文档库 最新最全的文档下载
当前位置:文档库 › 关于微型扬声器阻抗..

关于微型扬声器阻抗..

关于微型扬声器阻抗..
关于微型扬声器阻抗..

关于微型扬声器阻抗曲线的一些探讨

费艳锋

(生辉电器制品有限公司 广东顺德 528309)

摘要文章通过对微型扬声器的阻抗曲线测试分析,说明微型扬声器在测试电压加大的条件下微型扬声器所特有的现象,对此特有现象做了初步分析。并对通常条件下微型扬声器阻抗曲线测试时的电压怎样选择和怎样测试做了说明。

关键词微型扬声器阻抗曲线额定阻抗共振频率

Some Discussing about the Impedance Curve of Micro

Loudspeaker

FEI Yan-feng

(Sangfai Electrical Manufacture Limited Shunde Guangdong 528309)

Abstract: By the analysis of impedance curve of the micro loudspeaker, we explain the proper measure phenomenon of micro loudspeaker with large signal voltage. and then offer the method how to select the measure voltage and to operate the measurement of the micro loudspeaker

Key words: Micro loudspeaker Impedance Curve Rated Impedance Resonant Frequency

前言:微型扬声器特性参数中有额定阻抗和共振频率这两项,此两项参数是微型扬声器的基本重要参数,通常从阻抗频率特性曲线(阻抗曲线图1)上读取。读取方法为:额定阻抗可以阻抗曲线上紧跟在第一个极大值后面的极小值对应的阻抗为扬声器额定阻抗(图1中的“Min”对应纵坐标阻抗数值);共振频率是在扬声器单元的阻抗模值随频率递增变化的曲线上,出现第一个阻抗极大值时的频率(即谐振峰的最高点“Max”对应横坐标频率数值 图1)。一个正确测量得到的阻抗曲线才能得到比较精确的额定阻抗值和共振频率,从而对后续的许多电声设计给出方向。

图1 阻抗曲线的额定阻抗和共振频率读取示意图

关于锥形扬声器分析讨论很多技术人员做了许多,在微型动圈扬声器上似乎并不多,下文将通过对微型扬声器阻抗曲线的探讨,使关于微型扬声器阻抗曲线能进行更深入的讨论。1.测量电压变化对阻抗曲线的影响

测量电压变化对阻抗曲线的影响,在锥型扬声器上早就有其自己的见解(见图2)

图2 锥形扬声器电压变化对应劲度变化曲线

图2中电压箭头方向对应着测量电压依次变大。可以看见在大测量电压下,Kms(劲度)曲线的谷点是变小的,也即Cms(力顺)会变大,因此我们测量到的锥形扬声器共振频率普遍会随电压增大而降低一些。(具体原理分析本文不做讨论)

微型扬声器是否跟锥形扬声器的阻抗测试是否产生的现象一样?用某款微型扬声器A在阳光1600电声测试仪上进行阻抗曲线测试。微型扬声器A的规格参数为额定阻抗8Ω,额定功率0.5W 、振动膜片0.025mmPEN 、音圈线径 0.055mm。测试微型扬声器A阻抗测试电压变化对应共振频率和阻抗值数据及对应阻抗曲线如下:

测试功率/电压 共振频率(F0) 阻抗值

0.1W/0.89V 626Hz 8.5Ω(2kHz)

0.2W/1.26V 637Hz 8.7Ω(2kHz)

0.4W/1.79V 650Hz 8.9Ω(2kHz)

0.5W/2.00V 651Hz 9.4Ω(2kHz)

0.8W/2.53V 657Hz 9.9Ω(2kHz)

图3 测试电压(功率)变化下阻抗曲线

由上面的数据和阻抗曲线图可以看到微型扬声器A在测试电压加大的条件下,共振频率(F0)和阻抗的数值都随之变大,共振频率升高的现象跟锥形扬声器的测试结论完全相反!(阻抗曲线变化如图3)

测试电压加大微型扬声器共振频率变高,详细的分析第3节进行论述。

测试电压加大微型扬声器阻抗读取数值变大,从理论分析上看:输入给扬声器的电压加大必然使音圈的温度上升,音圈线的直流电阻是随温度升高而阻值变高的。从温度计实际“间接测量与音圈结合处膜片温度”也得以验证,测试电压加大音圈产生的温度上升,从而得到阻抗随测试电压的加大而增加。在温度计测试音圈温度时得到一个有趣的数据(不详细列出数据),即整个音圈的温度上升在音圈所处的平面上也是不均匀的,在音圈的出线部位温度的升高明显比同平面音圈其他部位温升高。

2. 阻抗曲线的测试电压正确选取

从前面的数据看阻抗曲线测试时的电压(功率)选取对微型扬声器的阻抗测量有很大的影响,正确的测量电压才能得到比较精确的测量数值。怎样得到比较正确的阻抗测试电压,是阻抗测试最重要的一个环节。对于微型扬声器测试电压的选取我们可以从GB 9396-96《扬声

器主要性能测试方法》上到以下公式[1]计算:

eN P 10W W ≤≤时) (公式 1)

eN P < 1W 时) (公式 2)

Pe N 额定噪声功率,W

Peo 1 W 电功率

Z 额定阻抗,Ω

U 阻抗测试电压,V

如额定阻抗8Ω,额定功率0.5W 的微型扬声器其测试阻抗曲线的电压按公式2计算得到的阻抗测试电压为0.89V。对应前面的某款微型扬声器A 测试数据,在此电压下测量阻抗曲线,此时从阻抗曲线上读取的额定阻抗和共振频率与后续功率加大一倍的条件下测试对比额定阻抗和共振频率变化不大。但测试功率达到额定功率或超过时,明显额定阻抗的数值已经达到20%的误差。而通过公式2计算得到测试电压0.89V 测到的阻抗曲线是合适且合理的。在标注的功率不一样时,主要是测试信号的不一样对应的功率不一样,在测试电压的计算上会有一定范围的误差,即微型扬声器的功率标注会给阻抗曲线测试电压的精确计算带来偏差。目前微型扬声器功率标注和实验条件的混乱,已经是行业内头疼的问题。

在微型扬声器的阻抗测试电压的计算上,特别应该注意的是公式1、2不能用于工作在压力场中的微型扬声器,如耳机扬声器和受话器的阻抗曲线的测量电压,耳机扬声器和受话器测试阻抗都是用1mW 的功率电压测试。

3. 阻抗曲线测试电压与共振频率的改变是否有必然关系

从上面一款微型扬声器A 的测试数据上看似乎测试电压和共振频率的改变有着必然的联系:阻抗测试电压加大共振频率和额定阻抗也加大的现象。从上面的分析阻抗数值时已经明确测试电压的加大,带来音圈的温度的升高。一个扬声器的共振频率只与质量和顺性有关系

[2]。手机微型扬声器B:额定阻抗4Ω,额定功率0.8W 0.038mmPEN 音圈直径12.3mm 线径 0.09mm。阻抗测试电压变化对应共振频率和阻抗值数据如下:

测试功率/电压 共振频率(F0) 阻抗值

0.1W/0.62V 610Hz 4.2Ω(2kHz)

0.2W/0.89V 607Hz 4.2Ω(2kHz)

0.4W/1.26V 607Hz 4.4Ω(2kHz)

0.8W/1.79V 608Hz 4.6Ω(2kHz)

图4 微型扬声器B测试电压(功率)改变阻抗曲线

从测试数据上来看,微型扬声器B测试电压的变化对阻抗值和共振频率的影响不大,实际测量加大电压后微型扬声器B温度变化也变化不大。微型扬声器B音圈线线径、音圈直径都被加大。温度上升明显没有细音圈线径、小音圈直径的温度上升明显,从阻抗曲线上看小幅的温升只能带来阻抗值的小幅度升高。

从共振频率的计算公式上看,共振频率只跟振动的质量和顺性有关系[2],所以共振频率的改变只能是振动质量和顺性的变化。从阻抗测试的过程中看,表面的现象是测试电压到音圈温升,由音圈温升去改变其它。由音圈温升与电阻关系公式[3](公式3)计算得到:当电阻增加1欧姆其音圈温度可以上升到50多度,当电阻增加1.5欧姆时其音圈温度可以上升到约70度。膜片(微型扬声器常用的振动膜片为塑料/树脂薄膜)在温度变化下其应力等是变化的,应力的变化影响到膜片的顺性,导致顺性降低,共振频率上升。微型扬声器在阻抗曲线测试时共振频率的变化条件是:音圈的温升温度和振动膜片内应力变化二者共同作用的结果。音圈的温升温度高低:一是外部输入的测试电压,二是音圈自己本身的发热能力的大小;振动膜片内应力变化:一是外界温度的高低,二是振动膜片本身受温度的改变内应力变化的大小。

R L=Re[1+0.00394(T2-T1)] (公式3)

R L 音圈温升后电阻

Re 音圈温升前电阻

T1 音圈起始温度(℃)

T2音圈温升温度(℃)

备注:公式中0.00394为铜线的导体阻抗温度转换系数,铝线的导体阻抗温度转换系数为:0.00407

至此就可以解释微型扬声器A在阻抗曲线测试时共振频率明显随测试电压改变,(见图3

实测曲线)而微型扬声器B的共振频率随测试电压变化不明显。(见图4实测曲线)微型扬声

器A的共振频率随测试电压的改变主要是由于输入电压加大导致音圈温升,温升导致膜片的

应力的变化,膜片应力的变化影响到膜片的顺性,顺性的改变影响到共振频率;而微型扬声

器B的音圈温升低、膜片厚,测试电压加大共振频率并无大的变化。测试电压加大与微型扬

声器的共振频率的改变有联系,但无必然联系。

4.阻抗曲线能表达的其他电声现象

阻抗曲线不仅能直观的给出微型扬声器的两个重要的基本参数:额定阻抗和共振频率,还能反应微型扬声器背部气孔的阻尼状况、谐波失真等。图5微型扬声器背部阻尼的变化反映在阻抗曲线谐振峰的高低。从电声参数看,当微型扬声器背部阻尼材料的变化引起阻抗曲线谐振峰的变化其实就是改变了此微型扬声器C的Qts(总品质因数),同时频响曲线也有对应的改变。(图 6 微型扬声器C阻抗曲线变化对应频响曲线的变化)。

图5 微型扬声器C背部阻尼改变对阻抗曲线的影响

图6 微型扬声器C阻抗曲线变化对应频响曲线的变化

在实际测试运用中发现,当阻抗曲线某些频段出现异常的“抖动”(图7 5kHz处),往往也对应了微型扬声器频响或失真曲线出现异常的“抖动”。

图7 微型扬声器B“异常抖动”阻抗曲线

图8 微型扬声器B失真改善后阻抗曲线

图 9 微型扬声器B阻抗曲线“异常抖动”点对应的失真曲线改善前、后变化 在实际测试中阻抗曲线一些异常的“抖动”往往是不被很多设计者在意和注重的,图9是微型扬声器B改善失真前后阻抗曲线变化和总谐波失真曲线前后对比。从前后的对比可以看到阻抗曲线的“异常抖动”能反应出微型扬声器失真曲线对应频段的“异常抖动”(5kHz

频段阻抗曲线“异常抖动”与对应频点的总谐波失真)。(如图7、8、9) 用有限元分析软件ANSYS对微型扬声器B的失真改善前、后膜片振动模态的模拟得到阻抗曲线的“抖动”对应了振动膜片不同的振动状况。(如图10、图11)

图10微型扬声器B阻抗曲线“异常抖动”点对应膜片振动模态

图11微型扬声器B阻抗曲线“无异常抖动”点对应膜片振动模态虽然有时阻抗曲线的“异常抖动”不一定能反应到大部分的微型扬声器频率响曲线上(即阻抗曲线 “异常抖动”有时也会影响到频响曲线的异常“掉谷”,大多数情况下表现为失真曲线的“异常抖动”),但是阻抗曲线的“异常抖动”在微型扬声器开发设计和生产时需加以严正考虑。此处阻抗曲线与失真的关系,不考虑制作工艺的影响;微型扬声器的制作工艺对电声性能的影响将陆续有其他文章详细讲述。

实际运用中发现微型扬声器的阻抗曲线能表达的东西还有很多,值得做更深入的思考,比如阻抗曲线所能表达的功率容量[4]问题等。

5.阻抗曲线测试条件

在实际测量中发现:要精确的测量阻抗曲线,测试条件必须保持一致性。除在测试电压、

测试设备(包括设备的设置条件)、扬声器安装固定方式之外,就是怎样控制音圈的温升变

化,使音圈的温度变化每次测试时变化一样。经过多次对比实验,可以用两种方式来进行1)

同一款微型扬声器两次测试阻抗曲线中间要有一定的时间间隔。 2)测试前先对微型扬声器

先进行一下“预负荷处理”。(此方式类似于GB/T9396-1996中的“预负荷处理”) 在这两种方式条件下测试的阻抗曲线一致性容易控制。从阻抗曲线测试的基本要求:“要

测量扬声器系统的共振特性,当然应该保证扬声器工作在线性区域[5]。”但怎样才能保证测

试时微型扬声器工作在线性区域内,是一个比较头疼的问题。从现有的条件看,笔者认为:

保证测试微型扬声器阻抗曲线测试的“可重复性”(即多次测试同一微型扬声器阻抗曲线的

一致性),是最重要的事情。

本文不对阻抗测试的恒流和恒压法加以讨论,也不对各类电声测试仪器的阻抗测试做对

比,同时本文所提及的微型扬声器均为微型动圈扬声器。

6 .总结

怎样才能精确的测试微型扬声器的阻抗曲线,从而得到精确的电声参数?对大部分微型

扬声器设计者来说似乎并不是很重要,因为精确的测量阻抗曲线不能决定一个微型扬声器的

优劣(很多时候测量的误差在规定的公差范围内)。但是随着模拟仿真软件的大量引入到微

型扬声器的开发设计中,所以精确的测量微型扬声器的电声参数必须引起设计人员的重视。

而微型扬声器的电声参数的精确测量最重要的就是精确的测试阻抗曲线!在文章的写作过程

中深感到微型扬声器设计中还有很多值的更深入思考的地方。锥形扬声器及系统设计中小信

号与大信号理论早以先后建立,并在实际开发设计中广泛运用。微型扬声器中大、小信号在

开发设计中是否也要加以区分?是文章写完时留给自己思考的地方。时间有度、人生有限,

但技术的发展不会停滞。冀望本文给那些对微型电声设计深入细微的朋友留下大家共同探讨

的思绪,同时有兴趣的同行能给文章的不足之处予以指正,这才是文章的最大的益处。

7.致谢

文章中对“锥形扬声器阻抗测试电压对扬声器共振频率的影响”得到了肖鹏和肖仲的详

细讲解,特别是肖鹏对“锥形扬声器阻抗测试电压对扬声器共振频率的影响”发来邮件进行

图文并貌的分析;文章最早的写作思路来自声学楼网站的一个提问,该提问触发了文章最早

写作原由,在此对好友和网站表示衷心的感谢。

[1]《GB 9396-96《扬声器主要性能测试方法》》[S]

[2]杜功焕、朱哲民、龚秀芬《声学基础》南京大学出版社 2006出版 P6

[3]俞锦元《扬声器设计与制作》广东科技出版社 2007年出版 P37

[4]朱国春《扬声器功率容量标定的参考依据》《电声技术》北京电视电声杂志社1980年4期

[5]赵其昌《国标《扬声器主要性能测试方法》(1996年新版)中几个问题的讨论》《电声技术》北京电视电声杂志社 1998年12期 P42-P43

扬声器特性

低音扬声器详解 威威 低音扬声器详解 作者:宋小威(网名:威威) 首先我们先看看低频扬声器的基本结构。图一是低音扬声器的构造图: 扬声器构造Array 重点谈谈扬声器的关键部件——振膜。振膜俗称:纸盆 在扬声器中,振膜对音质有至关重要的影响。其关键技术就在这张“纸”上!对振膜的要求包括以下三个方面 (一)从稳态振动方面考虑: 从稳态振动方面考虑,对振膜的基本要求在物理特性方面有如下三条: (1)要求扬声器重放频带尽可能宽。此时要求弹性率E/ρ尽量大。这里的E代表振膜材料的弹性模量,指材料应力增量与应变增量之比,也叫做:“杨氏模量”。 度,都会提高频率上限。 (2)要求扬声器失真小,因此要求振膜的弯曲刚性大。这就要求振膜质地坚挺,尽量减小振膜的分割振动。对于振膜来说,在输入到扬声器的频率较低时,可

活塞振动。随着频率的升高,从振膜中部到边缘的振动传播时间就不能忽略不计了。这时就不能认为它是一个活塞,而是要分割成若干部分,每部分以不同振幅低音扬声器不是不能发出高音,而是高音集中在扬声器的中部。越是高频越是集中在中部。由于高频的振动集中在中部,所以高频的辐射角度很小。早期的双纸一个小的纸盆,使高音通过这个小纸盆发出,它起到增加高频辐射角度的作用。 (3)要求振膜有适当的内阻尼。内阻尼也叫内摩擦,是指材料在受到不断涨落的应力后,机械能转化为热能的现象。 (二)从瞬态振动方面考虑: 如果一个脉冲信号加到扬声器上,起始阶段,扬声器振动也不会马上响应,要有一个上升时间。而终止信号后,扬声器的振动不会马上停下来,要有一个滞后过称之为“前沿瞬态响应”和“后沿瞬态响应”。这两个瞬态响应与振膜的材料有密切的关系。同时它与连接扬声器功放的阻尼系数也密切相关。 (三)从可靠性角度考虑: (1)防潮性能:扬声器可能工作在潮湿的环境,要求振膜具有防潮性能。 (2)湿强度性能:纸制振膜在潮湿、水浸的条件下,强度会大幅度降低。因此要求此类振膜具有湿强度性能。 (3)防霉性能:要求振膜材料具有防霉变性能。 (4)其他:外观色泽令人感觉舒适、经久耐用。 以下是扬声器的各项指标简述: 1.额定阻抗Z 扬声器的阻抗是一个感性加容性加直流电阻的矢量和。对于交流信号而言,它的阻抗是随着频率变化而变化的,其典型的阻抗曲线如图二所示。阻抗最小值即为额定阻抗值。它是计算分频器和放大器输出功率的主要依据。 2.音圈直流电阻用Re表示。音圈的直流电阻均比额定阻抗小,一般为额定阻抗的0.85倍左右。例如:8Ω的扬声器的直流电阻为:Re=8×0.85=6.8Ω 3.谐振频率fo谐振频率指的是扬声器在自由声场中低频段阻抗值达到最大值的时候所对应的频率(见图二)fo的值与扬声器的口径及音圈的长度有关,口径大音圈、长冲程的fo一般都比较低。低音扬声器的fo一般都在18-80Hz的范围内。 4.总Q值Qts 它反映了扬声器fo附近的振动系统的阻尼状态,是决定扬声器低频特性的重要参数。 5.谐振阻抗Zmax 谐振阻抗指的是扬声器fo处的阻抗值。

正确认识音响中的阻抗

消费者在选购前级、后级扩大器时,常会询问它的输入阻抗、输出阻抗及输出内阻是多少?功率和驱动能力有多强?胆机好还是晶体管机好?桥接又如何?选购扬声器时也想了解它的功率、效率、阻抗等等感觉似是而非的问题。 首先从阻抗谈起。阻抗是音响是最常看到的字眼了,那么它到底是指什么呢?阻抗与电阻的概念不是完全一样的。阻抗就是电阻加电抗,详细地说,就是电阻、电容抗、电感抗在向量上的总和。在相现电压下,阻抗越高电流越小,阻抗越低电流越大。 一般音响器材常提到阻抗的地方有:扬声器的阻抗,前后级放大器的输入阻抗,前级的输出阻抗,(后级经常不称作输出阻抗,而称输出内阻),信号导线的传输阻抗等。若说到器材内部电子线路及零件和各部分阻抗那就复杂了在此只介绍有关音响器材标称的阻抗具有什么实质意义。 1、扬声器的电阻抗 现在先从扬声器的阻抗谈起。目前,世界各国的扬声器厂家每天都在制造出千万只品种与性能各异的扬声器,以满足日益增长的Hi-Fi市场与AV市场的需要,但扬声器的标称阻抗却都遵循4Ω,8Ω,16Ω,32Ω这样一个国际化的标准系列。这代表了什么呢?这代表了扬声器谐振频率的峰值fo至第2个共振峰fr之间呈现的最低阻抗值,如图1所示,实际上扬声器构成的输出线路是一个带电抗的电阻,只不过它的电阻随播放音乐的频率而变,这个动态的电阻就称为阻抗,它可不是一个常数值,而是随频率的不同而不同,甚至可能会起伏得很厉害,可能在某频率高到十几Ω或二十几Ω,也可能在某频率低到1Ω或以下。当后级输出一固定电压给扬声器时,依照欧姆定律,4Ω的扬声器会比8Ω的扬声器多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何一部8Ω输出100W的晶体后级,在接上4Ω扬声器时会变成200W了。当然除非特殊需要,没有一个扬声器的设计专家会冒天下众多音视器材阻抗匹配要求之大不韪,设计出类似于2.5Ω,5Ω,10Ω,15Ω这样非标称阻抗系列的扬声器供应市场。谁都知道一个二单元的音箱91个高音2个低音0通常都采用1只8Ω的高音单元和2只4Ω的低音单元串联组成,或者用1只8Ω的高音单元和2只16Ω的低音单元并联组成,以达到整个音箱的8Ω输入阻抗与功率放大器8Ω输出阻抗相匹配;但不一定每个人都知道扬声器的标称阻抗是随频率而变化的对数曲线。其阻抗公式由下式表示: Zr=R+jwL+(BL)2Ym Zr——扬声器的电阻抗 R,L——扬声器音圈的等效电阻与电感 (BL)2Ym——力学系统产生的“动生电阻抗” 从图1中可以看出。在频率fz处就是扬声器的标称阻抗,在频率fo处扬声器的阻抗最大;在其它频率时扬声器的阻抗变化跌荡起伏。当频率小于fo时,扬声器的阻抗会趋向偏低,目前市售的扬声器几乎都是如此。一般来说,低频从数十赫兹到数百赫兹这一段,扬声器的阻抗达到最低点,这时要求功率放大器输出足够大的电流才能满足扬声器圆满工作的要求,产生既有低频又有力度的震撼效果来。这在发烧友播放动态激烈的LD盘或低频丰满的VCD,CD盘时均可以十分明显地体会出来。因此不同型号的扬声器对功率放大器的吃电流能力也不同,吃电流能力大的扬声器,即使2×100W以上功率的放大器在低频段重放时,也不能正常工作、往往出现失真。即使不出现失真,扬声器也刚刚达到启动工作状态,没有足够的电流能量使其进入最佳工作状态,它的低频必然会苍白无力,没有厚度;同时由于电流能量不够,也使扬声器振膜的振动速度跟不上频率变化的速度。这在当前,不少发烧友把原来只适用于Hi-FI发烧的扬声器去充当家庭影院专用扬声器时,上述这些情况就是有发生了。

扬声器参数

扬声器参数讲解 1.RMSE-free:此为所测得的参数值反推阻抗曲线,并以此估之阻抗曲线和原测得之阻抗曲线作一误差平方和的计算,故此值愈大,表示所测得的参数愈不可靠,须重新检测测试程序及接法. 2.Fs:即Fo,最低共振频率,这个参数决定了扬声器声音重现的低频界限,它决定于扬声器振动系统的等效质量和等效力顺,即Fs=(1/2)(MmsCms)-1/2 2.1增加边的硬度可提高Fs,增加弹波的硬度可提高Fs。 2.2增加等效振动质量,即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可降低Fs。 3.Re:线圈的直流阻抗,Re=*L/S:音圈导线的电阻率,L:音圈导线的长度,S:音圈导线的横截在积。 Zmax:扬声器阻抗曲线上的峰值阻抗 Ro=Zmax/Re 4.Res:电气系统的等值电阻值。Res=Zmax-Re=(Bl)2/Rms Rms:支撑系统的等效力阻。 4.1改变振动系统的力阻,如在管材,鼓纸和T铁上打孔或将弹波的材质改稀,或将含浸浓度降低,或增加鼓纸的刚性(将鼓纸纤维打短打细以压得更紧),或改软振动系统,盆架的窗口改大,可提高Res。 4.2增加BL值可提高Res(对Res影响最大)Rms为振动系统的力阻。 4.3随喇叭口径的增加而降低(增加了sd值),Rmr为幅射力阻,面积越大其值越大。 5.Qms:机械系统的阻尼系数。Qms=o*Mms/Rms,Rms=(Bl)2/Res. 5.1改变振动系统的力阻,如在管材,鼓纸和T铁上打孔或将弹波的材质改稀,或将含浸浓度降低,或增加的鼓纸的刚性(将鼓纸纤维打短打细以压得更紧),或改软振系统,盆架的窗口改大,可提高Qms。 5.2增加等效振动质量,即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可提高Qms. 5.3改变音圈管材材质(Kapton比aluminum高,til比kapton高) 5.4增加喇叭的Fs值可提高Qms。 6.Qes:电器系统的阻尼系数。Qes=o*Mms/((Bl)2/Re)。 6.1增加等效振动质量即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可提高Qes。 6.2增加DCR值可提高Qes。 6.3降低Bl值可提高Qes,Bl值对Qes的影响最大。 6.4增加喇叭的Fs值可提高Qes。 7.Qts(喇叭总的阻尼系数)。机械系统加上电气系统的总阻尼系数,扬声器的低频特性决定于扬声器的谐振频率Fo和总阻尼系数Qts.,Qts值的大小决定了低频响应的形状,Qts参数是音箱设计的重要参数。1/Qts=1/Qms+1/Qes或Qts=Qes*Qms/(Qes+Qms) 7.1改变振动系统的力阻,可提高Qts,BL上升则Qts下降。 7.2增加等效振动质量,可提高Qts。 7.3增加BL值可降低Qts(对Qts影响最大) 8.L1:理想电感,音圈未通电时的电感。 8.1增大音圈线径或增大音圈芯数或T铁增加铜帽,或将音圈线由铜线改为铝线,可降低L1。 8.2增大音圈层数,或改音圈管材由纸管变为铝管,可提高L1。 9.L2:音圈通电后所测得的电感,L2随L1的增加而增加。 10.Mms:扬声器振动系统等效质量,包括空气负载。Mms=Mmd+Mmr Mms:扬声器振动系统质量,包括音圈和振动膜,防尘盖及弹波和胶水的质量. Mmd:空气负载质量,Mmr=2.67a3或0.5658 Sd3 10.1鼓纸越重,音圈越重,中心胶越多,鼓纸外径越大,防尘盖越大越厚,弹波越密越厚,锦丝线越粗,均可提高Mms。 11.Cms:振动系统的弹性,指系统施以每牛顿力将可产生的位移。 11.1 Fs越大(即边材越厚,越硬,弹波越硬)Cms越小。(最明显). 11.2减小振动系统的力阻,Cms越大。(不明显). 12.Vas:等效容积。Vas=oCo2Cms o为空气密度,取1.18Kg/m3;Co为常温下声速度,取345m/s 12.1与sd的平方成正比,即增加振动面积即可增加Vas。

揭秘扬声器主要参数之间的关系

揭秘扬声器主要参数之间的关系 2016/2/3 10:22:36来源:艾维音响网 [ 提要 ] 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因 而必须综合考虑和设计。 艾维音响网讯扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 1、主要参数综合设计和分析 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻 Re 由音圈决定,可直接用直流电桥测量。 共振频率 Fo 由扬声器的等效振动质量Mms和等效顺性 Cms决定,见公式 (5) , Fo 可直接用 Fo 测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统( 鼓纸、弹波 ) 共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻 Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里 SQR( ) 表示对括号 ( )中的数值开平方根,下同。 辐射力阻 Rmr 由口径、频率决定,低频时可忽略。 Rmr = 0.022*(f/Sd)2 (12) 等效辐射面积Sd 只与口径 ( 等效半径 a) 有关。 Sd =π * a2 (13) 机电耦合因子BL 由磁路 Bg 值和音圈线有效长度L 决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量 Mm1、鼓纸等效质量Mm2、辐射质量 Mmr共同决定,Mms可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量 Mmr 只与口径 ( 等效半径 a) 有关。

浅谈扬声器设计

浅谈扬声器设计 xx喇叭|来源: 本站|查看:98次|字号: 小中大 浅谈扬声器设计 本人从事扬声器及其系统开发已经15年,一个偶然的机会与声学楼结下一段缘分,于是我驻足良久,想籍此结交一些扬声器个中高手以做切磋,甚而我有更远大之理想: 为提高整个中国之扬声器制造业水平而略尽绵力!我国是世界公认的电声器件第一生产大国和出口大国,但却不是强国,总体上处于OEM的阶段,只有少数企业进入ODM阶段这也是长期努力的结果!究竟是什么原因导致我泱泱大国的扬声器“大”而不“强”呢?我时常苦思这个问题: 论市场我们有;论技术我们有;论廉价劳动力我们也有!可我们的产品却总比不过人家! 我们对自身的素质要求太低啦; 我们的技术交流太少啦; 我们都太保守啦!!! 集多年的研发经验,现将一些心得与诸君分享,以期拋砖引玉: 1.音圈的感抗: 音圈的感抗是由于音圈在磁场中上下运动切割磁力线产生感应电动势,这个感应电动势中的感应电流对音圈的电流产生反作用,从而产生音圈的感抗。对于一个扬声器来说: 感抗弊大于利,固我们在扬声器的开发中都尽量避免音圈感抗的产生。要消除音圈的感抗最常用的方法有两种:

1.1在T铁的顶部加一个铜套; 1.2在T铁的底部加一个铜环; 2.力撑系统的顺性在阻抗曲线上的表现(列图): 经验值(相对): A属于xx扬声器 B属于低顺性扬声器 3.产生如下曲线的原因及改进之方案: 经验值: 此应为力撑系统的粘接不良产生共振从而产生曲线上的峰谷,改进之方案应该从制造的工艺上去想办法。 1.目的: Bm×Hm達到最大值 2.方案: 2.1氣隙磁場無漏磁 Bg Ag = Bm Am Hg Lg = Hm LmBm/Hm =Lm/Am Ag/Lg = tgαVm = Am Lm = BgAg/Bm HgLg/Hm = Bg2Vg/BmHm Ld = BgLg√ Br/ HcBdHd Ad = BgAg√ Hc/

扬声器的主要性能指标

扬声器的主要性能指标 扬声器的主要性能指标有:灵敏度、频率响应、额定功率、额定阻抗、指向性以及失真度等参数。 1、额定功率 扬声器的功率有标称功率和最大功率之分。标称功率称额定功率、不失真功率。它是指扬声器在额定不失真范围内容许的最大输入功率,在扬声器的商标、技术说明书上标注的功率即为该功率值。最大功率是指扬声器在某一瞬间所能承受的峰值功率。为保证扬扬器工作的可靠性,要求扬声器的最大功率为标称功率的2~3倍。 2、额定阻抗 扬声器的阻抗一般和频率有关。额定阻抗是指音频为400Hz时,从扬声器输入端测得的阻抗。它一般是音圈直流电阻的1.2~1.5倍。一般动圈式扬声器常见的阻抗有4Ω、8Ω、16Ω、32Ω等。 3、频率响应 给一只扬声器加上相同电压而不同频率的音频信号时,其产生的声压将会产生变化。一般中音频时产生的声压较大,而低音频和高音频时产生的声压较小。当声压下降为中音频的某一数值时的高、低音频率范围,叫该扬声器的频率响应特性。理想的扬声器频率特性应为20~20KHz,这样就能把全部音频均匀地重放出来,然而这是做不到的。每一只扬声器只能较好地重放音频的某一部分。 4、失真 扬声器不能把原来的声音逼真地重放出来的现象叫失真。失真有两种:频率失真和非线性失真。频率失真是由于对某些频率的信号放音较强,而对另一些频率的信号放音较弱造成的,失真破坏了原来高低音响度的比例,改变了原声音色。而非线性失真是由于扬声器振动系统的振动和信号的波动不够完全一致造成的,在输出的声波中增加一新的频率成分。 5、指向特性 用来表征扬声器在空间各方向辐射的声压分布特性,频率越高指向性越狭,纸盆越大指向性越强。 (资料来源:中国联保网)

扬声器各参数

扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0, SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义. 1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗. 扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值.它是计算扬声器电功率的基准. 直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值. 我们通常所说的4欧或者8欧是指额定阻抗. 1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率. 单位:赫兹(Hz). 扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的曲线. 1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率. 1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m 的点上产生的声压.单位:分贝(dB). 1.5 Qts :扬声器的总品质因数值. 1.6 Qms:扬声器的机械品质因数值. 1.7 Qes:扬声器的电品质因数值. 1.8 Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时的容积.单位:升(L). 1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以及参与振动的空气质量等.单位:克(gram). 1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N). 1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2). 1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位:(T*M).

扬声器的电阻抗

扬声器的电阻抗 如何配置功放包括前级和后级时,常会询问它的输入阻抗、输出阻抗及输出内阻是多少?功率和驱动能力有多强?胆机好力还是晶体管机好力?桥接又如何?选购扬声器时也想了解它的功率、效率、阻抗等等感觉似是而非的问题,我相信看了下文应该有满意的答案了。 我们首先从阻抗谈起。阻抗是音响中最常看到的字眼了,那么它到底是指什么?阻抗与电阻不是完全一致的东西。阻抗就是电阻加电抗,详细地说,就是电阻、电容抗、电感抗在向量上的总和。在相同电压下,阻抗越高电流越小,阻抗越低电流越大。 一般音响器材常见提到阻抗的地方有:喇叭的阻抗,前后级放大器的输入阻抗,前级的输出阻抗,(后级经常不称作输出阻抗,而称输出内阻),信号导线的传输阻抗等。若说到器材内部电子线路及零件的各部分阻抗那就更琳琅满目复杂得多了,在此我们只介绍有关音响器材标称的阻抗具有什么实质意义? “扬声器的电阻抗” 现在先从喇叭的阻抗谈起。目前,世界各国的扬声器厂家每天都在制造出千万只品种与性能各异的扬声器,以满足日益增长的Hi—Fi市场与AV市场的需要,但扬声器的标称阻抗却都遵循4Ω、8Ω、16Ω、32Ω这样一个国际化的标准系列。 这代表了什么呢? 这代表了扬声器谐振频率的FO至第二个共振峰Fz之间所呈现的最低阻抗值。实际上喇叭构成输出线路中一个带电抗的电阻,只不过它的电阻随潘放的音

乐的频率而变,这个动态的电阻就称为阻抗。它可不是一个常数值,而是随着频率的不同而不同,甚至可能会起伏得很可伯,可能在某频率高到十几Ω或二十几Ω,也可能在某频率低到IΩ或以下。 当后级输出一个固定电压给喇叭时,依照欧姆定律,4Ω的喇叭会比8Ω的喇叭多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何一部8Ω输出的100瓦的晶体后级,在接上4Ω喇叭时会变为200瓦了。当然除非特殊需要,没有一个扬声器的设计专家会设计出类似于2.5Ω、5Ω、10Ω、15Ω这样非标称阻抗系列的扬声器供应市场。 谁都知道一个二单元的音箱(一个高音一个低音)通常采用1只8Ω的高音单元和1只8Ω的低音单元组成,如果三单元的音箱(一个高音二个低音)通常都采用1只8Ω的高音单元和2只4Ω的低音单元串联组成,或者用I只8Ω的高音单元和2只16Ω的低音单元并联组成,以达到整个音箱的8Ω输入阻抗与功率放大器8Ω输出阻抗相匹配。 当如上所述,喇叭的阻抗值不断下降时,后级输出一个固定电压,它的电流就会愈来愈大,你确定你的后级能输出这么大的电流吗?你知道喇叭阻抗不断下降的结果到后来就相当于是把喇叭线直接短路,所有的晶体管后级放大器,其输出电流的能力均有其设计上的限制,超出此范围,机器就要烧掉了。 这也就是为什么一般人常说的:后级的功率不用大,但输出电流要大的道理。当然这种讲法也不太规范。因为现今的高保真晶体管功率放大器基本属定压型放大器,以输出功率=负载的电流平方x负载阻抗来计算,大功率时电流大,小功率时电流小亦属于正常。真正有机会在既定的负载上有“大电流输出”的,还是大功率放大器。

APx500系列测量扬声器的阻抗曲线

APx500系列测量扬声器的阻抗曲线 浏览次数:220日期:2014年10月24日17:56 扬声器复杂阻抗的测量可以通过APx500 软件的数据提取功能很方便地实现 (APx500 2.6 或以上版本). 这篇技术文档主要说明如何使用恒定电压来测量, 同时包含所需的APx500 工程文件. 恒定电压测量方法的优点是可以在扬声器的工作频率范围内使用已知的,恒定的电压来测量. 通过该方法进行多组恒定电压下的测量, 也可以检验扬声器阻抗与电压之间的变化关系(理论上彼此是独立的). 图1扬声器阻抗测试电路原理图 图1显示的是恒压法测量的基本电路原理, 图2 显示的是实际的连接图. 使用分析仪的两个输入端,配置成Analog Balanced,用来检测感应电阻的电压(Vsense)和扬声器两端的电压(Vspkr), 功放则需提供足够低的输出阻抗以及足够的电流来直接驱动扬声器,有些扬声器所需的电流可能超过功放所能提供的电流. 另外, 使用分析仪50 ohm 的输出阻抗配置, 可以让仪器成为一个恒流源, 使恒压测量的方法变得有点麻烦. 图2. 仪器与被测扬声器的连接 为了让连接变得更简单明了, 我们制作了测量夹具, 里面包含了一个0.1 ohm 的高 精度感应电阻(额定功率根据实际情况而定), 如图3 所示; 这个夹具包含两组Banana 接口

和一个XLR 接口, 方便连接夹具到音频分析仪, 扬声器以及功放. 如图的夹具只是一个样例, 客户可以根据该原理制作更加简单的测试夹具. 图3. 电流感应测试夹具 感应电阻的阻值在该测量中并不关键, 但是, 它必须保证有足够的精度(如1%)以 及能够承受足够的功率. 使用0.1 ohm 的电阻是一个很好的选择, 因为它与仪器输出的源阻抗相比, 几乎可以忽略, 同时除以0.1(或乘10)的计算非常方便. 使用具有4 端连接的感应电流检测电阻, 配置成四线连接的Kevin 结构, 电流从两个对应的连接端输入,而感应电压则通过另外两个连接端测量得到.除了提供便利的连接外, 4 线的Kevin 配置可以提供更加精确的感应测量. 根据图1 的电路, 电流(i)可以通过以下等式获得: 以及阻抗可以通过以下等式获得: 将上面两个等式整合, 就可以等到以下阻抗计算公式: 上面的等式中, I, V, Z 等物理量上面均有一杠的指示, 表示说这些物理量都是向量(包含了幅度以及相位的信息).

细解扬声器的Q值

细解扬声器的Q值 在扬声器的Thiele-Small参数中,其品质因素Q值作为评价低频性能和低音箱体设计的关键参数,经常被大家提起和引用;但作为一个数学模型的辅助参量,Q值的概念是非常抽象的,远远不如Fs(谐振频率)、Vas(等效容积)等参数容易得到感性的认识。下面,本文将通过不同的角度,来分析、阐释Q值的意义,希望能够加深大家对Q值的理解。 基本概念 根据T-S参数的定义,Q(quality factor)是描述扬声器阻尼系数(damping factor)的一组参数。在T-S参数中,Q值分为Qms,Qes和Qts。 Qms为机械系统的阻尼,体现了扬声器支片、边等支撑系统对能量的消耗、吸收和音盆、音圈、防尘帽等质量系统对能量的内在消耗; Qes为电力系统的阻尼,主要体现在音圈直流电阻对电能的消耗; Qts为总阻尼,为上述两者的并联。即Qts=Qms*Qes/(Qms+Qes)。 扬声器Qts对低频声压特性的影响如图(1)所示,这在很多参考书上都有描述,这儿不再讨论。 图(1)Qts对扬声器低频声压特性的影响 阻抗曲线的数学模型 考虑到扬声器Q值与阻抗Ze密不可分的关系,在具体分析Q值前,我们简单了解一下扬声器阻抗曲线。 在阻抗型电声类比中,扬声器的等效阻抗为: 其中,Re为扬声器的直流阻抗,L为音圈线圈的感抗; Res为振动系统的力学等效阻抗,Res=(BL)2/(Rms+2Rmr),Rms振动系统的力阻,Rmr为扬声器振膜单面的辐射力阻; Cmes为质量抗,Cmes=Mms/(BL)2; Lces为弹性抗,Lces=Cms*(BL)2。 当频率在Fs的时候,动生阻抗达到最大值;同时由于在低频阶段,音圈感抗相当小,基本上可以忽略,所以我们有: Zmax=Re+|Res| 参考下面Mlssa对某款扬声器的测试结果,我们可以对其进行直观地理解。 图(2)扬声器的阻抗曲线 Q值与阻抗Ze的关系 根据Qms的定义,有Qms=ωMms/(Rms+2Rmr)。 由ω=2πFs以及 我们不难得到:

关于微型扬声器阻抗..

关于微型扬声器阻抗曲线的一些探讨 费艳锋 (生辉电器制品有限公司 广东顺德 528309) 摘要文章通过对微型扬声器的阻抗曲线测试分析,说明微型扬声器在测试电压加大的条件下微型扬声器所特有的现象,对此特有现象做了初步分析。并对通常条件下微型扬声器阻抗曲线测试时的电压怎样选择和怎样测试做了说明。 关键词微型扬声器阻抗曲线额定阻抗共振频率 Some Discussing about the Impedance Curve of Micro Loudspeaker FEI Yan-feng (Sangfai Electrical Manufacture Limited Shunde Guangdong 528309) Abstract: By the analysis of impedance curve of the micro loudspeaker, we explain the proper measure phenomenon of micro loudspeaker with large signal voltage. and then offer the method how to select the measure voltage and to operate the measurement of the micro loudspeaker Key words: Micro loudspeaker Impedance Curve Rated Impedance Resonant Frequency 前言:微型扬声器特性参数中有额定阻抗和共振频率这两项,此两项参数是微型扬声器的基本重要参数,通常从阻抗频率特性曲线(阻抗曲线图1)上读取。读取方法为:额定阻抗可以阻抗曲线上紧跟在第一个极大值后面的极小值对应的阻抗为扬声器额定阻抗(图1中的“Min”对应纵坐标阻抗数值);共振频率是在扬声器单元的阻抗模值随频率递增变化的曲线上,出现第一个阻抗极大值时的频率(即谐振峰的最高点“Max”对应横坐标频率数值 图1)。一个正确测量得到的阻抗曲线才能得到比较精确的额定阻抗值和共振频率,从而对后续的许多电声设计给出方向。 图1 阻抗曲线的额定阻抗和共振频率读取示意图 关于锥形扬声器分析讨论很多技术人员做了许多,在微型动圈扬声器上似乎并不多,下文将通过对微型扬声器阻抗曲线的探讨,使关于微型扬声器阻抗曲线能进行更深入的讨论。1.测量电压变化对阻抗曲线的影响 测量电压变化对阻抗曲线的影响,在锥型扬声器上早就有其自己的见解(见图2)

扬声器常用参数的物理意义

扬声器常用参数的物理意义 扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种 性能参数值.其常用的参数 主要包括:Z,Fo,η0, SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义. 1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻 抗. 扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,它是计 算扬声器电功率的基准. 直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值. 我们通常所说的4欧或者8欧是指额定阻抗. 1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率. 单位:赫兹(Hz). 扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的 曲线. 1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率. 1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相 距1m的点上产生的声压.单位:分贝(dB). 1.5 Qts :扬声器的总品质因数值. 1.6 Qms:扬声器的机械品质因数值. 1.7 Qes:扬声器的电品质因数值. 1.8 Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的 声顺相等时 的容积.单位:升(L). 1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分 ,音圈,弹波以及参与振动的空气质量等.单位:克(gram). 1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系 统越软.单位:毫米/牛顿(mm/N). 1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米 (m2). 1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位:(T*M). 1.13 Xmax:音圈在振动过程中运动的线性行程.单位:毫米(mm). 1.14 Gap Gauss:间隙磁感应强度值.单位:特斯拉(Tesla).

扬声器的效率阻抗与动态

LS3 5A扬声器的效率、阻抗与动态 ●梁中锷●2003-06-16 经由十余年来多次的接触,我发现消费者在选购扬声器时,常会询问:它的效率是多少?阻抗是多少?但却鲜有人问:它的最高音压是多少?音响史上确实有几款著名喇叭以低效率闻名,例如Rogers的LS-3/5a及AR-3a。 二十年前,当我还是杂志社小编辑时,曾亲眼所见,国内音响名师林宜胜先生,谈到3/5a时,脸上竟泛起一阵神光说:它的效率其低!但当日在板桥陈正修先生(音响闻人,早已移民旧金山)家里,有三对小喇叭的试听比较,3/5a上阵还不到五分钟,就被另外一位音响闻人高真民先生一阵xxx给开骂、炮轰了下来! 更早之前,那时只有LP没有CD,我到上扬唱片公司买唱片。在挑选唱片时,觉得背景音乐怪怪的,男高音Domingo怎么感冒了?鼻音这么重!问清楚后,才知一切都是「闷葫芦」3/5a搞的鬼─当时Rogers喇叭是由上扬公司进口销售。 我对3/5a的恶感就是这样而来,没想到全球闻名的BBC-3/5a,竟然是个「闷」葫芦。等到试作DaLine后,才知BBC并未将KEF单体性能发挥极致,LS-3/5a的好处只是体型小、售价低,难怪有人会卖了3/5a换用我的DaLine传输线喇叭。道理很简单,依3/5a低音单体B-110之规格计算,根本不能装在那么小的音箱里!这点有必要说明,其实英国BBC并非不会设计喇叭,而是为了携带方便,不得不将喇叭音箱设计得很小,这是没办法的妥协。当初BBC是想设计出比例为十分之一的喇叭,这样测试的方法比较简单,也比较便宜,于是就诞生了LS-3/5a。 低效率喇叭确实曾风光过,但CD开始逐渐流行后,就有人对低效率喇叭抱着怀疑态度,名乐评家、莹升公司负责人曹永坤先生,就曾经说过CD的高动态会自然淘汰低效率喇叭。 晶体管机的瓦=真空管机的瓦 经过20年,CD系统已渐趋成熟,但低效率喇叭依然存在于市场,而且低效率=高音质的观念好像并未动摇;直到最近这几年才有了些许改变。 真空管又回头了,老厂新厂纷纷出笼,但管机后级的输出功率普遍比晶体机低。有音质至上,非WE300B不用,而且还只要单端不要推挽。300B做单端只有7至8W 左右的输出,7W能推什么喇叭?当然,也有人用不到10W的管机后级推ATC喇叭─那是有声音,却无法呈现ATC应有的动态。古早时代的Altec、JBL、EV…等大型落地式喇叭都是高效率,因为它们的亲蜜伙伴就是管机。所以当管机推Altec A7「剧院之声」时,气势就大大的不同,有谁能说管机后级没啥动态?

扬声器的的主要参数

扬声器的的主要参数 发布: 2010-9-26 01:19 作者: 网络转载来源: 互联网查看: 打印字体: 小中大| 735次 1.扬声器主要参数综合设计和分析 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻Re 由音圈决定,可直接用直流电桥测量。 共振频率Fo 由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5),Fo可直接用Fo测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里SQR( )表示对括号( )中的数值开平方根,下同。 辐射力阻Rmr 由口径、频率决定,低频时可忽略。 Rmr = *(f/Sd)2 (12) 等效辐射面积Sd 只与口径(等效半径a)有关。 Sd =π* a2 (13) 机电耦合因子BL 由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定,Mms 可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量Mmr 只与口径(等效半径a)有关。 Mmr =*ρo* a3 (16) 其中ρo=m3为空气密度,a为扬声器等效半径。

细解扬声器的Q值

细解扬声器的Q值 作者:叶希鹏 双击自动滚屏发布时间:2006-5-13 11:48:33 阅读:130次 摘要:本文从理论计算入手,详细分析了扬声器Qms、Qes及Qes的本质意义,特别是对于不经常使用的Qms及其影响因素,更是从各个方面进行了全面的分析。 关键词:扬声器、T-S参数、品质因素、阻尼、阻抗 Company:Guoguang Electric CO., LTD. Subject: Analyzes the Q parameter of loudspeaker Summary: This article introduces the key parameter Q (including Qms, Qes and Qts) of loudspeaker. Especially for Qms, it is analyzed in particular since Qms was not in common use. Key words: loudspeaker, T-S parameters, Quality factor, damping, impedance. 正文: 在扬声器的Thiele-Small参数中,其品质因素Q值作为评价低频性能和低音箱体设计的关键参数,经常被大家提起和引用;但作为一个数学模型的辅助参量,Q值的概念是非常抽象的,远远不如Fs(谐振频率)、Vas(等效容积)等参数容易得到感性的认识。下面,本文将通过不同的角度,来分析、阐释Q值的意义,希望能够加深大家对Q值的理解。 1.基本概念 根据T-S参数的定义,Q(quality factor)是描述扬声器阻尼系数(damping factor)的一组参数。在T-S参数中,Q值分为Qms,Qes和Qts。 Qms为机械系统的阻尼,体现了扬声器支片、边等支撑系统对能量的消耗、吸收和音盆、音圈、防尘帽等质量系统对能量的内在消耗; Qes为电力系统的阻尼,主要体现在音圈直流电阻对电能的消耗; Qts为总阻尼,为上述两者的并联。即Qts=Qms*Qes/(Qms+Qes)。 扬声器Qts对低频声压特性的影响如图(1)所示,这在很多参考书上都有描述,这儿不再讨论。

喇叭扬声器的阻抗

喇叭的阻抗 一般音响器材常见被提到阻抗的地方有喇叭的 阻抗,前后级扩大机的输入阻抗,前级的输出阻抗,(后级通常不称输出阻抗,而称输出内阻),信号道线的传输阻碍抗(或称特性阻抗)......等等。由于阻抗的单位仍是欧姆,也同样适用欧姆定律,因此一言以蔽之,在相同电压下,阻抗愈高将流过愈少的电流,阻抗愈低会流过愈多的电流。最常见到的喇叭阻抗的标示值是八欧姆,这代表了这对喇叭在工厂测试规格时,当输入 1KHz的正弦波信号,它呈现的阻抗值是八欧姆;或者是在喇叭的工作频率响应范围内,一个平均的阻抗值。它可不是一个固定值,而是随着频率的不同而不同。当后级输出一个固定电压给喇叭时,依照欧姆定律,四欧姆的喇叭会比八欧姆的喇叭多流过一倍的电流,理论上一部八欧姆输出一百瓦的晶体后级,在接上四欧姆喇叭时会自动变为二百瓦。当喇叭的阻抗值一路下降时,后级输出一个固定电压,它流过的电流就会愈来愈大,到最后就有点像是把喇叭线直接短路,所以阻抗值有时会低至一欧姆的限制,超出此范围,

机器就要烧掉了。这也就是一般人常说的:后级的功率不用大,但输出电流要大的似是若非的道理。 喇叭的电阻抗 现在先从喇叭的阻抗谈起。目前,世界各国的扬声器厂家每天都在制造出千万只品种与性能各异的扬声器,以满足日益增长的Hi—Fi市场与AV市场的需要,但扬声器的标称阻抗却都遵循4Ω、8Ω、16Ω、32Ω这样一个国际化的标准系列。这代表了什么呢?这代表了扬声器谐振频率的峰值F0至第二个共振峰Fz之间所呈现的最低阻抗值,如图1。实际上喇叭构成输出线路中一个带电抗的电阻,只不过它的电阻随播放的音乐的频率而变,这个动态的电阻就称为阻抗。它可不是一个常数值,而是随着频率的不同而不同,甚至可能会起伏得很可怕,可能在某频率高到十几Ω或二十几Ω,也可能在某频率低到1Ω或以下。当后级输出一个固定电压给喇叭时,依照欧姆定律,4Ω的喇叭会比8Ω的喇叭多流过一倍的电流,因此如果你会计算功率的

喇叭阻抗知识

阻抗是音响圈中最常看到的字眼了,但是它到底意所何指呢?许多人在看到喇叭标示的阻抗值是四或八欧姆的时候,会直觉地拿起三用电表往喇叭的二个接线端子一量,看看到底是不是正确,可惜的是绝大部份的人都失望了,因为用三用电表上的电阻档量出来的结果并没有和喇叭上面所标示的一致。原因呢?因为你误会了,你搞错了。 阻抗与电阻不是完全一致的东。在国中的物理课本上,我们第一次接触到有关电学方面的理论,其中提到了有关电压、电流、电阻以及电功率之间的原理和数学关系。绝大部份没有继续进修电学方面的课程或从事于电子专业的人士,其毕生的电学常识乃尽粹于斯,这还是当年上课没打瞌睡,经努力、认真、用功学习后才能拥有的辉煌成果,难怪你会把阻抗当成电阻了。 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 一般音响器材常见被提到阻抗的地方有喇叭的阻抗,前后级扩大机的输入阻抗,前级的输出阻抗,(后级通常不称输出阻抗,而称输出内阻),信号导线的传输阻抗(或称特性阻抗)等。若说到器材内部电子线路及零件的各部份阻抗那就更琳琅满目复杂多多了,非三言两语可说明清楚。在此我们专只约略介绍有关音响器材标示的阻抗具有什么样的实质意义。 先从喇叭的阻抗谈起。最常见到的喇叭阻抗的标示值是八欧姆,也有很多是四欧姆,这代表了什么呢?这代表了这对喇叭在工厂测试规则时,当输入1KHz 的正弦波信号,它呈现的阻抗值是四或八欧姆;或是是在喇叭的工作频率响应范围内,一个平均的阻抗值。它可不是一个固定值,而是随着频率的不同而不同,甚至可能会起伏得很可怕,可能在某频率高到十几廿几欧姆,也可能在某频率低 到一欧姆或以下(这种喇叭通常被视为后级的杀手,当年以Apogee最为着名)。好,让我们来脑力激荡一下;当后级输出一个固定电压给喇叭时,依照欧姆定律,四欧姆的喇叭会比八欧姆的喇叭多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何坊间会传言一部八欧姆输出一百瓦的晶体后级,在接上四欧姆喇叭时会自动变为二百瓦的道理。 可是你先别高兴,以为占到了便宜,天下没有白吃的午餐,当喇叭的阻抗值一路下降时,后级输出一个固定电压,它流过的电流就会愈来愈大,你确定你的后级能输出这么大的电流吗?你知道喇叭阻抗一路下降的结果到后来就有点像是把喇叭线直接短路的意思,所以阻抗值有时会低至一欧姆的Apogee喇叭被称作后级杀手的原因,你明白了吧!所有的电晶体后级扩大机,其输出电流的能力均有其设计上的限制,超出此范围,机器就要烧掉了。这也就是为什么一般人常

扬声器的的主要参数

扬声器的的主要参数 字体: 小中大| 打印发布: 2010-9-26 01:19 作者: 网络转载来源: 互联网查看: 735次 1.扬声器主要参数综合设计和分析 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 扬声器常用机电参数以及计算公式、测量方法简述如下: 1.1直流电阻Re 由音圈决定,可直接用直流电桥测量。 1.2共振频率Fo 由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5),Fo可直接用Fo测试仪测量或通过测量阻抗曲线获得。 1.3共振频率处的最大阻抗Zo 由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 1.4 机械力阻Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里SQR( )表示对括号( )中的数值开平方根,下同。 1.5 辐射力阻Rmr 由口径、频率决定,低频时可忽略。 Rmr = 0.022*(f/Sd)2 (12) 1.6 等效辐射面积Sd 只与口径(等效半径a)有关。 Sd =π* a2 (13)

1.7 机电耦合因子BL 由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 1.8 等效振动质量Mms 由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定,Mms可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 1.9 辐射质量Mmr 只与口径(等效半径a)有关。 Mmr =2.67*ρo* a3 (16) 其中ρo=1.21kg/m3为空气密度,a为扬声器等效半径。 1.10 等效顺性Cms 是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N). 由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N, 而变位可以用变位仪直接测量。Cms可由附加容积法测量获得。 Cms=(Cm1*Cm2)/(Cm1+Cm2) (17) 1.11 等效容积Vas 只与等效顺性、等效辐射面积有关。 Vas =ρo*c2*Sd2*Cms (18) 此处c为空气中的声速,c=344m/s 1.12 机械品质因数Qms 由振动系统的等效振动质量Mms、等效顺性Cms、机械力阻Rms共同决定,Qms可由阻抗曲线的测量获得。 Qms =(1/Rms)*SQR(Mms/Cms)=(Fo/Δf)*(Zo/Re) (19) f 为阻抗曲线上阻抗等于SQR(Zo*Re)所对应的两个频率的差值。

相关文档