文档库 最新最全的文档下载
当前位置:文档库 › 一种数字可调的升压型开关电源的设计与实现.

一种数字可调的升压型开关电源的设计与实现.

一种数字可调的升压型开关电源的设计与实现.
一种数字可调的升压型开关电源的设计与实现.

一种数字可调的升压型开关电源的设计

与实现

一种数字可调的升压型开关电源的设计与实现

类别:电源技术

1 引言近年来,数字化在电源领域得到广泛应用,许多电子设备要求电源具有多档级。因此,这里提出了一种利用数字控制、电压可调的开关电源设计方案,实现电压步进调整,并具有宽电压输入、稳压输出功能。

2 设计方案方案系统设计框图如图1所示,输入为220 V,50 Hz交流电压,经电压变换,整流滤波后得到18 V的直流电压,送入Boost电路,经滤波输出直流。CPLD与单片机组成的数字控制模块输出脉宽调制信号(PWM),由按键控制改变PWM占空比,从而控制Boost电路的输出电压。该输出电压可在30~36 V范围

内步进调节,实现多路电压输出。最大输出电流高达2 A。输出电压经MAXl97 A/D采样,送至控制模块,通过PID算法计算调整下一次传送的控制信号,形

成反馈回路,实现宽电压输入,稳压输出的功能。

3 硬件电路设计3.1 硬件电路图系统硬件电路如图2所示。交流电压经变压器转换,其幅值按一定比例降低。降低的交流电压经扁桥式整流电路整流为18 V直流,经2 200μF电容滤波后进入主转换电路与Boost电路。

在Boost转换电路中,增加MOSFET和二极管缓冲吸收电路,减小过压或过流引起的损耗。由于电源功率较小,则采用RC吸收电路。当过流、过压产生时,电流通过电阻以热能的形式将能量散发出去,降低对MOSFET的影响,减小其损耗,延长使用寿命。根据多次试验,保护吸收电路的电阻应取kΩ级,电容取nF级。直流信号再经低通滤波器滤除纹波,驱动负载。3.2 主要功能电路原理硬件电路部分的主要电路是Boost电路,它由功率开关管VT、储能

电感L、续流二极管VD和滤波电容C组成。开关管按一定频率工作,转换周期为T,导通时间为Ton,截止时间为Toff,占空比D=Ton/T。其工作原理为:当VT导通时,电感L储能,VD反偏截止,负载由电容C提供电能;VT截止时,L 两端电压极性相反,VD正偏,同时为负载和滤波电容C提供能量。由储能电

感L导通和截止期间,电流变化量相等可得,输出电压U0和输入电压U1之间关系为: U0/Ui=1/(1一D) (1)3.3 器件选取根据理论计算,功率开关采用晶体管即可满足要求,故系统采用IRF540型MOS管,其VDS=100 V,IDS=17 A。采用MOS管专用驱动器件IR2110完成驱动功能。IR2110是一款高低电平驱动器件,其逻辑输入电压只需3.3 V,输出电压最大可达20 V,驱动电流最大可达到2 A。其延迟时间为10ns,上升沿和下降沿时间分别为120 ns和94

11s。由于IR2110可同时驱动双MOS管,因而系统只涉及一个MOS管,故只使用一路驱动即可。由于普通二极管的反向恢复时间过长,而肖特基整流管无电荷储存问题,可改善开关特性。其反向恢复时间缩短到10 11s以内。但其反向耐压值较低,一般不超过100 V。因此肖特基二极管适用于低压、大电流状态

下工作,并可利用其低压降提高低压、大电流整流(或续流)电路的效率。3.4

重要参数的计算滤波电容的选取,可根据

当开关管工作频率取F=40 kHz时,设纹波电压约为30~50 mV,则计算得到C数量级为1 000μF。实际调试后取电容为2 200μF。储能电感的选取,可根据:

设计过程中,设置纹波电流△iL=O.4 A,计算得到L数量级为l mH,实际调试后取电感为0.79 mH。 4 软件设计选择CPLD和51系列单片机组合设定数字控制和输出电压步进。用单片机控制整个系统。软件设计除设定初始电压值,还包含PID算法程序,以及调整PWM占空比。可编程逻辑器件CPLD可直接生成PWM波控制开关管驱动器。4.1 PWM波产生 PWM波的产生采用Verilog HDL硬件描述语言在CPLD中实现。信号频率设定为40 kHz,采用DDS方式步进频率可精确至1 Hz。使用QuartusⅡ自带的工具生成PLL器件,将外界晶体振荡器输入的频率倍频至100 MHz。由DDS公式,可得:式中:k 为累加系数;Fin为输入频率;n为计数器位数。当键盘键入所需电压U0,单片机内转化为占空比DY=1一(Ui/U0)。累加器开始累加时输出高电平,当DY 达到计数值时变为低电平,最终可得精确频率下占空比可调的PWM控制信号。4.2 PI控制算法为通过反馈调节控制信号实现稳压,系统软件设计中加入了PID控制算法,即单片机中将给定电压值与采样反馈电压值比较,利用偏差的比例、积分、微分线性组合调整PWM信号的占空比,进而达到稳压。常用的PID算法形式为:式中:KP、Ki、Kd分别为比例系数、积分系数、微分系数;e(k)为偏差;u(k)为所需控制信号的调整值。该系统设计选择PI算法(PID算法的一种简单形式),即令Kd为零,只考虑比例系数和积分系数。因此,系统稳压控制的优劣取决于参数Kp、Ki。Kp越大,系统反应越灵敏,但Kp偏大会导致输出振荡大,调节时间延长,所以应谨慎选择。积分系数的运用可以消除系统的稳态误差,提高系统的控制精度。PI算法流程如图3所示。图3中引入了积分分离式算法,减少积分校正对控制系统动态性能的影响。即在控制开始阶段或电压值大幅度变化时,取消积分校正;而当实际电压值与设定值的误差小于一定值时,恢复积分校正作用。积分分离式算法既保持积分作用,又减小超调量,改善控制系统的性能。经实验确定,可实现稳压功能。

4.3 仿真验证 Simulink是MATLAB提供的实现动态系统建模仿真的一个软件包。采用powersystem库模型,将系统设计的仿真电路连接如图4所示。脉冲产生器产生固定频率和占空比方波,控制MOS开关管。电流和电压测量器将模拟的电流和电压量化送至示波器。仿真中器件参数根据实际设计选取:输入电压为18 V,开关管的控制脉冲(PWM波)频率为40 kHz,占空比60%,电容取2 200μF,电感为1 mH,电阻为18 Ω。得到的电流电压波形图如5所示。通过仿真可看出,在不考虑损耗时电压可以升36 V以上,电流也可以达到2.4A;在实际电路中因存在损耗,通过调整占空比达到了输出电压30~36 V步进调整.最大输出电流2 A。

5 结语利用Boost电路实现了系统设计的升压转换,采用CPLD和单片机完成数字控制,软件编程得到PWM信号,通过调整占空比实现输出电压数字调节。而运用PI算法则是本系统设计的亮点,完美实现了宽输入,稳压输出。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

大功率可调开关电源

! 题目:可调稳压器 大功率可调开关电源 指导老师:陈德胜 队员及年级:罗国颖徐业刘胜玥张军光王凤华李飞(2007级) 学校及院系:陕西理工学院物理系 摘要 本系统稳压与限流部分均用TL494控制,系统层次简洁明了,电路结构简单且所采用电子元件均是常用的,市场上均有销售,使电路实现更具有可行性。本系统电压可调范围0—33V,电流可调范围0—5A,最大输出功率120W,整机效率63.99%。主要适用于对输出电流和输出功率要求大,但对电压调整率和负载调整率不是很高的电子设备。由于采用了开关式控制,为了提高效率,调整管就要用高频开关管。又因为输出电流要求大,所以我们采用复合的方式。经过考虑,我们采用了IRFP9240高频开关场效应管和2SC3320高频开关三极管复合而成。在实际设计过程中,可调电压部分我们采用了LM317作为可调基准与TL494内部的误差放大器构成误差放大环节;可调电流部分,我们利用TL494内部的控制比较放大器和其内部基准电压组成误差放大环节,电路简单而性能优越。在输出电压和电流显示方面,我们采用高精度数字表头;在散热方面我们采用风扇和金属散热板辅助。 一、0V~+33V稳压电源 1、方案选择 (1)串联式稳压电源方式 我们首先想到的是用三端可调稳压器先提供稳定电压和小电流,再经过三极管扩流方式达到大功率输出。且集成可调稳压器具备了各种保护功能,所以外围电路就可简化。但由于本系统要求输出电压范围较大,电流也大,这种方式的输出电流与流过集成可调稳压器电流相同,当输入与输出压差太大时,集成可调稳压器的发热量也相当大,也降低了效率。若选此种方案,应考虑采用换档切换调压方式,以减少输入与输出电压差。但这样未免增加了系统的复杂性,效率同样难以达到理想效果。 (2)开关电源方式 这种方式的电源效率高,但一般纹波较大。而我们要求的重点是高效率,所以根据实际情况,综上后,我们决定采用了方案(2)。经过此选择,开关控制方式采用PWM,而控制IC采用TL494。 电路结构图如下图所示 (电路结构图)

DC-DC升压开关电源设计

一、设计要求 本课程要求设计一个DC-DC升压开关电源。 二、设计方案 1、理论基础 The boost converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 三、总电路图

三、系统概述 DC/DC升压开关电源的原理如下所述: 首先由555定时器产生一个固定频率为1K~5KHz的方波信号,这个信号用来控制主电路三极管的导通与截止。当三极管导通时,输入的电流流入电感充电,而当三极管截止时,电感上产生巨大的瞬时电压并开始放电,这两股能量叠加后导致输出电压升高。由于输出的电压不仅仅是直流信号,所以通过一个二极管整去负信号,用LC滤波电路滤除交流信号。为了达到要求的输出电压,我们用一个滑动变阻器来调节,最后要稳定电压在一个恒定值,所以将滑动变阻器的输出接到电压比较器的输入,当输入电压低于门限电压时,电压比较器输出低电平,反馈端的三极管截止,输出电压持续增高;当输入电压高于门限电压时,电压比较器输出高电平,反馈端的三极管导通,输出电压降低,最终保持在一个稳定值 四、器件表

电脑开关电源电路大全及PC开关电源标准详解

PC开关电源标准详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; ATX12V_1.1:2000年8月颁布, 在前一版本的基础上,加强了+3.3V电流输出能力,以适应AGP显卡功率增长的需求 ATX12V_1.2:2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定; ATX12V_1.3:2003年4月颁布,在前版的基础上,提高了电源效率,增加了对SATA的支持,增加了+12V的输出能力。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

基于PWM的高压可调大范围开关电源设计与实现

基于PWM的高压可调大范围开关电源设计与实现 摘要:设计实现了一个高压可调大范围的开关电源,采用ARM7微处理器作为 电源的控制器完成ADC变换及相关算法运算,产生脉冲编码调制PWM实现对调 整管的控制,利用彩电高压包作为高压脉冲变压器。经过MATLAB/SIMULINK仿真,验证了电路方案的可行性,经过测试表明:输出电压可以在1000V~20KV范围内 连续可调,负载电流为0~5mA, 且具有体积小、成本低、宽范围、智能化的特点,可以满足蔬菜叶面害虫的防控需要,也可以应用到类似指标的领域。 关键词:开关电源;微处理器;高电压;蔬菜害虫;物理防控 1 引言 电源是物理农业中用于杀菌消毒、灭虫、防控农作物害虫等方面的重要设备,目前电源主要有两大类,线性电源和开关电源[1]。 线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再 经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流 电压。线性电源因调整管工作于放大状态(线性工作区域)而得名;线性电源技 术很成熟,制作成本较低,输出电压文波较小可以达到很高的稳定度,自身的干 扰和噪声都比较小,但由于工频(50Hz)时变压器的体积比较大且笨重造成电源整 体体积较大且笨重,更主要的是电源效率较低(一般满载工作的效率只有80%左右),且输入电压范围较小;总的来讲,线性电源的优点是性能稳定,没有高频纹波等 干扰。线性电源的缺点是发热功耗大、能源利用率低,没有超大功率的电源供选择。开关电源(Switch power supply)是指用于电压调整管工作于饱和区和截止区,即开关状态的[2-4]。 开关电源可以具有较高的工作频率,脉冲变压器的体积可以做的较小,重量轻, 结构简单、成本低、效率高(效率可达90%以上),在很多场合已经替代了线性电源, 虽然输出纹波较线性电源大些,但可以通过滤波措施降低,是电源发展的趋势。高频率、高电压、数字化是各个领域开关电源发展的趋势[5-7]。 因此,根据资助本论文研究的科技攻关项目的研究需要,针对灭除蔬菜叶面 害虫系统的关键组成部分采用的高压电场,设计实现基于脉宽调制技术PWM的 一个高电压大范围可调开关电源,并采用微处理器作为控制核心,主要是将一般 电瓶电压12V直流电升高到1000V~20kV直流电,根据需要可调输出电压大小, 以满足高压电场灭除蔬菜叶面害虫的需要。 2 开关电源方案设计 开关电源的工作过程: PWM(Pulse Width Modulation)脉宽调制开关电源是 让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的 伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/ 功率器件上的伏安乘积就是功率半导体器件上所产生的损耗[5-6]。 PWM开关电源主要是通过“斩波”,即把输入的直流电压斩成幅值等于输入电 压幅值的脉冲电压来实现的。PWM脉冲的占空比由开关电源的控制器根据需要 进行调节。 通过增加变压器的二次绕组数就可以增加输出电压值。将绕组输出的交流波 形经过整流滤波后就得到需要的直流电压。 控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很 类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调 节器相同。

开关电源Boost(升压型斩波器)仿真电路

升压型斩波电路(boost)仿真模型 电控学院 电气0903班 姓名:徐强 学号:0906060328

基于Matlab/Simulink的BOOST电路仿真1.Boost电路的介绍: Boost电路又称为升压型斩波器,是一种直流- 直流变换电路,用于将直流电源电压变换为高于其值的直流电压,实现能量从低压侧电源向高压侧负载的传递。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用simulink仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。其电路结构如图所示。 2.Simulink仿真分析: Simulink 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于Matlab/Simulink软件对BOO ST 电路仿真, 仿真图如图 3 所示, 其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真开关S的通断过程。

BOOST 电路的仿真模型 3.电路工作原理: 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。 升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是L 储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。在以上分析 中,认为开关处于通态期间因电容C的作用使得输出电压不变,但实际上 C值不可能为无穷大,在此阶段其向负载放电,必然会有所下降,故实际输出电压会略低于理论所得结果,不过,在电容C值足够大时,误差很小,基本可以忽略。 4.1在模型中设置仿真参数:

开关电源电路分析

开关电源电路分析 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,电路复杂不易维修等。 开关电源一般包括四要素:整流滤波、起动电路、正反馈电路和稳压电路。 开关式稳压电源具有转换效率高、耗电省、稳压范围宽、体积小和重量轻等特点。为此,在彩色电视机电路中得到广泛应用。电视机的开关电源有多种形式,但串联式脉冲宽度调制型开关稳压电源应用较为广泛。 下面以此种电路为例来分析。 一、工作原理及主要参数 1.电路组成及工作原理 串联型开关稳压电源的基本形式如图1所示。图中,V为开关管,VD为续流二极管,L为储能电感线圈,CL为滤波电容,RL为负载电阻。 图1 串联型开关电源原理图 其稳态工作过程可作如下分析:

设开关管V 在T1期间导通,T2期间截止,周期性地变化,则其工作周期为T=T1+T2,见图4―57(a)。由于负载RL 端电压为Uo,所以负载功率为Po=U2o/RL,负载电流为Io=Uo/RL 。 2. 主要参数及其计算 (1)占空比δ的确定。当开关电源达到稳态工作时,电路处于平衡状态。开关管V 导通期间的电流增量ΔiL1和截止期间的电流减小量ΔiL2应相等,即有: 1()()i o o o i i o U U T U T L L U U TU U T --= = = δδδ (2)平均电流IL 及L 的确定。由于负载与电感L 是串联的,因此电感中的平均电流即为负载电流Io,故有 o I I = 当Ui 和Uo 确定后,由式(4―28)和式(4―30)δ、Io 也随之确定。 L 的最小 值以Lmin 表示,则 (3)滤波电容CL 的确定。L 中的电流iL 是包含有三角波的脉动电流,因此应在负载RL 两端并联CL,以滤除纹波。 一般选取RLCL >> T 即可满足要求。因一般彩电开关电源中选取T=64μs,负载端滤波电容一般选200μF 左右即可。

可调开关电源(参考)

一种输出电压4~16V开关稳压电源的设计(转载)4-16V可调开关电源) 2007-05-14 19:50 转载)4-16V可调开关电源 wenyin 发表于 2006-11-16 17:09:00 一种输出电压4~16V开关稳压电源的设计 薛红兵 (信息产业部电子第二十研究所,陕西西安 710068) 摘要:介绍一种采用半桥电路的开关电源,其输 入电压为交流220V± 20%,输出电压为直流 4~ 16V,最大电流 40A,工作频率 50kHz。重点介绍了该电源的设计思想,工作原理及特点。 关键词:脉宽调制;半桥变换器;电源 1 引言 在科研、生产、实验等应用场合,经常用到电压 在 5~ 15V,电流在 5~ 40A的电源。而一般实验用电源最 大电流只有 5A、 10A。为此专门开发了电压 4V~ 16V连续 可调,输出电流最大 40A的开关电源。它采用了半桥电路,所选用开关器件为功率 MOS管,开关工作频率为 50 kHz,具有重量轻、体积小、成本低等特点。 2 主要技术指标 1)交流输入电压AC220V± 20%; 2)直流输出电压 4~ 16V可调; 3)输出电流 0~ 40A; 4)输出电压调整率≤ 1%; 5)纹波电压Up p≤ 50mV; 6)显示与报警具有电流 /电压显示功能及故障告警指示。 3 基本工作原理及原理框图 该电源的原理框图如图 1所示。

220V交流电压经过 EMI滤波及整流滤波后,得到约 30 0V的直流电压加到半桥变换器上,用脉宽调制电路产生的双列脉冲信号去驱动功率 MOS管,通过功率变压器的耦合和隔离作用在次级得到准方波电压,经整流滤波反馈控制后可得到稳定的直流输出电压。 4 各主要功能描述 4. 1 交流 EMI滤波及整流滤波电路 交流 EMI滤波及整流滤波电路如图 2所示。 电子设备的电源线是电磁干扰( EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有 IEC插头电网滤波器和 PCB电源滤波器组成。 IEC插头电网滤波器主要是阻止来自电网的干扰进 入电源机箱。 PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。 交流输入 220V时,整流采用桥式整流电路。如果将 JTI 跳线短连时,则适用于 110V交流输入电压。由于输入 电压高,电容器容量大,因此在接通电网瞬间会产生很大的浪涌冲击电流,一般浪涌电流值为稳态电流的数十倍。这可能造成整流桥和输入保险丝的损坏,也

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用 SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端 (Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用 Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz, Conduction 可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。 LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管): 将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。 C1(滤波电容): 由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。 D2(辅助电源二极管): 整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异: 耐压不同(在此处使用差异无所谓) VF不同(FR105=1.2V,BYT42M=1.4V) R10(辅助电源电阻): 主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。 C7(滤波电容): 辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。

基于tl494可调开关电源的设计

一种输出电压4~16V开关稳压电源的设计 摘要:介绍一种采用半桥电路的开关电源,其输入电压为交流220V±20%,输出电压为直流4~16V,最大电流40A,工作频率50kHz。重点介绍了该电源的设计思想,工作原理及特点。关键词:脉宽调制;半桥变换器;电源 1引言 在科研、生产、实验等应用场合,经常用到电压在5~15V,电流在5~40A的电源。而一般实验用电源最大电流只有5A、10A。为此专门开发了电压4V~16V连续可调,输出电流最大40A的开关电源。它采用了半桥电路,所选用开关器件为功率MOS管,开关工作频率为50kHz,具有重量轻、体积小、成本低等特点。 2主要技术指标 1)交流输入电压AC220V±20%; 2)直流输出电压4~16V可调; 3)输出电流0~40A; 4)输出电压调整率≤1%; 5)纹波电压Up p≤50mV; 6)显示与报警具有电流/电压显示功能及故 障告警指示。 3基本工作原理及原理框图 该电源的原理框图如图1所示。 220V交流电压经过EMI滤波及整流滤波后,得到约300V的直流电压加到半桥变换器上,用脉宽调制电路产生的双列脉冲信号去驱动功率MOS管,通过功率变压器的耦合和隔离作用在次级得到准方波电压,经整流滤波反馈控制后可得到稳定的直流输出电压。 4各主要功能描述 41交流EMI滤波及整流滤波电路 交流EMI滤波及整流滤波电路如图2所示。

图1整体电源的工作框图 图2交流EMI滤波及输入整流滤波电路 电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。IEC插头电网滤波器主要是阻止来自电网的干扰进入电源机箱。PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。交流输入220V时,整流采用桥式整流电路。如果将JTI 跳线短连时,则适用于110V交流输入电压。由于输入电压高,电容器容量大,因此在接通电网瞬间会产生很大的浪涌冲击电流,一般浪涌电流值为稳态电流的数十倍。这可能造成整流桥和输入保险丝的损坏,也可能造成高频变压器磁芯饱和损坏功率器件,造成高压电解电容使用寿命降低等。所以在整流桥前加入由电阻R1和继电器K1组成的输入软启动电路。 42半桥式功率变换器 该电源采用半桥式变换电路,如图6所示,其工作频率50kHz,在初级一侧的主要部分是Q4和Q5功率管及C34和C35电容器。Q4和Q5交替导通、截止,在高频变压器初级绕组N1两端产生一幅值为U1/2的正负方波脉冲电压。能量通过变压器传递到输出端,Q4和Q5采用IRFP460功率MOS管。 43功率变压器的设计

MC3406芯片DC_DC转换升压电路

电子技术课程设计报告 设计课题:MC3406芯片DC/DC转换升压电路 专业班级: 学生姓名: 指导教师: 设计时间:2011.10.15-2011.12.15 目录 1 设计任务与要求 (3) 2 集成稳压电源和开关电源的区别 (3)

2.1 集成稳压器的组成 (3) 2.2 开关电源的组成 (4) 3 开关电源的分类 (5) 4 常见开关电源的介绍 (6) 4.1基本电路 (6) 4.2 单端反激式开关电源 (7) 4.3单端正激式开关电源 (7) 4.4自激式开关稳压电源 (8) 4.5 推挽式开关电源 (9) 4.6 降压式开关电源 (9) 4.7 升压式开关电源 (10) 4.8 反转式开关电源 (10) 5设计升压开关电源并计算参数 (11) 5.1 MC34063的介绍 (11) 5.2MC34063组成的升压电路原理 (12) 5.3电路的参数设计计算 (14) 6 性能测试结果分析 (17) 7.结论与心得 (18) 8.参考文献 (18) 9.附录 (19) 基于MC34063的稳压电源设计 一、设计任务与要求 1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。

2.掌握mc34063的非隔离开关电源的设计、组装与调试方法。 3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。具体要求如下: ①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。 ②掌握开关电源的工作原理。 ③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。主要技术指标 直流输入电压:5~12V; 输出电压:28V; 输出电流:0.3A; 效率:≥90%。 二、集成稳压电源和开关电源的区别: (1)、集成稳压器的组成 电路内部包括了串联型直流稳压电路的各个组成部分,另外加上保电路和启动电路。 1. 调整管 在W7800系列三端集成稳压电路中,调整管为由两个三极管组成的复合管。这种结构要求放大电路用较小的电流即可驱动调整管发射极回路中较大的输出电流,而且提高了调整管的输入电阻。 2.放大电路 在W7800系列三端集成稳压电路中,放大管也是复合管,电路组态为共射接法,并采用有源负载,可以获得较高的电压放大倍数。

学习开关电源你必须知道的电路详解

一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

相关文档
相关文档 最新文档