文档库 最新最全的文档下载
当前位置:文档库 › 饱和约束下的汽车直接横摆力矩控制器设计

饱和约束下的汽车直接横摆力矩控制器设计

饱和约束下的汽车直接横摆力矩控制器设计
饱和约束下的汽车直接横摆力矩控制器设计

标准螺栓的拧紧力矩

发动机参数及标准螺栓的拧紧力矩发动机参数标准螺栓的拧紧力矩 一、发动机参数 表2-1 发动机参数

支座与车身螺栓(13MM)----25Nm 支座与车身螺栓(18MM)----40Nm+90度/50Nm 支座与发动机支座螺栓(18Mm)----100Nm 变速箱与总成支座 支座与车身螺栓(13MM)----25Nm 支座与车身螺栓(18MM)----40Nm+90度/50Nm 支座与变速器支座螺栓(18MM)----100Nm 摆动支架

摆动支架与变速箱螺栓----40Nm+90度/50Nm 摆动支架与副车架螺栓----20Nm+90度/25Nm 发动机部分 放油螺栓----30Nm 机油滤清器----20Nm 曲轴正时轮螺栓----90Nm+90度 凸轮轴正时轮螺栓----65Nm 曲轴轴瓦----65Nm+90度 连杆轴瓦----80Nm+90度 缸盖螺栓第一步----40Nm 缸盖螺栓第二步----90度 缸盖螺栓第三步----90度 爆震传感器----20Nm 双温开关----15Nm 氧传感器----50Nm 三元催化器与排气管连接螺栓----40Nm 排气管双箍螺栓----40Nm 变速箱部分 变速箱与发动机连接部分----80Nm 变速箱与启动机连接部分----80Nm 变速箱与油底壳螺丝----40Nm 换档杆壳体与车身----25Nm

换档拉锁支架到变速器连接螺栓----25Nm 变速箱油堵----25Nm 速度表驱动轴----30Nm 变速器壳盖螺栓----10Nm 离合器总泵----25Nm 离合器分泵----25Nm 底盘部分 制动踏板与助力器之间螺栓----20Nm 前制动卡钳----285Nm 后制动卡钳----35Nm 转向拉杆与万向节连接----45Nm 方向盘紧固螺母----50Nm 转向十字轴与转向机连接----30Nm 控制臂球头与控制臂连接----20Nm+90度 控制臂球头自锁螺母----450Nm 稳定杆与控制臂连接螺栓----45Nm 稳定杆穿销自锁螺母----45Nm 控制臂与副车架----70Nm+90度 控制臂与车身----100Nm+90度 副车架与转向机----20Nm+90度 前减震器与转向节连接螺栓----65Nm+90度/75Nm 前减震器上部六角螺母----60Nm

拧紧力矩的计算方法

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm K 值表(参考) 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

汽车电路系统设计要求规范

汽车电路系统设计规范 一、制图标准的制定: 1.1电器符号的定义: 电气图形符号、诊断系统图形符号世界各大公司所用不尽相同,我们根据ISO7639、DIN40900以及美、日主要汽车公司常用符号制定奇瑞公司的电气图形符号库,若有新的器

件没有相应的符号可以根据需要经电器部相关设计人员讨论通过后添加到该库里,以不断丰富更新符号库。

电路图的读图方式一般有正向读图和反向读图两种方法。正向读图一般是设计开发时计算电流分配,负荷计算时使用的一种思路、设计方法;反向读图一般是电路故障检修或优化局部电路时常用的方法,和正向读图方法基本相反。 正向读图法:由电源——电流分配盒——保险丝——控制开关——控制模块输入——控制模块输出——线路分流——用电设备(执行机构)——地。 二、整车电器开发设计输入 根据公司开发车型的市场定位、级别以及市场相关车型比较,电器项目负责人编制出VTS(Vehicle Technical Specify)报公司审批,批准后的VTS表作为整车电器开发的设计输入,各专业组根据VTS要求编写详细的产品功能定义,技术要求。 三、单元电路设计格式规范 3.1功能定义:①根据VTS的要求讨论并制定主要单元电路、电器件零部件组成, 比如空调需要确定蒸发器结构类型、风门控制机构数量、传感器数 量、电子调速器、压缩机类型、冷凝器类型等,并应开始编制初级 BOM表; ②电器件的额定电压、工作电压范围、额定功率的确定; ③额定工作电流、最大工作电流(电机阻转状态)、静态耗电电流的 确定(≤3mA)。 3.2电路原理图:根据各单元的功能确定需要整车输入的哪些信号,输出哪些信号, 信号的类型(触发信号,脉冲频率信号,高电平或者低电平信号), 信号参数。控制方面应该考虑继电器控制还是集成电路控制,对于 CAN-BUS需确定该单元的控制信息,系统状态实时检测信息,以 及故障检测信息需不需要在CAN上公布等。单元电路的设计输出

螺栓拧紧方法

以下均以(牛.米)为单位。 温馨提示:当准备拧紧螺栓时,需要在螺栓的螺纹上涂少许机油,以便我们拧紧的时候减少多螺栓的损害;注意:机油不能涂太多,如涂太多后会造成“液锁”现象。 螺栓的拧紧方式及拧紧的质量评估 在汽车制造业中,将各种汽车零部件装配成整车的过程,需要很多种不同类型的联接,比如焊接、螺栓联接和粘胶联接等。其中螺栓联接是最重要的联接方法之一。由于螺栓联接可以获得很高的联接强度,又便于装拆,具有互换性,通过标准化实现了大批量生产,成本低而且价格便宜,经常被应用到发动机、变速箱和底盘等重要位置的装配中。所以,螺栓的拧紧质量直接影响到产品的安全性和可靠性。 螺栓联接质量控制原理 螺栓联接的实质是通过将螺栓的轴向预紧力控制到适当范围,从而将两个工件可靠地联接在一起。为了确保螺纹联接的刚性、密封性、防松能力和受拉螺栓的疲劳强度,联接螺栓对预紧力的精度要求是相当高的。所以,轴向预紧力是评价螺栓联接可靠性的重要指标。轴向预紧力的最低限是由联接结构的用途决定的,该值必须保证被联接工件在工作过程中始终可靠贴合。轴向预紧力的最高值必须保证螺栓及被联接工件在预紧和工作过程中不会发生脱扣、剪断和疲劳断裂等损坏。

怎样控制和监控预紧力的数值,使之能够达到产品要求显然是一个值得研究的课题。 螺栓拧紧方法 螺栓拧紧方法主要有两类,分别是弹性拧紧和塑性拧紧。弹性拧紧一般指扭矩拧紧法,塑性拧紧主要包括转角拧紧法、屈服点拧紧法等。 1.扭矩拧紧法 扭矩拧紧法的原理是扭矩大小和轴向预紧力之间存在一定关系。通过将拧紧工具设置到某个扭矩值来控制被联接件的预紧力。在工艺过程、零件质量等因素稳定的前提下,该拧紧方式操作简单、直观,目前被广泛采用。 根据经验,在拧紧螺栓时,有50%的扭矩消耗在螺栓端面的摩擦上,有40%消耗在螺纹的摩擦上,仅有10%的扭矩用来产生预紧力。由于外界不稳定条件对扭矩拧紧法的影响很多,所以通过控制拧紧扭矩间接地实施预紧力控制的扭矩法将导致对轴向预紧力控制精度低。 而且有极少数的螺栓联接,扭矩已达到规定值,而螺栓头还未完全与被联接件贴合或间隙有时很小,目视不容易发现。此时扭矩值是合格的,但预紧力很小,甚至没有,所以在这种情况下,如果仅仅提出保证扭矩合格,那么保证装配拧紧质量就成了一句空话。 图1 转角拧紧法的拧紧曲线

QC T 649汽车转向传动轴总成性能要求及试验方法

中华人民共和国汽车行业标准 汽车转向传动轴总成性能要求及试验方法QC/T 649-2000 1 范围 本标准规定了汽车转向传动轴总成的性能要求及试验方法。 本标准适用于汽车转向传动轴总成。 2 试验项目 2.1 总成间隙试验 2.2 转动力矩试验 2.3 滑动花键的滑动起动力试验 2.4 静扭强度试验 2.5 扭转疲劳寿命试验 3 试验样品 试验样品应按照规定程序批准的图样和技术文件制造,其材料、尺寸、热处理及装配状态应符合图样和技术文件规定。每项试验样品数量不少于3件。 4 损坏的判定 4.1 总成的零件表面出现可见裂纹。 4.2 总成运动不灵活,不能继续使用。 5 性能要求 5.1 总成间隙试验 5.1.1 对于滑动花键结构,总成包含1个万向节,总成的扭转角度不大于45'。 5.1.2 对于滑动花键结构,总成包含2个万向节,总成的扭转角度不大于1°。 5.1.3 对于无滑动花键结构,总成包含1个万向节,总成的扭转角度不大于15'。 5.2 转动力矩试验 转动力矩应符合设计要求。 5.3 滑动花键的滑动起动力试验 滑动起动力应符合设计要求。 5.4 静扭强度试验 施加转矩Mj进行静扭强度试验后,总成不允许损坏。 5.5 扭转疲劳寿命试验 施加正反方向的疲劳寿命试验转矩M,经3×105次循环试验后,总成不允许损坏。 6 试验条件 在各项试验项目中,应满足以下条件: 总成应按实际装车状态安装与固定。 7 试验方法 7.1 总成间隙试验 7.1.1 将总成与转向器联接的一端固定,从转向盘一端施加±3Nm的转矩,所施加的转矩也可以按设计要求确定。 7.1.2 测定总成的扭转角度。 7.1.3 测量误差不大于2%。 7.2 转动力矩试验 7.2.1 将转向柱管固定,从转向盘一侧驱动。 7.2.2 测出总成的转动力矩。 7.2.3 测量误差不大于2%。 7.3 滑动花键的滑动起动力试验

汽车库建筑设计规范JGJ 100-98

汽车库建筑设计规范 中华人民共和国行业标准 汽车库建筑设计规范Design Code for Garage JGJ100-98 主编单位:北京建筑工程学院 批准部门:中华人民共和国建设部 施行日期:1998年9月1日 (目录) 1总则 2术语 3库址和总平面 3.1库址 3.2总平面 4坡道式汽车库 4.1一般规定 4.2坡道式汽车库设计 5机械式汽车库 5.1一般规定 5.2机械式汽车库设计 6建筑设备 6.1一般规定 6.2给水排水 6.3采暖通风 6.4电气 附录A本规范用词说明 1总则 1.0.1为了适应城市建设发展需要,使汽车库建筑设计符合使用、安全、卫生等基本要求,制定本规范。 1.0.2本规范适用于新建、扩建和改建汽车库建筑设计。 1.0.3汽车库建筑设计应使用方便、技术先进、安全可靠、经济合理并符合城市交通现代化管理和符合

城市环境保护的要求。 1.0.4汽车库建筑规模宜按汽车类型和容量分为四类并应符合表1.0.4的规定。 汽车库建筑分类表1.0.4 规模 特大型 大型 中型 小型 停车数(辆) >500 301~500 51~300 <50 注:此分类适用于中、小型车辆的坡道式汽车库及升降机式汽车库,并不适用其他机械式汽车库。 1.0.5汽车库建筑设计除应符合本规范外,尚应符合国家现行的有关标准的规定。 2术语 2.0.1汽车库(Garage) 停放和储存汽车的建筑物。 2.0.2汽车最小转弯半径(Minimum turn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 2.0.3地下汽车库(Underground garage) 停车间室内地坪面低于室外地坪面高度超过该层车库净高一半的汽车库。 2.0.4坡道式汽车库(Ramp garage) 汽车库停车楼层之间,汽车沿坡道上、下行驶者为坡道式汽车库。坡道可以是直线型、曲线型或两者的组合。 2.0.5敞开式汽车库(Open garage)

拧紧力矩的计算方法

拧紧力矩的计算方法-CAL-FENGHAI.-(YICAI)-Company One1

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

螺栓拧紧力矩表

螺栓拧紧力矩标准 M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。

套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235)

管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1) 铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头

汽车空调自动控制系统设计

: 汽车空调自动控制系统设计 摘要 随着现代汽车技术的发展,汽车的空调技术已经很发展的成熟,可是随着社会的进步,人们对舒适性的要求也越来越来高了。由于人们的要求提高了,从而反应出现代汽车空调系统的几大缺点,需要进行改进。本设计就是根据几大缺点进行的改进设计,设计提供一种8位单片机为控制核心的汽车自动控制系统。 本文针对现代汽车的不足之处进行改进,采用8位单片机为核心,以数字温度传感器、车速传感器、发动机转速传感器作为测量元件,并实时监测、显示车内温湿度、车速和发动机转速,通过控制电路的通断来达到对汽车空调自动控制功能。另外本文还加了一个延时电路,来控制风扇后关闭。本文还阐述了汽车空调及系统的组成及原理,并完成总体硬件设计和软件的编写。 关键词:汽车空调自动控制, 单片机, 传感器 , … 【

目录 ` 1 绪论 (1) 1.1 课题来源及产生背景 (1) 1.2 课题研究的目的及意义 (1) 1.3 课题研究的主要内容 (1) 1.4 本课题的主要任务 (1) 2 汽车空调及空调自动控制系统的概述 (2) 2.1 汽车空调的概述 (2) 2.2 汽车空调自动控制系统的工作原理 (3) ^ 3 汽车自动控制系统的总体设计方案 (4) 4 汽车空调控制系统的设计原则 (4) 5 主要设计硬件的选择 (5) 4.1 单片机AT89S52 (5) 4.1.1 主要性能 (5) 4.1.2 功能特性描述 (5) 4.1.3 引脚结构 (6) ' 4.1.4 方框图 (9) 4.2 数字温湿度传感器DHT11 (11) 4.2.1 DHT11的概述 (11) 4.2.2 传感器性能特点 (11)

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

汽车空调系统的核心设计“空调控制器”

汽车空调系统的核心设计“空调控制器” 导读:汽车空调作为一辆车的最基本配置之一,能够对车厢内的空气进行加热、制冷、通风和净化处理,以满足人们对车辆乘坐环境的舒适性要求。本文将为您详细介绍汽车空调系统中重要的组成部分:空调控制器。 一、空调系统组成 一个标准的汽车空调系统由空调控制面板、空调压缩机、空调PTC、空调控制器、鼓风机以及各类执行器件和传感器组成。其中,空调控制面板负责用户指令的输入,司乘人员可以通过空调控制面板来调节车内空气的温度、湿度、洁净度、流速等;空调压缩机用于空气的制冷;空调PTC用于空气的制热;鼓风机用于输出一定的风量;而空调控制器,正是联结以上各个产品的核心,它可以准确地获取车内环境实况,根据用户需求来控制各个模块,从而使得车内环境满足用户的要求。 图 1. 空调系统组成 二、空调控制器框图 空调控制器连接着车内多个传感器,能够通过这些传感器准确获取车内环境。同时,控制器通过CAN与空调控制面板通讯,可以实时的获取驾驶员对环境的要求。利用内部算法,通过CAN来控制空调压缩机与空调PTC,鼓风机并且通过控制风门电机,阀门等执行器件,来达到对车内环境的精确控制。 详细的空调控制器框图如下: 图 2. 空调控制器框图

1.关键器件推荐 主控:空调控制器由于需要连接车内多个传感器,需要较为复杂的控制算法,对主控的FLASH大小和ADC路数要求较高。NXP的S32K系列MCU,资源丰富,性价比高。Flash 从128KB到2MB,ADC路数从13路到64路。足以胜任不同需求的空调控制器应用。 图3. S32K系列资源 多路H桥驱动:ON的NCV772x (x: 1,3,4,5,6)系列,最多可驱动11个直流电机。具有如下特点: ●0.5A持续电流,1.1A峰值电流; ●5MHz SPI 通讯 ●兼容5V和3.3V的系统; ●过压、欠压关断;过温、过流保护; ●轻载检测; ●故障错误上报;

扭矩和功率的计算公式推导及记忆方法(全)

扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。 一记住扭矩和功率的公式形式 扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。因此,电机空转或堵转就是轴功率等于零的两个特例。 功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式: P=aTN 上式中,a为常数,对应的有: T=(1/a)(1/N)P 即扭矩和功率成正比,和转速成反比。 记忆方法: 记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a不必记忆。 二记住力做功的基本公式 提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。 如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。 不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。 我们知道力学中力做功的功率计算公式为: P=FV(2) 上述公式为力做功的基本公式。然而,基本公式中没有出现扭矩T和转速N。 如果我们注意到:扭矩实际上就是力学上的力矩。就很容易联想到扭矩T和力F的关系。 由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有: T=Fr或 F=T/r(3)

图2 扭矩和力臂的关系 记忆方法: N是力的单位,m是长度的单位,因此,力等于扭矩除以长度,而长度就是半径r。扭矩的单位是N.m, 三掌握角速度和速度的转换方法 第二节告诉我们,扭矩与轴的半径有关,可是,扭矩和功率的关系式(1)中,并无轴半径的参数r,也无力做功基本公式(2)中的速度V。 这就引导我们去思考,将速度V变换为转速N后,转速N与扭矩T相乘,应该可以抵消掉轴半径r。实际正是如此: 电动机轴面上任意一点的速度与旋转的角速度及轴半径成正比,即: V=ωr(4) 记忆方法: 圆弧的长度等于角度乘以半径,圆周运动的速度等于角速度乘以半径。 四扭矩和功率的基本公式 将式(3)和(4)代入式(2),得到: P=Tω(5) 式(5)为扭矩和功率的基本公式,这个公式,我们可以按照上述方式推导,不过最好的办法还是直接记住。 记忆方法: 角速度ω和转速N都可以反映转速,采用角速度时,扭矩和功率成正比,扭矩和转速成反比,且正反比的系数均为1,因此,这是扭矩和功率的基本公式。 五单位转换

汽车库建筑设计规范

汽车库建筑设计规 范

汽车库建筑设计规范 中华人民共和国行业标准 汽车库建筑设计规范 Design Code for Garage JGJ100-98主编单位:北京建筑工程学院 批准部门:中华人民共和国建设部 施行日期:1998年9月1日 (目录) 1总则 2术语 3库址和总平面 3.1库址 3.2总平面 4坡道式汽车库 4.1一般规定 4.2坡道式汽车库设计 5机械式汽车库 5.1一般规定 5.2机械式汽车库设计 6建筑设备 6.1一般规定 6.2给水排水

6.3采暖通风 6.4电气 附录A本规范用词说明 1总则 1.0.1为了适应城市建设发展需要,使汽车库建筑设计符合使用、安全、卫生等基本要求,制定本规范。 1.0.2本规范适用于新建、扩建和改建汽车库建筑设计。 1.0.3汽车库建筑设计应使用方便、技术先进、安全可靠、经济合理并符合城市交通现代化管理和符合城市环境保护的要求。 1.0.4汽车库建筑规模宜按汽车类型和容量分为四类并应符合表1.0.4的规定。 汽车库建筑分类表1.0.4 规模 特大型 大型 中型 小型 停车数(辆) >500 301~500 51~300

注:此分类适用于中、小型车辆的坡道式汽车库及升降机式汽车库,并不适用其它机械式汽车库。 1.0.5汽车库建筑设计除应符合本规范外,尚应符合国家现行的有关标准的规定。 2术语 2.0.1汽车库(Garage) 停放和储存汽车的建筑物。 2.0.2汽车最小转弯半径(Minimum turn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 2.0.3地下汽车库(Underground garage) 停车间室内地坪面低于室外地坪面高度超过该层车库净高一半的汽车库。 2.0.4坡道式汽车库(Ramp garage) 汽车库停车楼层之间,汽车沿坡道上、下行驶者为坡道式汽车库。坡道能够是直线型、曲线型或两者的组合。 2.0.5敞开式汽车库(Open garage) 汽车库内停车楼层每层外墙敞开面积超过该层四周墙体总面积25%的汽车库。 2.0.6缓坡段(Transition slope) 当坡道坡度大时,为了避免汽车在坡道两端擦地面设的缓和线

转向力计算

(1)助力转矩的计算 汽车的转向阻力矩为: P G T w 3 13μ= (1) 式中1G ----前轴载荷; μ----轮胎和路面的摩擦因数,一般取0.7; P ----轮胎气压。 此时,需要转向盘提供的转矩为: +=ηω0i T T w h (2) 式中0ωi ——为转向系角传动比; +η——转向系正效率,对齿轮齿条式转向器,+η一般在70%~85%[27],这 里取+η=0.8。 根据推荐值,转向盘操纵力不应大于30~50N,在10N 以下则转向很轻便,因此作用在转向盘上的转矩为 2 00h h h D F T ?= (3) 式中0h F ——作用在转向盘上的力,这里取0h F =30N ; h D ——转向盘直径; 所以作用在转向轴上的最大助力转矩max a T 为: 0max h h a T T T -==00h w T i T -+ηω (2)电动机参数的选择和计算 这里采用永磁直流电动机,转向轴驱动的结构形式,考虑到电动机的转速过大,需要减速增矩,故电动机的输出转矩经减速机构后再驱动转向轴。因此电动机的额定输出转矩为 G T T a e max = (4)

式中G 为减速机构的减速比。 转向盘(即转向轴)的转动速度一般取h n =1.2r/s=72r/min,为了使电动机在转向盘转速较快的时候能够跟得上,所需电动机的最大额定转速为 G n n h e ?= (5) 由式(4)和(5)可得到电动机的额定功率 9549 e e e n T P ?= 计算得到LC 车型的电机额定功率为117.7W<125W ,EK 车型115.7W<125W 。

汽车空调控制器设计规范11

汽车空调控制器结构设计规范(试行版) 控制器分类: 按功能分: 前控制器和后控制器 前控制器(主控制器):从前面吹风 后控制器:从后排吹风 按自动化程度分: 手动式、电动式、自动式 手动式:用旋钮带动硬(软)拉丝直接控制空调主机 电动式:用按键或旋钮操作,从线路板输出电信号至转向器控制空调主机 自动式:在电动式基础上多一个AUTO键功能,多一个显示屏 按结构分: 按键式--普通按键和翘板按键 旋钮式--外旋式和内旋式 外旋式:旋钮外圈动,旋钮中间不动 内旋式:旋钮内外是一个整体,一起转动 控制器设计过程: 1.出设计方案 2.出AUTOCAD二维效果图注意要点:保证功能可实现 3.根据客户提供的"A"面出外轮廓三维及效果图注意要点:保证功能可实现及安装的方式 4.细化三维内部结构 举例:自动的普通按键式 <1>面板和后盖外轮廓 <2>控制器和客户基座的安装 <3>滤色片--屏--滤光片--支架,确定屏的高度 <4>屏的设计 <5>确定线路板的外轮廓 <6>按键帽的设计 <7>按键体的设计 <8>导光体的设计 <9>线路板上按键开关、贴片灯位置的确定,屏支架安装孔 <10>线路板的定位及安装固定 <11>后盖的设计及安装固定 <12>线路板二维输出给电路设计人员(根据时间进度可适当提前) 5.做快速成型件验证确认三维 6.出二维图及下模 7.第一次修改模 8.第二次修改模 9.送OTS样件给客户确认产品 10.小批量生产验证 11.完整的PPAP文件 12.正式确认进入批量生产

设计细节和要点: 一.外轮廓和厚度 外轮廓三维和客户基座三维装配后不干涉(尽量用客户的绝对坐标轴) 面板厚度2~2.5,后盖壁厚2~2.5,加强筋厚1~1.5. 按键帽和按键体壁厚1,导向筋厚1 二.联接方式 控制器和基座的安装 卡扣式螺钉联结式 前后盖的联结 卡扣式自攻螺钉联结式 三.滤色片 材料:有机玻璃,厚度1~2.5mm 和面板联接方式:在背面用三氯甲烷粘接

电机扭矩计算方法

电机转速和扭矩(转矩)计算公式 含义: 1kg= 1千克的物体受到地球的吸引力是牛顿 含义:·m推力点垂直作用在离磨盘中心1米的位置上的力为了。转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」

在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎 (lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部升的发动机大约可发挥的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/=公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大

(汽车行业)汽车低压电器设计规范

低压电器设计规范 编制: 校对: 审核: 批准: 广东亿纬新能源汽车有限公司 2015年9月

目录 前言 (3) 第一章设计原则及流程 (4) 第二章汽车照明与信号系统电路 (30) 第三章汽车空调系统电路 (41) 第四章汽车防抱死制动系统电路 (48) 第五章汽车安全气囊系统电路 (56) 第六章汽车辅助电器电路 (66) 第七章暖风系统结构及工作原理 (78) 附录一各线束之间对接插接件型号、管脚定义 (81) End

前言 自汽车诞生一百多年以来,为改善汽车的使用性能,其机械结构一直处在不断发展和完善的过程。在经历近半个世纪的发展后,汽车在机械结构方面已经非常完善,靠改变传统的机械结构和有关结构参数来提高汽车的性能已临近极限。 而晶体管无触点电子点火装置的问世,彻底解决了机械触点易磨损烧蚀等固有缺陷,汽油发动机进人无触点电子点火时期。 随后大规模集成电路的出现,满足汽车复杂控制问题所需的模拟电路不仅可做得体积小重量轻,且性能优良可靠性高,首先在发动机燃油喷射系统中应用取得成功。根据发动机的工况,把燃油准时精确计量地喷人汽缸是降低发动机排放、提高发动机工作效率的技术关键,通过传统的机械装置解决这一问题已非常困难,电子控制装置为进一步提高发动机的性能提供了新的途径。 与此同时的另一方面,由于汽车保有量剧增,引发了全球性的能源危机、全球性的环境污染以及全球性的温室效应。迫于能源危机和环境污染的压力,世界许多国家都制定了严格的法规,力图降低汽车发动机的排放和提高燃油经济性。这些来自国家政府机构以及社会各个方面的压力,又反过来加速了电子燃油喷射系统、电子点火系统的迅速发展。 今天,发动机电子控制系统已得到非常广泛的应用。入们对交通工具(汽车)的行驶速度、舒适性、安全性以及功能提出了愈来愈严格的要求。70 年代以后,微型计算机在性能和价格方面进入实用阶段,以微处理器为控制单元的数字式电子控制装置在汽车上找到了广阔的应用前景。其电子应用装置从早期的电子燃油喷射、电子点火控制系统,进一步扩展到汽车底盘控制,汽车主动安全性控制,以及故障诊断显示、娱乐和通信等各个领域。由于计算机在汽车上的应用,它改变了汽车传统的机械装置,并增加了许多新的功能,使汽车的驾驶更为简单方便,乘坐更为舒适安全。

汽车规范化设计(2015)

精心整理 汽车规范化设计 (2015年修订) 一、表面处理: 1.1、表面处理的种类: 除油、除锈、磷化、铝件的阳极氧化处理(阿诺金)、铝件的化学氧化处理、镀铬、 镀锌(白锌、兰白锌、彩锌、黑锌、绿锌等)、油漆(烤漆、电泳、光固化、喷塑等) 1.2 T 镀 1 2 3 4 1、橡胶件材料的选用 1.1、缓冲类:橡胶:CA5362-HG/T2196-1991(油箱前减震垫) 1.2、固定类:橡胶:CA5373-HG/T2196-1991(侧盖垫圈、胶套) 1.3、油封类:橡胶BG76632-HG/T2196-1991(减震器内油封) 1.4、耐磨橡胶:橡胶:AA-5373-HG/T2196-1991(链条护卡) 1.5、水管橡胶:橡胶EPM5015-16-GB/T7548-1987(水冷车水管) 1.6、油管橡胶:橡胶NBR2717-7-GB/T9569-1988(油箱出油管) 1.7、轮胎:3.00-18-4PR-GB518-1991 2、铝合金材料的选用 2.1、后扶手:ZL102-SB-T/Ⅱ-GB/T1173-1995

2.2、链轮毂、后制动器:ZL111-T6-Ⅱ-GB/T1173-1995 2.3、上联板、后减震器上部:YL112-GB/T15115-1994 2.4、辐条轮毂:ZL111-GB/T1173-1995 2.5、铝合金轮:ZL101A-T6-Ⅱ-GB/T1173-1995 2.6、铭牌铝板:铝板8A06-O0.5GB/T3880-1997 2.7、铜棒:HPb63-3GB/T5232-1985 3、通用板材、管材的选用 3.1、低碳钢丝:WCD-2.00-GB/T343-1994 碳素弹簧钢丝:钢丝3-11-GB/T342-1997/70-C-GB/T4357-1989 常用三弹簧:3-11-GB/T342-1997/65Mn-C-GB4358-1995 3.2、冷扎薄钢板:薄钢板(常用0.8、1、1.5、2、2.5、3、4) 3.3 钢板 3.4 3.5 3.6 圆钢 3.7 圆钢 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15、制动盘:2Cr13-GB1220-1992 3.16、钢球 4.7625-GB/T308-1984/GCr15-YB/T9-1980 3.17、方向柱:20GB/T699-1999 3.18、下联板:35-GB/T699-1999(锻件,不能用铸钢件) 3.19、反射器底板:PVC(硬),面板PC。 3.20、圆钉φ3×70-YB/T5002-1993 4、塑料: 4.1、聚丙烯:PPH-M-045-GB/T12670-1990 种类:PPH-M-012;PPH-M-022;PPH-M-022-A;PPH-M-045;PPH-M-075;PPH-M-105;PPB-MP-022; 4.2、ABS树脂:ABS-1-XN.095-15-250-2-GB/T12672-1990 种类:ABS-1,GN,095-15-150-2.5;ABS-1,GN,095-15-150-2;

汽车转向系试题

汽车转向系 一、名词解释 1.动力转向 2.转向半径 3.转向系角传动比 4.不可逆转向器 5.可逆转向器 6.安全式转向柱 7.双作用叶片泵8.转向盘自由行程 二、填空题 1.汽车转向系的功用是——和——汽车的行驶方向。 2.汽车转向系按能源的不同分为——和——两大类。 3.常用的转向器有——、——和——等形式。 4.循环球式转向器由——、——、——、——四个主要零件组成。 5,转向轴和转向柱管称为——。 6.动力转向按传能介质分为——和——两种。 7.液压式动力转向装置按液流型式,可分为——和———二o 8.动力转向系主要由——、——、——、——组成。

9.转阀式动力转向器由——、——、————组成。 10.转向油泵可分为——和——两种。 11.双作用卸荷式叶片泵由——、——、——、——组成。 12。转向系由——、——、——、——、——、——、——等组成。 三、选择题 1.转向系角传动比越大,转向时驾驶员越( )。 A.省力 B.费力 C。无影响 2.转向盘自由间隙大,路面传递的力( )。 A.越明显 D.越不明显 C变化不大 3.循环球式转向器是( )转向器。 A.单传动比 B.双传动比 C.三传动比 4.横拉杆两端螺纹旋向( )。

A.都是左旋 B.都是右旋 C.一个左旋,一个右旋 5.转向盘出现“打手”现象,主要是( )。 A.方向盘自由行程小 B.方向盘自由行程大 C.车速太高 6.动力转向装置工作时,转向轮偏角增大时,动力缸内的油压( )。 A.增大 B.减小 C.不变 四、判断题 1.汽车转向时,内侧转向轮的偏转角小于外侧车轮的偏转角。( ) 2.转向系角传动比越大,转向越省力,越灵敏,所以转向系角传动比应越大越好。 ( ) 3.可逆式转向器的正逆效率都高,但在不平路面上行驶时易出现转向盘“打手”现象。

汽车空调自动控制系统设计

汽车空调自动控制系统设计 摘要 随着现代汽车技术的发展,汽车的空调技术已经很发展的成熟,可是随着社会的进步,人们对舒适性的要求也越来越来高了。由于人们的要求提高了,从而反应出现代汽车空调系统的几大缺点,需要进行改进。本设计就是根据几大缺点进行的改进设计,设计提供一种8位单片机为控制核心的汽车自动控制系统。 本文针对现代汽车的不足之处进行改进,采用8位单片机为核心,以数字温度传感器、车速传感器、发动机转速传感器作为测量元件,并实时监测、显示车内温湿度、车速和发动机转速,通过控制电路的通断来达到对汽车空调自动控制功能。另外本文还加了一个延时电路,来控制风扇后关闭。本文还阐述了汽车空调及系统的组成及原理,并完成总体硬件设计和软件的编写。 关键词:汽车空调自动控制, 单片机, 传感器

目录 1 绪论 (1) 1.1 课题来源及产生背景 (1) 1.2 课题研究的目的及意义 (1) 1.3 课题研究的主要内容 (1) 1.4 本课题的主要任务 (1) 2 汽车空调及空调自动控制系统的概述 (2) 2.1 汽车空调的概述 (2) 2.2 汽车空调自动控制系统的工作原理 (3) 3 汽车自动控制系统的总体设计方案 (4) 4 汽车空调控制系统的设计原则 (4) 5 主要设计硬件的选择 (5) 4.1 单片机AT89S52 (5) 4.1.1 主要性能 (5) 4.1.2 功能特性描述 (5) 4.1.3 引脚结构 (6) 4.1.4 方框图 (9) 4.2 数字温湿度传感器DHT11 (11) 4.2.1DHT11的概述 (11) 4.2.2 传感器性能特点 (11) 4.2.3 DHT11的特点 (12) 4.2.4 串行接口(单线双向) (12) 4.3 车速传感器 (14) 6 系统的软件的选择.。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 6.1主程序的设计及流程图.。。。。。。。。。。。。17 7 系统的调试.。。。。。。。。。。。。。。。。。。。。。。。。22 7.1 系统硬件调试.。。。。。。。。。。。。。。。24

相关文档
相关文档 最新文档