/s 2 ),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

物理必修一纸带加速度及速度求法(新)

求纸带的加速度及速度 一、公式:S 1-S 2=△X=aT 2 注意;△X 指的是两段位移的差值,T 代表每段时间,以为每段时间只能是相等的。同理可得,S m -S n =(m-n)aT 2 二、某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:。 证明:由v t =v 0+at 可知,经后的瞬时速度为: 1、某同学用如图10所示的装置测量重力加速度g ,打下如图11所示的纸带.如果在所选纸带上取某点为0号计数点,然后每隔4个点取一个计数点,相邻计数点之间的距离记为x1、x 2、x 3、x 4、x 5、x6. 图10 图11 (1)实验时纸带的 端应和重物相连接.(选填“A”或“B”) (2)该同学用两种方法处理数据(T 为相邻两计数点间的时间间隔): 方法A :由g1=x2-x1T2,g2=x3-x2T2,…,g5=x6-x5T2 取平均值g =9.767 m/s2; 方法B :由g1=x4-x13T2,g2=x5-x23T2,g3=x6-x33T2 取平均值g =9.873 m/s2. 从数据处理方法看,在x1、x2、x3、x4、x5、x6中,对实验结果起作用的数据,方法A 中有 ;方法B 中有 .因此,选择方法 (填“A”或“B”)更合理.

2、在“研究匀变速直线运动的规律”实验中,小车拖纸带运动,打点计时器在纸带上打出一系列点,从中确定五个记数点,每相邻两个记数点间的时间间隔是0.1s,用米尺测量出的数据如图12所示。则小车在C点的速度V C = m/s,小车在D点的速度 V d = m/s,小车运动的加速度a =______________m/s2. 3、在做“研究匀变速直线运动”的实验中,取下一段如图所示的纸带研究其运动情况.设O点为计数的起始点,在四个连续的计数点中,相邻两计数点间的时间间隔为0.1 s,若物体做理想的匀加速直线运动,则计数点A与起始点O之间的距离x1为cm,打计数点O时物体的瞬时速度为m/s,物体的加速度为m/s2(结果均保留三位有效数字). 4、在“研究匀变速直线运动规律”的实验中,小车拖纸带运动,打点计时器在纸带上打出 一系列点,如图11所示,选定五个计数点,每相邻两个计数点间的时间间隔为0.1s,用米尺测量出的数据如图所示。则小车在C点的速度v= m/s,小车运动的加速度a m/s。(结果保留三位有效数字) 参考答案 1、解析:(1)与重物相连接的纸带一端点间距较小,故为A端. (2)从表面上看,方法A中六组数据均得到利用,实际上只用了x1和x6两组数据,而 方法B采用的是逐差法,六组数据均得到利用,故方法B更合理. 答案:(1)A(2)x1、x6x1、x2、x3、x4、x5、x6 B 2、解析;V C =S BD除以2T 解得V C =1.9 m/s V D =S CE除以2T 解得V D =2.1 m/s S BC-S AB=△X=aT2 解得a =2.0 m/s2 答案1.9 2.1 2.0

高中物理向心力向心加速度典型例题

向心力向心加速度典型例题解析【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大? 解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3× 0.12m/s2=0.04m/s2. 由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2. 点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解. 【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω 2/r? 2、求解a Q时,要用公式a=v (2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的向心加速度a与圆周半径r的关系之间的相似之处吗? 【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么

[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心 C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反 解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心. 从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B. 点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供. 2.静摩擦力是由物体的受力情况和运动情况决定的. 【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么? 【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg的重物B.

相关文档
相关文档 最新文档