文档库 最新最全的文档下载
当前位置:文档库 › 细胞衰老是否受基因控制

细胞衰老是否受基因控制

细胞衰老是否受基因控制
细胞衰老是否受基因控制

细胞衰老是否受基因控制

复制了一些,你可以看看、受基因控制,还有环境等——————【细胞衰老的原因,近几十年来,许多学者提出了各种假说,企图来解释衰老的本质和机理,但这些假说尚不能圆满解答.现把目前几种较为流行假说,介绍如下:

(1)错误成灾说近年来这个观点有所发展.orgele,1973年提出了细胞大分子合成错误成灾说.意思是说,细胞里的核酸和蛋白质在生物合成中如果由于某些原因而发生差错,这差错会得到累积而迅速扩大,引起代谢功能大幅度降低,造成衰老. 对这个假说进一步说明如下在细胞里核酸造出蛋白质(酶),因为蛋白质是用核酸分子做样板合成的;蛋白质造出核酸,因为核酸的合成需要酶,例如聚合酶的协助.酶是蛋白质,所以核酸和蛋白质在合成中形成一种循环,相互联系,相互协作,相互制约.如果在一次循环中,出现一个错误,这错误会在下一次循环中得到扩大.这样,错误在几次循环中会很快扩大而成灾,使细胞功能大大降低,造成衰老. 最近,在人工培养的人的成纤维细胞工作的基础上,从上述细胞中提取dna聚合酶,利用这种酶进行dna复制实验,结果发现上述成纤维细胞经过40次到56次的继续培养,其dna聚合酶的活性显著地降低了,大约降低到只有正常细胞的1/5活性.从此以后,这些细胞就迅速衰老而死亡了. 上述研究者还做了另一个实验,他们从年老的

(即经过很多次继代培养的)和年轻的(只经过若干次继代培养的)上述成纤维细胞分别提取出dna聚合酶,用人工合成dna 分子作样板,进行离体DNA复制实验,得到一些有趣的结果,人工合成的DNA分子有意搞成只含碱基腺嘌呤(a)和胸腺嘧啶(t),而不含有胞嘧啶(c)和鸟嘌呤(g),按照核酸分子碱基配对的原理,在DNA合成中,a只能和t配对,t只能和a配对.因此在上述离体实验中,如果DNA聚合酶能忠实执行任务,那么所含成的DNA分子中就不能含有c或g的碱基.如果所提出的dna聚合酶在帮助合成DNA分子中,用了一个c或一个g去合成DNA,就算是一次错误.实验结果发现,从经过56次继代培养的上述衰老细胞中提取出来的DNA聚合酶,在合成DNA分子中,比从年轻细胞中取出来的DNA聚合酶要多犯好几次错误.这表示衰老细胞中的DNA聚合酶大概在成分上有一些改变,不能忠实地进行工作,累积的错误多. 上面所叙述的这个细胞大分子合成错误成灾说似乎比较有根据的理论,但仍然有人持怀疑态度.

(2)外部干扰说此说认为细胞衰老既不是细胞内出现差错,也不是由蛋白质异常引起,而是由外源性干扰造成的.例如,自由基受外源性干扰,就会引起衰老.自由基是失去电子的分子.在体内,它是由空气污染、辐射以及正常代谢过程中产生的.它们对许多生物功能非常重要,认为没有自由基的生物就不能生存.自由基与其它分子作用得到电子,其中一些随机作用,对

细胞和机体组织十分有害.这些效应的积累便导致了人体的衰老.自由基是衰老的根源.衰老的原因99%是由此造成的.自由基造成的变化或作用的积累不断增加,引起了衰老,这种自由基可能专门破坏细胞合成和修复dna的能力,尤其是在线粒体内. 对这一理论也有一些不同看法,首先,大多数自由基存在的时间很短;其次,机体内具有抗氧化剂来对抗自由基的防御能力,如过氧化物歧化酶和维生素e.增加食物中的维生素e 并不能抵抗自由基的有害作用,相反,它会使机体减少其他抗氧化剂的产生.实验室培养的正常细胞,当给予维生素e后,其生长和分裂最终仍不能连续超过50次这个限度.尽管某些疾病与自由基和抗氧化剂有关,但仍无确切证据证明它们与衰老之间有联系.

(3)发育程序衰老说按这一理论,衰老在最早期的发育过程中就开始了,并且在整个一生中都以这一规律的方式发育.生物种类都有其独立而限定的最大寿命,这一事实支持了这个理论.人类寿命大约是115年. 有的研究认为,控制生长发育的基因在各个时期均可开启或关闭,有些在生命晚期发挥作用的基因可能控制着衰老. 衰老变化只是一种调节某一动物从卵受精到性成熟的这一发育阶段的正常遗传信号的继续.甚至可能存在有衰老基因”,使按顺序方式进行的生化途径减慢或终止,并引起预期的衰老变化表现.头发灰白、绝经和运动的减退是与衰老有关的几种事件,这些事件是由遗传决定的.

不同类型的细胞表现的时间不同.因此,衰老的根源可能是衰老速度最快,影响最大的几种关键细胞的缺陷. 所谓的衰老基因的功能,与在胚胎发育过程中大规模发生的细胞正常功能的衰退和死亡相类似.例如,人在胚胎发育过程中,手指之间最初是由蹼状皮肤连接的,随着发育,皮肤细胞逐步死亡,手指就分开了. 可以想象得到,相同的过程在生命的全部过程中不断地进行.在不同的组织中有不同的速度,最后引起正常的衰老变化,从而使身体易于患病. 不少科学家认为,衰老是由机体内的器官所控制.几种假说都提到控制机体的中心——大脑,免疫系统和神经内分泌系统——这些特殊的器官和系统决定着发育和衰老的速度.当机体衰老后,免疫系统抵御疾病传染的能力显著下降,肺炎病毒对青年人威胁甚微,但却常使老年人丧命.老年人得癌症的比青年人多.就是因为免疫系统功能减弱,不能识别和消灭变异的细胞所致. 生物老年医学是一相当新的领域,还缺乏基本的资料,上面所介绍的几种假说,将来可能会发现是错误的,或至少存在着片面性.因为,引起衰老的原因,也许不只是单独一个因素,很可能,它是包括许多综合的因素在内,是许多因素相互作用的结果】.

抗衰老Klotho基因的功能及与人类疾病的关系

抗衰老Klotho基因的功能及与人类疾病的 关系 【关键词】 Klotho基因;基因表达;基因变异;衰老性疾病 抗衰老基因Klotho(KL)是1997年研究自发型高血压时发现的与衰老有关的基因〔1〕。该基因突变小鼠会过早出现与人类衰老相似的多种表现,并使其寿命缩短,而通过转基因使KL过度表达会减轻小鼠的衰老症状,延长寿命。研究显示KL基因缺陷鼠的寿命仅为野生鼠的5%~6%〔2〕,而其过度表达会使小鼠的寿命延长(雌性和雄性分别延长20%和30%)〔3〕。但是,KL基因的基础研究与人类衰老性疾病关系的研究较少。 1 KL的生物学特征 人和小鼠的KL基因定位于染色体13q12区域,大鼠定位于12q12区域,在KL基因结构中,其mRNA存在一个可变剪切位点,因而KL 能表达膜型和分泌型两种蛋白。免疫组化和PT PCR分析表明:KL 基因高表达仅限于肾脏和脑脉络膜〔4〕,但KL蛋白可对其他组织和细胞发挥作用,提示KL蛋白具有激素样作用〔5〕。 2 KL蛋白的功能

2.1 调节体内钙磷水平 体内钙、磷平衡通过3个器官系统的共同作用而维持:消化道、肾脏和骨骼。KL基因缺陷小鼠在衰老同时,往往伴发高钙血症和高磷酸盐血症,提示KL与钙磷代谢有密切的联系。成纤维生长因子23(FGF23)是一种来源于骨骼的激素,作用于肾脏,抑制磷的重吸收和维生素D(VD)的生物合成,增加尿磷排泄和抑制血清1,25(OH)2D3的水平〔6〕。研究证明,肾脏表达的KL蛋白其胞外区可与多种FGF 受体直接结合,在FGF23的信号传导过程中发挥协同受体的作用〔7〕。KL FGF23信号传导刺激增生并且阻止VD介导的凋亡〔8〕。因而,KL和FGF23可能以共同的信号通路调节体内的电解质平衡。KL缺陷大鼠会阻断KL FGF23的信号传导通路,导致体内1,25(OH)2D3产生增多〔1〕,血清1,25(OH)2D3高水平促进钙和磷在小肠的重吸收,导致高钙血和高磷血症〔2〕。1,25(OH)2D3增多可能是KL突变鼠产生衰老症状的主要原因。通过饮食控制磷和VD的摄入或剔除1a 水解酶基因〔编码1,25(OH)2D3合成酶〕可以减轻几乎所有的衰老表型,延长寿命〔4〕。血液中钙水平升高易导致血管和软组织产生异位钙化,这可能是KL缺陷鼠和FGF23敲除鼠出现几乎相同的生理和生化表现的原因。另一方面,膜型KL蛋白可通过增加肾远曲小管上皮细胞膜瞬时受体电位离子通道5(TRPV5)的表达,提高钙在肾脏的重吸收。TRPV5是表达于远曲小管上皮细胞的上皮性钙通道(钙通过此通道进行跨细胞重吸收),参与维持体内钙平衡〔9〕。KL蛋白的胞外区

高考生物大二轮复习 专题突破练18 基因工程和细胞工程(含解析)

专题突破练18 基因工程和细胞工程 1.胰岛素是人体内唯一一种能降低血糖的激素,对于糖尿病的治疗具有重要的意义,胰岛素基因在人体细胞内经转录、翻译形成的胰岛素原需要经过内质网、高尔基体的加工才能形成胰岛素。如图是运用基因工程技术制备胰岛素的部分流程图,据图回答下列有关问题。 (1)①过程表示从(填“胰岛A细胞”“胰岛B细胞”或“胰岛A细胞和胰岛B细胞”)中获取胰岛素基因相应mRNA,原因 是。 (2)②过程需要的酶是,得到的胰岛素基因可以通过 (填技术的中文名称)进行扩增,该技术除可以将目的基因大量扩增外,还可以用于从DNA分子上获取目的基因,至少需要循环次,才能得到目的基因。 (3)③过程需要用到的酶是,A除含有胰岛素基因外,还应 有,以便进行目的基因的鉴定与选择。 (4)④过程需用处理大肠杆菌,使其成为,以便从周围环境中吸收DNA分子。为了检测胰岛素基因是否在受体大肠杆菌中成功表达,可采用 技术。 (5)通过图示过程得到的是(填“胰岛素”或“胰岛素原”),原因 是 。 2.研究人员将乙肝病毒的表面抗原(HBsAg)基因转入番茄幼叶细胞中,获得能产生乙肝疫苗的番茄植株。回答下列问题。 (1)利用PCR技术扩增HBsAg基因时,目的基因DNA受热变性后的单链与引物互补序列结合,在 酶的作用下进行延伸。设计的引物含有ClaⅠ酶切位点和SacⅠ酶切位点,用作载体的DNA分子(填“含有”或“不含有”)ClaⅠ酶切位点和SacⅠ酶切位点,理由 是。

(2)将HBsAg基因导入番茄幼叶细胞最常用的方法是,该方法可以使目的基因插入到细胞中的DNA上。 (3)可利用植物组织培养技术获得转基因番茄植株,该技术利用的原理 是。 (4)通过电镜对番茄果实提取物进行观察,发现了HBsAg颗粒,说明目的基因导入受体细胞 后。用获得的转基因番茄果实饲喂小鼠,如果在小鼠血清中检测到,说明转基因植物疫苗可口服。3.利用雄性不育系生产杂种一代较为经济、有效,该方法在水稻、玉米、油菜等作物中应用广泛。芥菜是我国著名的蔬菜之一,育种工作者运用基因工程将烟草TA29花药绒毡层特异启动子驱动下的核糖核酸酶Barnase基因导入芥菜细胞中,获得彻底败育的雄性不育植株。请回答下列问题。(1)基因工程中获取Barnase基因的方法有、利用PCR技术扩增和人工合成。利用PCR扩增目的基因时,一般要经历三十多次循环,每次循环可以分为变性、 和三步。 (2)将获取的Barnase基因转入芥菜细胞的常用方法为,Barnase基因需插入到Ti质粒的上,该重组质粒还必须含有,用于鉴别受体细胞中是否含有目的基因。 (3)检测Barnase基因在转基因芥菜植株中是否转录出mRNA的方法 是,请简要写出该方法的实验思 路: 。 4.转基因抗虫棉的培育过程如图所示。苏云金芽孢杆菌中的抗虫基因(阴影表示)与质粒上有 PstⅠ、SmaⅠ、Eco RⅠ、ApaⅠ等限制酶的切割位点(箭头所示),质粒上还有唯一标记基因——抗卡那霉素基因(阴影表示)。有人通过实验,获得的农杆菌细胞有的未被转化,有的被转化。被转化的农杆菌细胞有三种,分别是含有环状目的基因、含有质粒载体、含有插入了目的基因的重组质粒的农杆菌。请据此回答下列问题。 (1)构建含抗虫基因的重组质粒A时,应选用的限制酶是,对进行切割。

人教版高中生物必修一第6章 《细胞的生命历程》单元测试题(解析版)

第6章《细胞的生命历程》单元测试题 一、单选题(每小题只有一个正确答案) 1.下列发生了细胞分化且能体现体细胞全能性的生物学过程是() A.玉米种子萌发长成新植株 B.小鼠骨髓造血干细胞形成各种血细胞 C.小麦花粉经离体培养发育成单倍体植株 D.胡萝卜韧皮部细胞经组织培养发育成完整植株 2.下图是某二倍体动物的几个细胞分裂示意图,据图判断错误的是() A.若按分裂的先后顺序排列,应为②→②→②→② B.图②到②构成了一个完整的细胞周期 C.正常情况下,图②所示细胞两极染色体形态和数目相同 D.图②所示时期是观察染色体形态和数目的最佳时期 3.在测量琼脂块变色深度的方法中,正确的测量方法是(虚线表示测量位 置)() A.B.C.D. 4.甲图是洋葱根尖生长点连续分裂的细胞在各个时期细胞核内DNA含量 的测定结果,乙图是一组目镜标有5×和16×字样、物镜标有10×和40×字 样的镜头,丙图是某同学在乙图中选用的一组能放大160倍的镜头组合所 观察到的图像。欲将丙图视野中处于甲图e时期的细胞移至视野中央进行 640倍高倍镜观察,正确的镜头组合及操作程序应是() A. (1)×(4);左上方 B. (1)×(3);右下方 C. (2)×(3);右下方

D. (2)×(3);左上方 5.观察风信子根尖细胞的永久装片时,可在视野中找到图中的几种形态的细胞,其细胞内a、b、c的数量关系符合直方图所示的是(a是染色体数,b是染色单体数,c是DNA分子数) () A. ②② B. ②② C. ②② D. ②② 6.下列关于人体造血干细胞及其分化的叙述,正确的是() A.造血干细胞分化形成红细胞、B细胞、T细胞等的过程中,其全能性得到表现 B. B细胞属于高度分化的体细胞,不能再继续分化 C. T细胞和B细胞分化、发育的场所不同 D.在不发生突变的情况下,T细胞和B细胞中的RNA部分相同,部分不相同 7.在造血干细胞分化为B细胞的过程中,细胞内发生相应变化的是() A.蛋白质种类 B.基因种类 C.细胞器种类 D.转运RNA种类 8.关于高等动、植物细胞有丝分裂的叙述,正确的是() A.核分裂时,染色体的活动不同 B.细胞质的分裂方式相同 C.纺锤体的形成和消失方式相同

(整理)凋亡相关的基因和蛋白

细胞凋亡和细胞增殖都是生命的基本现象,是维持体内细胞数量动态平衡的基本措施。在胚胎发育阶段通过细胞凋亡清除多余的和已完成使命的细胞,保证了胚胎的正常发育;在成年阶段通过细胞凋亡清除衰老和病变的细胞,保证了机体的健康。和细胞增殖一样细胞凋亡也是受基因调控的精确过程,在这一节我们就细胞凋亡的分子机理作简要的介绍。 细胞凋亡的途径主要有两条,一条是通过胞外信号激活细胞内的凋亡酶caspase、一条是通过线粒体释放凋亡酶激活因子激活caspase。这些活化的可将细胞内的重要蛋白降解,引起细胞凋亡。 一、凋亡相关的基因和蛋白 细胞凋亡的调控涉及许多基因,包括一些与细胞增殖有关的原癌基因和抑癌基因。其中研究较多的有ICE、Apaf-1、Bcl-2、Fas/APO-1、c-myc、p53、ATM等。 1.Caspase家族 Caspase属于半胱氨酸蛋白酶,相当于线虫中的ced-3,这些蛋白酶是引起细胞凋亡的关键酶,一旦被信号途径激活,能将细胞内的蛋白质降解,使细胞不可逆的走向死亡。它们均有以下特点:①酶活性依赖于半胱氨酸残基的亲核性;②总是在天冬氨酸之后切断底物,所以命名为caspase(cysteine aspartate-specific protease),方便起见本文称之为凋亡酶; ③都是由两大、两小亚基组成的异四聚体,大、小亚基由同一基因编码,前体被切割后产生两个活性亚基。 最早发现人类中与线虫ced-3同源的基因[1]是ICE,即:白介素-1 β转换酶(Interleukin-1 β-converting enzyme)基因,因该酶能将白介素前体切割为活性分子,故名。通过cDNA杂交和查找基因组数据库,在人类细胞中已发现11个ICE同源物[2],分为2个亚族(subgroup):ICE亚族和CED-3家族(图15-6),前者参与炎症反应,后者参与细胞凋亡,又分为两类:一类为执行者(executioner或effector),如caspase-3、6、7,

基因工程和细胞工程

基因工程和细胞工程 一、单选题 1.如图是基因工程主要技术环节的一个基本步骤,这一步骤需要用到的工具是 A. DNA连接酶和解旋酶 B. DNA聚合酶和限制酶 C. 限制酶和DNA连接酶 D. DNA聚合酶和RNA聚合酶 【答案】C 【解析】图示表示基因表达载体的构建过程,该过程首先需要用限制酶切割含有目的基因的外源DNA分子和质粒,其次还需要用DNA连接酶将目的基因和质粒连接形成重组质粒,故选C。 2.下面关于植物细胞工程的叙述,正确的是() A.叶肉细胞已经高度分化,无法表现出全能性 B.叶肉细胞经再分化过程可形成愈伤组织 C.融合植物叶肉细胞时,应先去掉细胞膜 D.叶肉细胞离体培养时,可以表现出全能性 【答案】D 【解析】 试题分析:叶肉细胞已经高度分化,但在体外培养的条件下也能表现出全能性,A错误;叶肉细胞经脱分化过程可形成愈伤组织,B错误;融合植物叶肉细胞时,应先去掉细胞壁,C错误;叶肉细胞离体培养时,可以表现出全能性,形成完整植株,D正确 考点:本题考查植物组织培养的相关知识,要求考生识记植物组织培养的原理、过程、条件等基础知识,掌握植物细胞具有全能性的原因,能结合所学的知识准确判断各选项。 3.如图为白菜一甘蓝杂种植株的培育过程。下列说法正确的是() A.图示白菜一甘蓝植株不能结籽 B.愈伤组织的代谢类型是自养需氧型 C.上述过程中包含着有丝分裂、细胞分化和减数分裂

D.白菜一甘蓝杂种植株具有的性状是基因选择性表达的结果 【答案】D 【解析】白菜和甘蓝都是二倍体,它们的体细胞杂交后培育的“白菜-甘蓝”杂种植株中2个染色体组来自白菜,2个染色体组来自甘蓝,因为“白菜-甘蓝”属于异源四倍体,是可育的,能产籽,故A错误;愈伤组织是一种高度液泡化的呈无定型状态的薄壁细胞,不能进行光合作用产生有机物,因此愈伤组织的代谢类型是异养需氧型,故B错误;上述过程包括去壁、原生质体融合、植物组织培养等过程,其结果是形成“白菜-甘蓝”幼苗,并未发育到性成熟个体,因此整个过程中有有丝分裂和细胞分化,没有减数分裂过程,故C错误;任何性状都是基因选择性表达的结果,故D正确. 【考点定位】植物体细胞杂交的应用 【名师点睛】据图分析,植物细胞壁的成分是纤维素和果胶,去壁所用的是纤维素酶和果胶酶;原生质体融合所用的方法有物理法和化学法.物理法包括离心、振动、电激等,化学法一般是用聚乙二醇;再生细胞壁形成杂种细胞;脱分化形成愈伤组织,再分化形成“白菜一甘蓝”幼苗. 4.下列有关细胞工程的叙述中正确的一项是() A.克隆不是无性繁殖 B.用体细胞克隆动物是通过核移植实现的 C.灭活病毒通过溶解磷脂双分子层诱导动物细胞融合 D.动物细胞培养与植物组织培养所用的培养基成分一样 【答案】B 【解析】 试题分析:克隆属于无性繁殖,故A错误。用体细胞克隆动物必须通过核移植才能实现,故B正确。灭活病毒诱导动物细胞融合不是溶解磷脂双分子层而是通过改变膜脂分子排列实现的,故C错误。动物细胞培养液通常需要加入血清,植物组织培养通常需要加入植物激素,故D错误。 考点:本题考查细胞工程相关知识,意在考察考生对知识点的识记理解掌握程度。5.以下哪种物质不可以用于植物细胞的诱导融合剂() A.PEG B.灭活的病毒 C.离心 D.振动电激 【答案】B 【解析】 试题分析:灭活的病毒是动物细胞工程的诱导剂,不能用于植物细胞工程,故选B。 考点:本题考查植物细胞工程等相关知识,意在考察考生对知识点的识记理解掌握程度。6.下列有关植物细胞工程的叙述,正确的是() A.在植物组织培养过程中,细胞的遗传物质一般都发生改变 B.植物细胞只要在离体状态下即可表现出全能性 C.植物组织培养过程中始终要保持适宜的光照 D.植物耐盐突变体可通过添加适量NaCl 的培养基培养筛选而获得 【答案】D 【解析】 试题分析:在植物组织培养过程中,细胞的遗传物质一般不发生改变,A错误;植物细胞的全能性指离体的组织器官的经过培养,发育成完整个体的潜能,B错误;植物组织培养过程中开始是要避光,C错误;植物耐盐突变体可通过添加适量NaCl 的培养基培养筛选而获得,D正确;答案是D。 考点:本题考查植物细胞工程的相关知识,意在考查考生理解所学知识的要点,把握知识间的内在联系的能力。 7.植物组织培养的过程可以归纳为:①? ?再分化③→④;对此叙述有错误的 ?→ ?→ ?脱分化②? 是( ) A.②→③的再分化过程中,培养基中需要添加细胞分裂素与生长素

高中生物复习总结细胞的分化、衰老、凋亡和癌变

专题17 细胞的分化、衰老、凋亡和癌变 一、基础知识必备 1、细胞分化 (1)概念:在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程。 (2)时间:发生在整个生命进程中,胚胎时期达到最大程度。 (3)结果:形成不同的组织和器官。 (4)特点:稳定性、持久性和普遍性和不可逆性。 (5)实质:基因的选择性表达。 (6)意义:是生物个体发育的基础;使多细胞生物体中的细胞趋向专门化,有利于各种生理功能的高效表达。 2、细胞的全能性 (1)概念 已分化的细胞,仍然具有发育成完整个体的潜能 (2)原因 细胞中含有发育成生物体所需要的全套遗传信息。 (3)条件 离体、一定的营养物质(无机盐、维生素、氨基酸等)、激素和适宜的外界条件(适宜的温度、pH 等)。 3、衰老细胞的特征 4、细胞的凋亡 (1)概念:由基因所决定的细胞自动结束生命的过程。 (2)原因:受到严格的由遗传机制决定的程序性调控。 (3)类型{ 个体发育中细胞的编程性死亡成熟个体中细胞的自然更新被病原体感染的细胞的清除

(4)意义{ 保证多细胞生物体完成正常发育维持内部环境的稳定抵御外界各种因素的干扰 5、细胞的癌变 (1)概念:由于致癌因子的作用,细胞中的遗传物质发生变化,变成了不受机体控制的、连续进行分裂的恶性增殖细胞。 (2)主要特征 (3)致癌因子:物理致癌因子、化学致癌因子、病毒致癌因子。 (4)原癌基因主要负责调节细胞周期,控制细胞生长和分裂的进程;抑癌基因主要阻止细胞不正常的增殖。 二、通关秘籍 1、细胞分化使细胞类型增多,数目不变;细胞分裂使细胞数目增多,但细胞类型不变;细胞分裂是细胞分化的基础。细胞分化的本质是基因的选择性表达,多细胞生物不同类型的细胞中mRNA 和蛋白质种类不同,但体细胞DNA 都相同,所以细胞分化过程中细胞内的遗传物质不改变。 2、细胞衰老贯穿于整个个体发育过程中,多细胞生物体内的细胞总是不断地更新,总有一部分细胞处于衰老或走向死亡的状态。 3、细胞凋亡是正常的生理现象,对生物体生命活动具有积极意义。 4、细胞坏死与细胞凋亡不同,细胞坏死是细胞的非正常死亡。 5、不是只有癌细胞中才存在原癌基因,正常细胞中也存在原癌基因。 6、原癌基因和抑癌基因不是简单的拮抗关系,二者共同对细胞的生长和分化起着调节作用。 对点训练 1、细胞生长,其表面积增大,导致细胞的物质交换效率升高 ( ) 【解析】随着细胞生长,细胞体积增大时,细胞表面积/体积减小,相对表面积减少,导致物质运输速率下降,错误。

细胞凋亡与疾病

细胞凋亡与疾病 一、单项选择题 .细胞增殖周期的顺序依次是() A G1→M→G2→S B G1→S→G2→M C M→G1→G2→S D S→G1→M→G2 3.关于p53基因下列哪项说法不正确() A.p53有“分子警察”的美誉 B.p53蛋白负责检查DNA是否损伤 C.p53蛋白可启动DNA修复机制 D.p53基因突变后可促进细胞凋亡 [答案] D 8.关于细胞凋亡下列说法哪项不正确() A.细胞凋亡是由内外因素触发预存的的死亡程序的过程B.其生化特点是有新的蛋白质合成 C.其形态学变化是细胞结构的全面溶解 D.凋亡过程受基因调控 [答案] C 9.清除体内受损、突变、衰老细胞的主要方式是() A.细胞坏死 B.免疫调理 C.肝脏处理 D.细胞凋亡 [答案] D

10.凋亡细胞的清除是指已经凋亡的细胞() A.经肾脏排出体外 B.经肝脏灭活 C.被邻近的吞噬细胞吞噬 D.经水合酶水解 [答案] C 12.细胞凋亡的主要执行者是() A.核酸内切酶 B.溶酶体酶 C.巨噬细胞 D.蛋白激酶C [答案] A 13.凋亡细胞特征性的形态学改变是() A.溶酶体破裂 B.染色质边集 C.形成凋亡小体 D.细胞肿胀 [答案] C 15.凋亡蛋白酶的主要作用是() A.执行染色质DNA的切割任务 B.灭活细胞凋亡的抑制物 C.抑制细胞生长因子 D.激活内源性核酸内切酶 [答案] B 16.含锌药物可用于治疗某些凋亡过度的疾病,其理由是() A.Zn2+可防止线粒体Δψm下降

B.Zn2+阻止细胞内钙超载 C.Zn2+可抑制核酸内切酶的活性 D.Zn2+可促进细胞的增殖 [答案] C 17. 人免疫缺陷病毒(HIV)感染引起的AIDS关键的发病机制是() A.CD4+淋巴细胞选择性增生,相关免疫反应功能增强 B.CD4+淋巴细胞选择性破坏,相关免疫缺陷 C.Fas基因表达下调,T淋巴细胞死亡增加 D.Fas基因表达下调,B淋巴细胞增殖过度 [答案] B 18.目前研究表明,AD造成神经原丧失的主要机制是() A.细胞坏死 B.乙酰胆碱合成减少 C.神经递质分布异常 D.细胞凋亡 [答案] D 19.细胞凋亡不足与过度并存的疾病是() A.心力衰竭 B.动脉粥样硬化 C.胰岛素依赖性糖尿病 D.肝癌 [答案] B 20.与细胞凋亡过度有关的疾病是() A.帕金森氏病 B.结肠癌 C.肺癌

细胞凋亡及相关因素的研究进展

细胞凋亡及相关因素的研究进展 论文摘要:细胞凋亡(Apoptosis)是一种生理性死亡Physiogicalcell death,PCD),是细胞对内外信息刺激的 应答反应,[1]它与细胞的生长、分化一样.属于最基本的 细胞学事件或过程.它决定着生物体的基本特征和转归.是胚胎发生和个体发育中清除细胞以维持细胞数目正常的调 节机制。 [2]当组织细胞发生异常调亡时,即可引起疾病的发生。一般来讲.凋亡过多会引起退行性变或早衰,调亡过少.易诱发肿瘤。[3] 因此,细胞凋亡近年来引起生命科学研究领域的广泛关注。本文仅就细胞调亡的概念及相关因素作一简要的概述。 【Summary】 Apoptosis is a kind of Physiogicalcell death and a reaction of cells to around informations stimulate .[1] It is same as cells’ growth and differentiation which belong to the basic cell subject’s incident or process.it decide living things’essential character- Istics ,and used to clear away cells to keep it rgular number’s regulation mechanism in the procees of embryo occur and individual growth.[2]there will couse ill- Ness when the organization cells come into being particularly apoptosis .Generally speaking ,more cell

2018年高考生物二轮复习专题突破训练15基因工程与细胞工程有答案

专题突破练15 基因工程与细胞工程 1.(2017东北三省三校一联,38)马铃薯是重要的经济作物,人类在(马铃薯的)基因育种方面取得丰硕成果。 (1)马铃薯是双子叶植物,常用法将目的基因导入马铃薯体细胞中。构建好的基因表达载体包括目的基因、、、、复制原点五部分。 (2)马铃薯得病会导致产量下降。基因工程中常用的抗病基因为(写一种即可)。 (3)科学家还培育出抗除草剂的转基因马铃薯,主要从两个方面进行设计: ①修饰除草剂作用的靶蛋白,使其对除草剂,或使靶蛋白过量表达,植物吸收除草剂后仍能正常代谢。 ②引入酶或酶系统,在除草剂发生作用前。 (4)将目的基因导入受体细胞后,还需对转基因植物进行。 答案 (1)土壤农杆菌转化启动子终止子标记基因(2)病毒外壳蛋白基因、病毒的复制酶基因、几丁质酶基因和抗毒素合成基因(3)①不敏感②被分解(4)目的基因的检测与鉴定 解析 (1)将目的基因导入植物细胞的常用方法是土壤农杆菌转化法。构建好的基因表达载体包括目的基因、启动子、终止子、标记基因、复制原点等。(2)基因工程中常用的抗病基因有病毒外壳蛋白基因、病毒的复制酶基因、几丁质酶基因和抗毒素合成基因(写一种即可)。(3)①为了避免马铃薯对除草剂敏感,可以修饰除草剂作用的靶蛋白;或者增加马铃薯中靶蛋白的表达量,这样植物吸收除草剂后仍能正常代谢。②还可以通过基因工程引入能够快速分解除草剂的酶或酶系统,从而将除草剂在发生作用前分解。(4)将目的基因导入受体细胞后,需检测目的基因是否导入受体细胞。即使目的基因导入了受体细胞,也不一定能够表达,故一定要在受体生物中检测出目的基因的产物——相关蛋白质,即要进行目的基因的鉴定。 2.(2017湖北武汉一模,38)基因敲除是应用DNA重组原理发展起来的一门新兴技术。“基因敲除细胞”的构建过程如下: 第一步,从小鼠囊胚中分离出胚胎干细胞(ES),在培养基中扩增。这些细胞中需要改造的基因称为“靶基因”; 第二步,构建基因表达载体。取与靶基因序列同源的目的基因(同源臂),在同源臂上接入neo R(新霉素抵抗基因)等。由于同源臂与靶基因的DNA正好配对,所以能像“准星”一样,将表达载体准确地带到靶基因的位置; 第三步,将表达载体导入胚胎干细胞,并与其内靶基因同源重组,完成胚胎干细胞的基因改造; 第四步,基因改造后的胚胎干细胞增殖、筛选。基本原理如图所示。 请根据上述资料,回答下列问题。 (1)实施基因工程的核心步骤是,基因表达载体中的是位于基因首端的有特殊结构的DNA片段;在构建的过程中所需要的工具酶是。 (2)如果要获得一只含目的基因的小鼠,则选择的受体细胞通常是,原因是。 (3)上述资料中neo R基因的作用最可能是。为了鉴定目的基因是否成功表达,

细胞凋亡的生物学意义与其相关基因

第一节细胞凋亡的生物学意义及其相关基因 对于一个多细胞生物来说,要维持完整性和保持平衡性,凋亡是一个非常重要的生物学过程。多细胞生物的诞生、生长、发育、存活以及死亡,无一不伴随着细胞凋亡过程。 关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是 Hayflick 界限。癌细胞或培养的细胞系是不正常细胞,其染色体数目或形态已经不同于原先的细胞细胞的增殖能力与供体年龄有关。物种寿命与培养细胞寿命之间存在着一定的关系。 一、细胞衰老 二倍体细胞的衰老是由细胞本身决定的。决定细胞衰老的因素在细胞内部,而不是外部的环境;是细胞核而不是细胞质决定了细胞衰老。在机体内,细胞的衰老和死亡是常见的现象,甚至在个体发育的早期也会发生;衰老动物体内,细胞分裂速度显著减慢,其原因主要是G1期明显延长;衰老个体内的环境因素影响了细胞的增殖和衰老; 二、衰老细胞结构的变化 细胞核的变化: 体外培养的二倍体细胞,细胞核随着细胞分裂次数的增加不断增大;细胞核的核膜内折(invagination)、染色质固缩化。 2. 内质网的变化: 衰老动物内质网成分弥散性地分散于核周胞质中,粗面内质网的总量似乎是减少了。 3.线粒体的变化: 通常细胞中线粒体的数量随龄减少,而其体积则随龄增大;致密体的生成:脂褐质,老年色素等。 4.膜系统的变化: 衰老的细胞,其膜流动性降低、韧性减小。衰老细胞间间隙连接减少;细胞膜

内(P面)颗粒的分布也发生变化(减少)三、细胞衰老的分子机理氧化性损伤学说:代谢过程中产生的活性氧基团或分子(ROS---O2-, OH-, H2O2),引发的氧化性损伤的积累,最终导致衰老。 端粒与衰老:发现端粒长度确实与衰老有着密切的关系,提出细胞衰老的“有丝分裂钟”学说(Harley,1990)。 rDNA与衰老: 酵母染色体外rDNA 环的积累,导致细胞衰老。 沉默信息调节蛋白复合物与衰老:复合物存在于异染色质区,其作用在于阻断所在位点DNA转录。. 细胞衰老的分子机理:基因和WRN基因与衰老:SGS1基因和WRN基因同源,编码解旋酶;酵母sgs1突变体寿命明显短于野生型(平均代:代); wrn突变引发早老症. 2.发育程序与衰老: 线粒体DNA与衰老: Sen-DNA(80年代);mtDNA突变积累与细胞衰老有关 (一)细胞死亡的方式死亡是生命的普遍现象,但细胞死亡并非与机体死亡同步。正常的组织中,经常发生“正常”的细胞死亡,它是维持组织机能和形态所必需的。 细胞死亡的方式通常有3种: ①细胞坏死(necrosis) ②细胞凋亡(apoptosis) ③细胞程序性死亡(programmed cell death,PCD) 影响因素:化学因素(如强酸、强碱、有毒物质)、物理因素(如热、辐射)、生物因素(如病原体)、坏死细胞的形态改变。 病理过程 酶性消化:参与此过程的酶,如来源于死亡细胞本身的溶酶体,则称为细胞自溶(autolysis);若来源于浸润坏死组织内白细胞溶酶体,则为异溶(heterolysis)蛋白变性 坏死细胞的形态改变

常见的细胞凋亡诱导剂和抑制剂

表1 常见的细胞凋亡诱导剂和抑制剂 诱导剂与抑制剂靶细胞诱导剂 激素地塞米松T细胞 细胞因子IL—2 胸腺细胞 TGF—β肝细胞、上皮细胞、慢性B淋巴瘤细胞 IL—10 髓样白血病细胞 IFN—Υ前B细胞、T细胞抗体抗IgM抗体B细胞 抗IgD抗体B细胞 抗HLA—II抗体静止B细胞 超抗原SPE CD4+T细胞 胞内信号分子调节 剂 放线菌酮T细胞 PKC激活剂胸腺细胞 其他DNA拓扑异构酶抑制 剂 白血病细胞放射线淋巴样细胞 抑制剂 细胞因子IL—2 T H1细胞 IL—4 T H2细胞 IL—10 B、T细胞 IFN—ΥT细胞 IL—4 B细胞 黏附分子LFA—1、ICAM—1 B细胞 VLA—4、VCAM—1 B细胞 胞内信号分子调节 剂 PKC激活剂T、B细胞 细胞凋亡(apoptosis)是一种由基因控制的细胞自主死亡方式。1972年,英国教授Kerr首先提出凋亡的概念。近十余年来,细胞凋亡现象引起了广泛重视,有关的研究工作取得重要进展,并成为医学生物学各学科共同关注的极为活跃的研究领域。 细胞凋亡与组织器官的发育、肌体正常生理活动的维持、某些疾病的发生以及细胞恶变等过程均有密切的关系。

1.形态学变化: 细胞凋亡的形态变化大致可分为三个阶段: 1)胞体缩小,与周围细胞失去联系,细胞器变致密,核体积缩小,核仁消失,染色质浓集于核膜内表面下,形成新月形致密小斑块。 2)染色体断裂,核膜与细胞膜均内陷,包裹胞内成分(胞浆、细胞器、碎裂的染色质及核膜)形成“泡”样结构,此为“凋亡小体”。最后,整个细胞均裂解成这种“小体”。 3)凋亡小体被邻近的巨噬细胞、上皮细胞等识别、吞噬、消化。 上述三个阶段维持时间很短,通常在几分钟、十几分钟内即可完成。 2.细胞凋亡的生化改变: 1)胞内Ca2+浓度增高 所有细胞凋亡过程中均出现胞内Ca2+浓度增高,这可能是Ca2+内流所致。 2)内源性核酸内切酶激活 细胞发生凋亡时,由于内源性核酸内切酶被激活,DNA被从核小体连接处水解,形成180—200bp 或其整倍数的片段。 3)生物大分子的合成 凋亡过程的发生一般依赖于新的RNA和蛋白质的合成,如在激素、射线作用下,或由于去除生长因子等所引起的细胞凋亡中,情况均为如此。 常用的检测方法: 1.形态学方法 借助普通光学显微镜、荧光显微镜或透射电镜可对组织切片、切片涂片或细胞悬液进行形态学观察,凋亡细胞在组织中散在分布,表现为核致密浓染、核碎裂等。该方法简便、经济,可定性、定位。但在组织成分及细胞死亡类型复杂的情况下,难以判断结果,也无法定量。 2.电泳法 对凋亡细胞的基因组DNA进行琼脂凝胶电泳,由于存在180—200bp或其整倍数的片段,故电泳结果可见“梯状”(ladder)DNA条带。该法简便,可定性及定量,但无法显示组织细胞形态结构,也不能反映凋亡细胞与周围组织的关系。

细胞衰老是否受基因控制

细胞衰老是否受基因控制 复制了一些,你可以看看、受基因控制,还有环境等——————【细胞衰老的原因,近几十年来,许多学者提出了各种假说,企图来解释衰老的本质和机理,但这些假说尚不能圆满解答.现把目前几种较为流行假说,介绍如下: (1)错误成灾说近年来这个观点有所发展.orgele,1973年提出了细胞大分子合成错误成灾说.意思是说,细胞里的核酸和蛋白质在生物合成中如果由于某些原因而发生差错,这差错会得到累积而迅速扩大,引起代谢功能大幅度降低,造成衰老. 对这个假说进一步说明如下在细胞里核酸造出蛋白质(酶),因为蛋白质是用核酸分子做样板合成的;蛋白质造出核酸,因为核酸的合成需要酶,例如聚合酶的协助.酶是蛋白质,所以核酸和蛋白质在合成中形成一种循环,相互联系,相互协作,相互制约.如果在一次循环中,出现一个错误,这错误会在下一次循环中得到扩大.这样,错误在几次循环中会很快扩大而成灾,使细胞功能大大降低,造成衰老. 最近,在人工培养的人的成纤维细胞工作的基础上,从上述细胞中提取dna聚合酶,利用这种酶进行dna复制实验,结果发现上述成纤维细胞经过40次到56次的继续培养,其dna聚合酶的活性显著地降低了,大约降低到只有正常细胞的1/5活性.从此以后,这些细胞就迅速衰老而死亡了. 上述研究者还做了另一个实验,他们从年老的

(即经过很多次继代培养的)和年轻的(只经过若干次继代培养的)上述成纤维细胞分别提取出dna聚合酶,用人工合成dna 分子作样板,进行离体DNA复制实验,得到一些有趣的结果,人工合成的DNA分子有意搞成只含碱基腺嘌呤(a)和胸腺嘧啶(t),而不含有胞嘧啶(c)和鸟嘌呤(g),按照核酸分子碱基配对的原理,在DNA合成中,a只能和t配对,t只能和a配对.因此在上述离体实验中,如果DNA聚合酶能忠实执行任务,那么所含成的DNA分子中就不能含有c或g的碱基.如果所提出的dna聚合酶在帮助合成DNA分子中,用了一个c或一个g去合成DNA,就算是一次错误.实验结果发现,从经过56次继代培养的上述衰老细胞中提取出来的DNA聚合酶,在合成DNA分子中,比从年轻细胞中取出来的DNA聚合酶要多犯好几次错误.这表示衰老细胞中的DNA聚合酶大概在成分上有一些改变,不能忠实地进行工作,累积的错误多. 上面所叙述的这个细胞大分子合成错误成灾说似乎比较有根据的理论,但仍然有人持怀疑态度. (2)外部干扰说此说认为细胞衰老既不是细胞内出现差错,也不是由蛋白质异常引起,而是由外源性干扰造成的.例如,自由基受外源性干扰,就会引起衰老.自由基是失去电子的分子.在体内,它是由空气污染、辐射以及正常代谢过程中产生的.它们对许多生物功能非常重要,认为没有自由基的生物就不能生存.自由基与其它分子作用得到电子,其中一些随机作用,对

2018_2019学年高中生物每日一题细胞凋亡和细胞坏死的区别含解析新人教版必修1

细胞凋亡和细胞坏死的区别 高考频度:★★★☆☆难易程度:★★☆☆☆ 脑缺氧、心缺血、急性胰腺炎、动脉粥样硬化等疾病都是由细胞坏死引起的。近日,厦门大 学生命科学学院韩家淮教授课题组的一项研究表明,存在于人体内的一种名为RIP3的蛋白 激酶,能够将细胞凋亡转换成细胞坏死,通过调控这种酶的合成,就可以调控细胞的死亡方式。下列有关叙述错误的是 A.从以上分析可知细胞坏死过程中存在基因的选择性表达 B.—些细胞的坏死对人体也有益处,比如被病原体感染的细胞在免疫系统的作用下死亡 C.抑制RIP3的活性,能在一定程度上对急性胰腺炎起治疗、防御的作用 D.在人体的癌细胞中,也可能存在控制RIP3合成的基因 【参考答案】B 【试藍翼祈】由细运碍亡特銮弟鈿迸环芒寸虽该追越白基医逵淫土爰注'A正聽:由越丹熄思繆不出譎縫琢死痔身徳有莖,B 樂唳;抑割该薛的洁席.则毅別条锻坏死,C正碍:艳籍踰胞前全寵惟,号令鑰無占的基因鑫是一縊的尸D正菇’ ■ ”推荐 -------------- ” 1有关细胞凋亡和细胞坏死的叙述正确的是 A.细胞凋亡的速率会因其功能不同而不同 B.被病毒侵染的细胞的清除属于细胞坏死 C.细胞凋亡和细胞坏死都有利于个体的生长发育 D.细胞凋亡和细胞坏死都受环境影响较大,机体难以控制 2.下列关于细胞凋亡和细胞坏死的叙述中,错误的是 A.细胞凋亡是一种自然的生理过程 B.细胞坏死是一种病理性变化

C.被病原体感染的细胞的清除是通过细胞坏死完成的 D.蝌蚪尾的消失,是由基因决定的细胞自动结束生命的过程 3?下列关于细胞凋亡和细胞坏死的叙述中,错误的一项是 A.细胞凋亡是主动的,细胞坏死是被动的 B.细胞凋亡是生理性的,细胞坏死是病理性的 C.细胞凋亡是基因调控的,细胞坏死是外界因素引起的 D.细胞凋亡是急性的,细胞坏死是慢性的 4?细胞凋亡也称为细胞编程性死亡,其大致过程如图所示。下列有关叙述错误的是 A.细胞皱缩、染色质固缩表明细胞处于衰老状态 B.图示过程只发生在胚胎发育过程中 C.吞噬细胞吞噬凋亡小体与细胞膜的流动性密切相关 D.细胞凋亡是由遗传物质控制的,与细胞坏死有明显区别 5?香烟中含有大量的有害物质,如尼古丁等会造成吸烟者肺部细胞的死亡。这种细胞的死亡过程属于 A.生理性死亡 B.正常衰亡 C.细胞坏死 D.细胞凋亡 1.【答案】A 【解析】功能不同的细胞凋亡速率不同,如神经细胞可能一生都不凋亡,口腔上皮细胞 则在短时间内发生凋亡,A正确;被病毒侵染的细胞的清除属于细胞凋亡,B错误;细胞凋亡是指由基因控制的细胞自动结束生命的过程,有利于个体的生长发育;细胞坏死是 1E常细 胞 细胞皱缩细胞励SL吞噬细胞 核染色质分解战多个包袅、呑噬 凋亡小体凋亡小体

细胞凋亡与疾病

细胞凋亡与疾病 一、基本要求 (一)掌握细胞凋亡的概念、生物学意义 (二)掌握细胞凋亡的发生机制 (三)熟悉细胞凋亡的过程及细胞凋亡与坏死的差别 (四)熟悉细胞凋亡的主要变化 (五)熟悉细胞凋亡的调控 (六)了解细胞凋亡与常见疾病或病理过程的关系 (七)了解细胞凋亡在疾病防治中的意义 二、知识点纲要 一、基本概念 (一)细胞凋亡的定义:由体内外因素触发细胞内预存的死亡程序而导致的细胞自杀过程称为细胞凋亡(apoptosis),也称为程序性细胞死亡(programmed cell death, PCD)。 (二)细胞凋亡的基本过程 1.凋亡信号转导 2.凋亡基因激活 3.细胞凋亡的执行 4.凋亡细胞的清除 (三)凋亡时细胞的主要变化 1.细胞凋亡的形态学改变:胞膜空泡化,细胞固缩,染色质边集,凋亡小体。 2.细胞凋亡的生化改变:DNA“梯”状条带,内源性核酸内切酶激活,caspases(凋亡蛋白酶)激活。 (四)细胞凋亡的调控 1.细胞凋亡相关因素 细胞凋亡相关因素分诱导性因素和抑制性因素两大类 (1) 诱导性因素:激素和生长因子失衡,理化因素,免疫性因素,微生物等 (2) 抑制性因素: 某些激素(ACTH、睾丸酮)或细胞因子(IL-2,神经生长因子等) 的去除,某些二价金属阳离子如:Zn2+,药物如: 苯巴比妥、半胱氨酸蛋白酶抑制剂,病毒如:EB病毒,牛痘病毒CrmA等及中性氨基酸具有抑制细胞凋亡的作用。 2. 细胞凋亡信号的转导 (1)特点:凋亡信号转导系统是连接凋亡诱导因素与核DNA片段化断裂及细胞结构蛋白降解的中间环节。这个系统的特点是:①多样性;②偶联性;③同一性;④)多途性。 (2)研究较多的信号转导系统有:①胞内Ca2+信号系统;②cAMP/ PKA信号系统;③) Fas蛋白/Fas配体信号系统;④神经酰胺信号系统;⑤二酰甘油/蛋白激酶C信号系统;⑥酪氨酸蛋白激酶信号系统。 (五)凋亡相关基因 细胞凋亡相关基因多达数十种,根据功能的不同可将其分为三类:抑制凋亡基因(EIB、I AP、Bcl-2),促进凋亡基因(Fas、Bax、ICE、P53),双向调控基因(c-myc、Bcl-x)。 1. Bcl-2 是抑制凋亡的基因。 2.Fas Fas基因的表达可促进细胞凋亡。 3.p53 野生型P53基因具有诱导细胞凋亡的功能,当该基因发生突变后反而可抑制细胞凋亡。 4. c-myc,Bcl-x c-myc是一种癌基因,它能诱导细胞增殖,也能诱导细胞凋亡,具有

(完整word版)细胞凋亡过程

细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似2)细胞色素C释放和Caspases激活的生物化学途径线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C 释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征:1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。3)末端具有一个小的或大的原结构域。参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。

相关文档
相关文档 最新文档