文档库 最新最全的文档下载
当前位置:文档库 › HT-L粉煤加压气化炉

HT-L粉煤加压气化炉

HT-L粉煤加压气化炉
HT-L粉煤加压气化炉

航天炉又名HT-L粉煤加压气化炉

长期以来,国内煤化工之所以不能大规模地发展,就是因为国内缺乏自主的粉煤加压气化技术。而进口的技术也不能完全满足国内煤化工的需求——如果选用德士古煤气化技术,无法实现原料煤的本地化;选用壳牌煤气化技术的投资又太大。所以,开发具有自主知识产权的高效、洁净、煤种适应性广的国内煤气化技术,一直是业界的梦想。

气化炉的核心部件是气化炉燃烧喷嘴,该喷嘴必须具有超强的耐高温特性,这个特性要实现起来难度较大。而与此类似,火箭上天时喷嘴所经受的温度也很高,而且比气化炉燃烧喷嘴要经受的温度高得多。如果把航天技术“嫁接”到煤化工产业,那就有点像杀鸡用上宰牛刀,技术难度上是没有问题的。

航天炉的主要特点是具有较高的热效率(可达95%)和碳转化率(可达99%);气化炉为水冷壁结构,能承受1500℃至1700℃的高温;对煤种要求低,可实现原料的本地化;拥有完全自主知识产权,专利费用低;关键设备已经全部国产化,投资少,生产成本低。据专家测算,应用航天炉建设年处理原煤25万吨的气化工业装置,一次性投资可比壳牌气化炉少3亿元,比德士古气化炉少5440万元;每年的运行和维修费用比壳牌气化炉少2500

万元,比德士古气化炉少500万元。

它与壳牌、德士古等国际同类装置相比,有三大优势:一是投资少,比同等规模投资节省三分之一;二是工期短,比壳牌炉建设时间缩短三分之一;三是操作程序简便,适应中国煤化工产业的实际,易于大面积推广。

HT-L粉煤气化煤质要求

HT-L粉煤气化工艺对煤种的适应性广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可作为气化的原料。即使是高灰分、高水份、高硫的煤种也能使用。但从经济运行角度考虑,并非所有煤种都能够获得好的经济效益。因此,使用者应该认真细致地选择合适的煤种,在满足设计要求的前提下,保证装置的稳定运行。

HT-L粉煤气化装置对煤种的一般要求

煤种分析项目数据范围

总水(AR;%) 4.5~30.7

灰分(%;MF) 5.7~35.0

含氧(%;MF) 5.3~16.3

总硫(%;MF)0.3~5.2

总氯(%;MF)0.01~0.41

Na2O(%;on Ash)0.1~3.1

K2O(%; on Ash) 0.1~3.3

CaO(%; on Ash) 1.2~23.7

Fe2O3(on Ash) 5.9~27.8

SiO2(%; on Ash) 24.9~58.9

AL2O3(%; on Ash) 9.5~32.6

高热值(MJ/kg;MF)22.8~33.1

1、水分

煤中水分包括外表水和内存水。外表水是煤粒表面的水分,来源于机械采煤的**,露天放置或运输中的雨水,防止自然飞灰的洒水。煤的外表水对气化虽然没有影响,但外表水高会增加运输费用。外表水分不稳定还易造成煤干燥系统热能量消耗的波动。外表水突然增大,煤干燥系统为保证如炉中水储量的稳定,就要增大燃料的消耗,造成原料浪费及污染环境。外水的高低与采煤、贮存、运输方式有关,通过人的努力是可以改变的。因此应尽量降低外水表含量,以节省开支且方便操作。

内存水是煤的内在水分,即煤的结合水,以化学态形式存在于煤中。煤的内水高,同样会增加运输费用。更重要的是,去除内水要比去除外表水消耗更多的加热燃料。因此,内水越高,送入气化炉的粉煤中含水量会增高,水分气化所消耗的能量增多,粗合成气中的有效气体成份降低,气化效率因此降低,煤耗增加。

2、灰分

灰分是煤中不直接参加气化反应的惰性物质,但灰的熔化却要消耗煤在气化反应过程中的大量热。煤灰分含量高,则气化后的有效气体成分就少,送入气化炉同质量的煤,灰分高的煤产气量少,灰渣量大,能耗高。根据资料介绍。在同样反应条件下,灰分增加1%,氧增大0.7%~0.8%,煤耗增大1.3%~1.5%,灰分越高气化煤耗、氧耗越高,灰渣对炉内构件的冲刷磨蚀越快;另外,灰渣量越大,对输煤,气化炉灰渣水处理系统的影响越大,气化炉及灰渣处理的系统除渣负荷也就越重,对管道和设备的磨蚀也随之加快。严重时会影响气化炉

的正常运行。但由于HT-L粉煤气化装置是采用冷壁结构,以渣抗渣,如果灰分含量太低,气化炉的热损大,且不利于炉壁的抗渣保护,影响气化炉的使用寿命。

3、灰熔点及灰组成

HT-L粉煤气化装置采用液态排渣,为保证气化炉排渣顺利。正常操作温度应高于灰熔点FT(流动温度)约200℃。如煤灰熔点过高,势必要求提高气化操作温度。提高操作温度虽然有利于碳转化及气化炉排渣,但操作温度过高,辐射室水冷壁散热量增大,锅炉蒸汽量也大幅提高,使得冷煤气效率下降,从而影响气化炉运行的经济性。因此选择灰熔点低的煤种,可以降低操作温度,提高煤的利用效率。另外,如果煤的灰熔点低,操作温度就可以降低,与高灰熔点煤相比较,无需消耗过多氧与碳反应生成CO2来维持较高的操作温度。有效气体的产率就高。

对高灰熔点煤,一般可以通过添加助熔剂来改变煤灰的熔融特性,以保证气化炉的正常运转。煤灰主要是由SiO2、AL2O3、CaO、MgO、TiO2及Na2O、K2O等组成。一般而言,煤灰中酸性组分SiO2、AL2O3、TiO2和碱性组分Fe2O3、CaO、MgO、Na2O等的比值越大,灰熔点越高,煤灰组成一般对气化反应无多大影响,但其中某些组分含量过高会影响煤灰的熔融特性,造成气化炉渣口排渣不畅或渣口堵塞。

循环流化床讲解

一、循环流化床锅炉的原理 (一)循环流化床的工作原理 1.流化态过程 当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。此时,对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触而维持它的空间位置,相反的,在失去了以前的机械支撑后,每个颗粒可在床层中自由运动;就整个床层而言,具有了许多类似流体的性质。这种状态就被称为流态化。颗粒床层从静止转变为流态化时的最低速度,称为临界流化速度。 快速流态化流体动力特性的形成对循环流化床是至关重要的。 2.循环流化床锅炉的基本工作原理 高温炉膛的燃料在高速气流的作用下,以沸腾悬浮状态(流态化)进行燃烧,由气流带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛。一次风由床底部引人以决定流化速度,二次风由给煤口上部送人,以确保煤粒在悬浮段充分燃烧。炉内热交换主要通过悬浮段周围的膜式水冷壁进行。 (二)流化床燃烧设备的主要类型 流化床操作起初主要应用在化工领域,本世纪60年代开始,流化床被用于煤的燃烧。并且很快成为三种主要燃烧方式之一,即固定床燃烧、流化床燃烧和悬浮燃烧。流化床燃烧

过程的理论和实践也大大推动了流态化学科的发展。目前流化床燃烧已成为流态化的主要应用领域之一,并愈来愈得到人们的重视。 流化床燃烧设备按流体动力特性可分为鼓泡流化床锅炉和循环流化床锅炉,按工作条件又可分为常压和增压流化床锅炉。这样流化床燃烧锅炉可分为常压鼓泡流化床锅炉、常压循环流化床锅炉、增压鼓泡流化床锅炉和增压循环流化床锅炉。其中前三类已得到工业应用,增压循环流化床锅炉正在工业示范阶段。 循环流化床又可分为有和没有外部热交换器两大类。(如图a和b) (三)循环流化床锅炉的特点 1.循环流化床锅炉的主要工作条件 2.循环流化床锅炉的特点 循环流化床锅炉可分为两个部分。第一部分由炉膛(快速流化床)、气固物料分离设备、固体物料再循环设备和外置热交换器(有些循环流化床锅炉没有该设备)等组成,上述部分形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、再热器、省煤器和空气预热器等,与常规火炬燃烧锅炉相近。 循环流化床燃烧锅炉的基本特点如下: (1)燃料适应性广,几乎可燃烧一切煤种;(2)低污染燃烧,脱硫效率高达90% (3)燃烧热强度大,炉膛体积比一般常规锅炉小得多;(4)床内传热系数高,可减少受热面的金属磨损,使受热面布置紧凑;(5)负荷调节性能好、范围大(30%-100%),低负荷下稳定燃烧特性好;(6)灰渣可综合利用;(7)循环流化床锅炉电耗比煤粉炉小10%;(8)只需将煤破

科林粉煤气化技术

科林粉煤气化技术(CCG)简介 德国科林工业集团 二零一零年七月 1. 公司简介 德国科林工业集团是全球著名的煤气化、煤干燥和生物质气化技术提供商。该集团是前东德燃料研究所 (DBI)和黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)气化厂最大的后裔公司。 科林(CHOREN)名称的由来是:“C-Carbon-碳H-Hydrogen-氢O-Oxygen- 氧REN-RENewable-可再生”。 科林集团总部位于德国弗莱贝格市,原东德燃料研究所旧址,著名的黑水泵气化厂就在附近。戴姆勒奔驰汽车公司、德国大众汽车公司为科林的战略投资者。

目前集团拥有近300名研发及工程技术人员,其中主要技术骨干为前徳燃所和黑水泵厂的员工。科林公司的发起人Wolf博士即为前东徳燃料研究所研发部部长,煤气化运行总监贡瓦先生是前黑水泵气化厂厂运行主任。 科林集团拥有40多年气流床气化技术研发、设计、设备制造、建设以及运行的经验,可以为客户提供粉煤气化技术(CCG)和生物质气化技术(Carbo-V®)从工艺包设计到关键设备制造和开车运行等一系列综合性服务。 此外,科林集团也是蒸汽流化床煤干燥技术的创始人和专利持有人,在全世界煤干燥领域,特别是褐煤干燥领域具有多年成功运行经验。 科林能化技术(北京)有限公司是科林集团的全资子公司,负责集团在亚太地区的业务。 2. 技术来源及技术开发背景 科林高压干粉煤气化炉简称为CCG炉(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用当地褐煤提供城市燃气。1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投煤量为720吨)的水冷壁煤气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。之后改用工业废液废油作为进料,继续运行至今。燃料研究所和黑水泵工厂的技术骨干后来发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出的问题进行了设计更改和完善,推出了一套完整优化的新气化技术 - CCG。 3. CCG技术介绍 (A)气化工艺 CCG气化工艺过程主要是由给料、气化与激冷系统组成。原料煤被碾磨为100%<200μ,90%<65μ的粒度后, 经过干燥, 通过浓相气流输入系统送至烧嘴,在 反应室内与工业氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

我国循环流化床煤气化技术工艺研究现状

我国循环流化床煤气化技术工艺研究现状 张进 (化工学院能源化学工程14-1班 06142588) 摘要:第一台工业流化床自1954年投产以来,在国内外得到了迅速的推广与发展。近年来,使用循环流化床(CFB)做气化炉的工艺得到了迅速发展,使燃烧效率、碳转换率等得到了较明显的提高。在国内煤气化领域中,主要用流化床气化炉来气化碎煤。流化床气化炉在气化高活性、低阶煤种方面,具有其它煤气化技术不可比拟的优势。[1]综述了循环流化床煤气化工艺流程,并对循环流化床气化的应用情况和工艺特点加以说明。 关键词:流化床煤气化循环流化床气化炉工艺特点 煤炭气化是清洁煤利用技术之一。流化床煤气化技术作为一种清洁煤气化技术更受到了国内外的普遍重视。循环流化床技术是近年来在沸腾炉上发展起来的一项新技术。在环保、能源的充分利用、热效率的提高等方面都比沸腾炉效果好,而且在气化高活性、低阶煤种方面,具有其它煤气化技术不可比拟的优势。[1]发展循环流化床气化技术是适合我国国情的,对满足我国城市民用煤气和工业用煤气的需求、发展清洁煤利用技术有重大作用。 1循环流化床煤气化工艺流程 原料煤经皮带运输至破碎机粉碎至4mm以下,送入煤仓备用。煤粉在开车前将经给料、输送机送入立管中。开车过程中,细煤粉经给料器、斗式提升机送到计量煤斗,经升压后进入料煤斗,由此稳定地经旋转阀、水冷螺旋给料器进入进料管,并送入循环流化床气化炉下部。过程中所用空气(或氧气)来自压缩机,经预热后与废热锅炉所产生的水蒸气混合,由炉底经分布板进入炉内。如有必要可以将气化剂的一部分做为二次气化剂由炉的中下部送入。生成的煤气由气化炉顶部引出,粗煤气中含有大量的未转化碳颗粒和水蒸气。经过分离系统分离后,95%以上的颗粒收集下落入立管中,经返料系统返回到气化炉底部。此外,在喇叭状炉床内还形成物料的内循环。由于新鲜原料、气化剂和大多数炉灰的循环物质之间的迅速混合,气化反应在气化炉底部附近立即开始进行。循环物料和新加入的原料之比可高达40,因此碳转化率较高。底部灰经水冷螺旋出料器,由旋转阀排入灰仓送出界区。 粗煤气经废热锅炉及列管或空气预热器回收热量后,温度降低,再进入水喷淋洗涤塔。经过进一步降温及除尘后,送入煤气储罐。随着高温净化技术的不断发展,粗煤气可以不经过换热或少部分换热后,通过高温净化系统除尘、脱硫后,

航天炉煤气化技术运行情况

航天炉煤气化技术运行情况 航天, 煤气化, 技术, 运行 HT-L煤气化技术的生产应用 HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。现将该工艺在煤化工项目中的应用介绍如下: 一、工艺介绍 1、磨煤与干燥系统 磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。 2、加压输送系统 加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。 3、气化及净化 烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。设计气化温度1400-1600℃,气化压力4.0MPa。热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。 4、渣及灰水处理系统 渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。 二、技术特点 1、原料的适应性 据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。龙宇生产用过两种煤,神木炭厂和永煤新桥,工况稳定,有效气含量基本能够达到设计要求,但由于神木炭厂的煤灰分含量低(<10%),挂渣情况不是太好,炉膛上部还可以,下部基本挂不上渣。永煤新桥煤运行时间较短,还不能完全反应其结渣性。附神木炭厂和永煤新桥

粉煤加压气化技术的开发现状和应用前景

第1期(总第90期)煤 化 工No.1(Tota l No.90) 2000年2月 Coa l Che m ica l I ndustry Feb.2000 干法粉煤加压气化技术的开发现状和应用前景 门长贵 西北化工研究院 710600 摘 要 干法粉煤加压气化是一种高效低污染的先进煤气化方法。本文简要介绍了干法粉煤加压气化的工艺原理、技术特点及开发现状,并指出了这种煤气化工艺技术在联合循环发电和煤化工等领域内的应用前景。 关键词 干法粉煤气化 技术特点 开发现状 应用前景 引 言 目前我国一次能源消费中煤炭约占75%,在今后相当长的一段时间内煤炭仍是我国的主要能源,国家已把煤的高效、洁净利用技术列入21世纪的发展计划,因此发展先进的煤气化技术是当前的重要课题。 近年来,为了减少环境污染,提高煤炭的利用率,增加装置的生产能力,降低氧耗和煤耗,拓宽原料煤种的使用范围,充分利用煤炭资源,先后成功地开发出了新一代先进的煤气化工艺技术,有代表性的主要为鲁奇公司的碎煤移动床熔渣气化(B GL)工艺,水煤浆进料的T exaco气化工艺,干法粉煤进料的SCGP(Shell)气化工艺和P renflo、GSP工艺。上述几种煤气化工艺中,干法粉煤进料的加压气化工艺因其技术经济性具有明显的优势和较强的竞争力,预计它是今后煤气化工艺技术的发展方向。 1 干法气化的原理及技术特点 原料煤经破碎后在热风干燥的磨机内磨制成< 100Λm(90%)的煤粉,由常压料斗进入加压料斗,再由高压惰性载气送至气化炉喷嘴,来自空分的高压氧气预热后与过热蒸汽混合送入喷嘴。煤粉、氧气和蒸汽在气化炉高温高压的条件下发生碳的部分氧化反应,生成CO与H2总含量大于90%的高温煤气,经废热回收、除尘洗涤后的粗合成气送后序工段。 干法气化工艺具有如下技术特点: (1)对原料煤的适应性广,可气化褐煤、烟煤、无烟煤及石油焦。对煤的反应活性几乎没有要求,对高灰熔点、高灰分、高水分、高含硫量的煤种同样也适应。 (2)氧耗和煤耗低,与湿法进料的水煤浆气化工艺相比较,氧气消耗降低15%~25%,原料煤消耗降低10%~15%。 (3)单位重量的原料煤可以多产生10%的合成气,合成气中的有效气体成分(CO+H2)高达94%左右。 (4)原料煤能量的83%转换在合成气中(水煤浆气化工艺只有70%~76%),约15%的能量被回收为蒸汽。由此可见干法气化的热效率高。 (5)干法气化工艺的气化炉一般采用水冷壁结构,以渣抗渣,无昂贵的耐火砖衬里,水煤浆气化工艺气化炉耐火砖的费用约为10美元 tN H3,因多喷嘴操作,干法工艺气化炉运行安全可靠。 (6)单台气化炉生产能力大,目前已投入运行的气化炉操作压力3.0M Pa,日处理煤量2000t。如Shell干法进料气化工艺可采用多喷嘴加料(4只~8只),喷嘴的设计寿命可保证达到8000h,气化装置可以长周期运行。 (7)碳转化率高,可达99%,气化炉排出的熔渣为玻璃状的颗粒,对环境没有污染。气化污水中不含酚、氰、焦油等有害物质,容易处理,可做到零排放。 (8)工艺操作采用先进的控制系统,自动化程度高,利用专有的计算机控制技术可使工艺操作处于最佳状态下运行。 2 干法气化技术的现状 第一代干法粉煤气化技术是K2T炉,目前在南非和印度等国仍有部分装置在运行,该炉型为常压气化,已基本停止发展。我国80年代由西北化工研究院在临潼完成了K2T炉的中间试验,后在山东黄

粉煤加压气化技术

粉煤加压气化技术简介 一、背景 “九五”期间华东理工大学、兖矿鲁南化肥厂(水煤浆气化及煤化工国家工程研究中心)、中国天辰化学工程公司共同承担了国家“十五”科技攻关计划课题“粉煤加压气化制合成气新技术研究与开发”,建设具有自主知识产权的粉煤加压气化中试装置。装置处理能力为15~45吨煤/天,操作压力2.0~2.5Mpa,操作温度1300~1400℃。 该课题于2001年年底启动,2002年10月完成研究开发阶段中期评估,中试装置进入设计施工阶段。2004年7月装置正式投运,首次在国内展示了粉煤加压气化技术的运行结果,填补了国内空白,技术指标达到国际先进水平。中试装置于2004年12月6日至9日顺利通过科技部组织的现场72 小时运行专家考核,2004年12月21日于北京通过科技部主持的课题专家验收。同年,该成果入选2004年度煤炭工业十大科学技术成果。 二、装置流程与技术优势 1、整个工艺流程如图1,具体流程为:原煤除杂后送入磨煤机破碎,同时由经过加热的低压氮气将其干燥,制备出合格煤粉存于料仓中。加热用低压氮气大部分可循环使用。料仓中的煤粉先后在低压氮气和高压氮气的输送下,通过气化喷嘴进入气化炉。气化剂氧气、蒸汽也通过气化喷嘴进入气化炉,并在高温高压下与煤粉进行气化反应。出气化炉的高温合成气经激冷、洗涤后并入造气车间合成气管线。熔融灰渣在气化炉激冷室中被激冷固化,经锁斗收集,定期排放。洗涤塔出来的黑水经过二级闪蒸,水蒸汽及一部分溶解在黑水中的酸性气CO 2、H2S 等被迅速闪蒸出来,闪蒸气经冷凝、分离后与气化分厂生产系统的酸性气一并处理,闪蒸黑水经换热器冷却后排入地沟,送气化分厂生产装置的污水处理系统。

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

Dup(1)HT-L粉煤气化工艺

北 京 航 天 动 力 研 究 所 北京航天石化技术装备工程公司
HT–L煤气化工艺介绍
中国航天科技集团公司

HT–L煤气化工艺系统介绍
1、主要技术路线:干煤粉作原料 采用激冷流程 ? ? ? ? ? ? 主要特点: 技术先进,具有的热效率(可达95%) ,碳转化率高(可达99%); 气化炉为水冷壁结构结构,气化温度能到1500至1700度; 对煤种要求低,可实现原料本地化; 具有自主知识产权,专利费用低; 关键设备全部国产化,投资少。
气化炉专利号: 发明申请号:200510053511.0 实用新型申请号:200520005280.1 烧嘴专利: 发明申请号:200510079701.X 实用新型申请号:200520110717.8 破渣机专利: 发明申请号:03141353.6 实用新型申请号:03272196.X
已申请专利
2006-7-26

HT–L煤气化工艺系统介绍
2、工艺流程:
备煤系统
原料煤 S-1103 粉煤过滤器 V-1302 中压汽包 P-1301A/B 汽包循环泵 V-1201 粉煤贮仓 E-1309 氧气加热器 V-1309 氧气缓冲罐 中压蒸汽
气化及合成气洗涤系统
锅炉给水 中压过热蒸汽 氧气 粗合成气去火炬 粗合成气 脱盐水 闪蒸气去火炬
V-1101 原料煤贮仓 X-1101 称重给煤机
C-1301 洗涤塔 V-1204 粉煤锁斗 F-1301 气化炉
渣及灰水处理系统
高压氮气
A-1101 磨煤机 F-1101 惰性气体发生器 空气 燃料气 渣 V-1303 渣锁斗
冷凝液来自变换 V-1401 高压闪蒸罐 V-1404 真空闪蒸罐 V-1408 除氧器 低压饱和蒸汽 S-1402 过滤机 滤饼
V-1205 粉煤给料罐
三条相同 的进煤管 线
Q-1401/V-1411 捞渣机
T-1401 灰水罐
S-1401 沉降槽
污水
2006-7-26

煤气化工艺方案的选择

初探煤气化工艺方案的选择 1 几种煤气化工艺及特点介绍 煤气化是煤化工的龙头技术,是煤洁净利用技术的重要环节,C1化学的基础。煤气化技术是发展煤基化学品、煤基液体燃料、联合循环发电、多联产系统、制氢、燃料电池等过程工业的基础,是这些行业的共性技术、关键技术和龙头技术,对我国经济和保障国家安全具有重要的战略意义。 煤气化过程采用的气化炉炉型,目前主要有以下3种: 固定床﹙UGI、鲁奇﹚; 流化床﹙灰熔聚、UGAS、鲁奇CFB、温克勒、KBR、恩德等﹚; 气流床﹙Texaco、Shell、GSP、PRENFLOW、国产新型水煤浆、二段干煤粉、航天炉等﹚。 1.1固定床制气工艺 1.1.1常压固定床间歇制气工艺 工艺特点是:常压气化,固体加料10-50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1000℃。代表炉型有美国的U.G.I型和前苏联的U.G.Ⅱ型。工艺过程都比较熟悉,这里从略。 技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。

技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气、废水排放多,污染严重,面临淘汰。 1.1.2常压固定床连续制气 常压固定床连续制气工艺的技术特点:常压气化,固体加料,床体排渣,连续制气,富氧空气﹙氧占50%﹚或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。 技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80~84% 。 技术缺点:需要空分装置,投资比较大。 固定床连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。 1.1.3 固定床加压气化工艺:前西德鲁奇公司(Lurgi)开发。 工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。 技术优点:加压气化3.1 MPa,生产强度大,碳转化率高约90%。 技术缺点:反应温度略低700~1100 ℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。 1.2 流化床工化工艺 流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更允分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。气流床反应物料之间的传热和传质速率更快,过程更容易控制,生产能力也有了较大的提高。下面就流化床气化工艺发展过程中的几种工艺的技术特点分别作一下介绍。

HT-L粉煤加压气化炉

航天炉又名HT-L粉煤加压气化炉 长期以来,国内煤化工之所以不能大规模地发展,就是因为国内缺乏自主的粉煤加压气化技术。而进口的技术也不能完全满足国内煤化工的需求——如果选用德士古煤气化技术,无法实现原料煤的本地化;选用壳牌煤气化技术的投资又太大。所以,开发具有自主知识产权的高效、洁净、煤种适应性广的国内煤气化技术,一直是业界的梦想。 气化炉的核心部件是气化炉燃烧喷嘴,该喷嘴必须具有超强的耐高温特性,这个特性要实现起来难度较大。而与此类似,火箭上天时喷嘴所经受的温度也很高,而且比气化炉燃烧喷嘴要经受的温度高得多。如果把航天技术“嫁接”到煤化工产业,那就有点像杀鸡用上宰牛刀,技术难度上是没有问题的。 航天炉的主要特点是具有较高的热效率(可达95%)和碳转化率(可达99%);气化炉为水冷壁结构,能承受1500℃至1700℃的高温;对煤种要求低,可实现原料的本地化;拥有完全自主知识产权,专利费用低;关键设备已经全部国产化,投资少,生产成本低。据专家测算,应用航天炉建设年处理原煤25万吨的气化工业装置,一次性投资可比壳牌气化炉少3亿元,比德士古气化炉少5440万元;每年的运行和维修费用比壳牌气化炉少2500 万元,比德士古气化炉少500万元。 它与壳牌、德士古等国际同类装置相比,有三大优势:一是投资少,比同等规模投资节省三分之一;二是工期短,比壳牌炉建设时间缩短三分之一;三是操作程序简便,适应中国煤化工产业的实际,易于大面积推广。 HT-L粉煤气化煤质要求 HT-L粉煤气化工艺对煤种的适应性广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可作为气化的原料。即使是高灰分、高水份、高硫的煤种也能使用。但从经济运行角度考虑,并非所有煤种都能够获得好的经济效益。因此,使用者应该认真细致地选择合适的煤种,在满足设计要求的前提下,保证装置的稳定运行。 HT-L粉煤气化装置对煤种的一般要求 煤种分析项目数据范围 总水(AR;%) 4.5~30.7

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

常压循环流化床_CFB_气化技术概况

专论与综述 常压循环流化床(CFB)气化技术概况 佟浚芳,郭新宇 (国家化工行业生产力促进中心,江苏昆山 215337) [摘 要]介绍鲁奇公司的常压循环流化床(CFB)气化技术开发过程,以湿法为例介绍CF B 生产合成气的基本流程。该工艺具有原料范围广,系统温度均匀,操作温度、压力低,氧耗低等特点,特别适合于日处理煤300~500t 的装置。进行了U GI 常压气化法、T ex aco 加压气化法和CFB 气化法三种方法的工艺技术比较。 [关键词]煤气化;合成气;循环流化床[中图分类号]T Q546 2 [文献标识码]A [文章编号]1004 9932(2003)02 0001 06 [收稿日期]2002 12 05 [作者简介]佟浚芳(1932-),女,辽宁沈阳人,高级工程师,长期从事煤气化研究工作。 A survey of atmospheric circulating fluidied bed (CF B ) gasification technology T ONG Jun fang,GU O Xin yu (China N ational Chemical I ndustry Pr oductive Force Pr omoted Center ,K unshan 215337,China ) Abstract :This article presents the devoloping process of Lurg i atmospheric circulating fluidized bed (CFB)g asification technology and the principle process flow of CFB to produce synthetic gas w ith an example of w et process.This process takes the characteristics of w ide range of feedstock,even tem perature in system,low operation tem perature and pressure,low oxygen consumption,etc.,being particularly applicable for units of 300~500t d coal processing capacity.It also makes a comparison on process technology of U GI atmospheric g asification process,Texaco pressurized gasification process and CFB gasification process.Key words :coal g asification;sy nthetic g as;circulating fluidized bed 传统的流态化是指细小的固体与具有一定流速的流体组成两相体系统,其中固体颗粒被上行的流体支撑而形成悬浮体系统,它的流动行为在许多方面具有与真实液体相同的性质,是一种流、固两相高效接触的技术。流态化技术已应用于许多工艺流程,由于工艺条件的差异,不同工艺过程对流态化行为又有其特殊的要求,循环流态化就是其中的一类。 循环流态化是指以介于鼓泡床和输送床典型 流速之间的流体速度使流、固两相并流向上的流动过程,过程中固体颗粒内的流动速度明显低于流体速度,致使流、固相间具有的滑动速度最大。这种伴有固体颗粒循环高速流动的流、固相接触体系具有最大的接触效率,并能获得较高的传热和传质速度。这对某些工艺过程能顺利、有效地进行极为重要。循环流化床反应器应用于煤的燃烧或气化工艺,由于煤粒在系统内不断循环,提高了气、固相接触效率,使煤燃烧或气化反应快捷而又完全,同时也满足了反应温度均匀的要求, 解决了煤的粘结问题。常压循环流化床气化技术正是这种高效、无气泡的气、固相接触技术的体现,它既有流化床内部形成的内循环,又有被气 第2期2003年3月 中 氮 肥 M Sized N itrogenous Fertilizer Progress No 2M ar 2003

13种煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下

的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。至今在国内已建和在建的装置共有9套,14台气化炉。属流化床气化炉,床层温度在1000℃左右。目前最大的气化炉,用富氧气化,最大产气量为40000m3/h半水煤气。缺点是气化压力为常压,单炉气化能力还比较低,产品气中CH4含量高达1.5%-2.5%,飞灰量大、对环境的污染及飞灰综合利用问题有待解决。 6、GE德士古(Texaco)水煤浆加压气化技术 GE德士古(Texaco)水煤浆加压气化技术,属气流床加压气化技术,原料煤经磨制成水煤浆后用泵送进气化炉顶部单烧嘴下行制气,原料煤运输、制浆、泵送入系统比Shell和GSP等干粉煤加压气化要简单得多,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉日投煤量为2000t,国内已投产的最大气化炉日投煤量为1000t。国内设计中的气化炉能力最大为1600t/d。该技术对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能作气化原料。但要求原料煤含灰量较低,煤中含灰量由20%降至6%,可节省煤耗5%左右,氧耗10%左右。另外,要求煤的灰熔点低。由于耐火砖衬里受高温抗渣的限制,一般要求煤的灰熔点在还原性气氛下的T4<1300 ℃,对于灰熔点稍高的煤,可以添加石灰石作助熔剂,降低灰熔点。还要求灰渣粘温特性好,粘温变化平稳,煤的成浆性能要好。气化压力从2.7、4.0、6.5到8.5 MPa 皆有工业性生产装置在稳定长周期运行,装置建成投产后即可正常稳定生产。气化系统的热利用有两种形式,一种是废热锅炉型,可回收煤气中的显热,副产高

气化炉比较

1 煤炭气化是煤炭清洁利用的重要途径 中国煤炭的特点是高硫、高灰煤比重大。全国原煤平均灰分含量17.6%左右,平均硫分含量1.10%,其中13%的原煤含硫量高于2%。西南地区煤炭中含硫量大于2%的占60%。中国煤入洗率低,约80%原煤用于直接燃烧,燃煤排放出大量有害气体和烟灰,使生态环境遭到严重破坏。统计表明,中国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx。来源于煤的燃烧。 同时,中国煤炭利用效率低。除在大型和负荷稳定的燃烧工况下,其燃烧效率与石油和天然气相近外,其它非稳定负荷的燃烧过程热效率均低于石油和天然气,其平均利用效率仅 29%。提高中国煤炭利用效率、减少煤炭燃烧带来的环境污染的根本途径是研制和推广应用煤炭优比利用技术。发展煤炭气化技术是减少环境污染、节能、发展工业的重要措施。中国适于气化的煤炭资源十分丰富,可适用于发生炉气化的褐煤、不粘煤、长焰煤和弱粘煤的储量占全国煤炭总储量的40%之多。此外,还有适用于水煤气发生炉的无烟煤,以及流化床气化炉所用的细、粉煤和煤泥浆等。煤炭气化是中国煤炭清洁利用的重要途径之一。 煤气化技术,尤其是高压、大容量气流床气化技术在国际上已经进入商业化阶段,显示了良好的经济与社会效益,代表着发展趋势。中国"以煤代油"的能源政策促进了以煤制取城市、工业燃气技术的发展和其他相关技术的开发。近20年来,中国煤气化科研和先进技术开发方面已取得了引人注目的成效。 2 煤气化技术 以煤炭为原料,采用空气、氧气、CO2。和水蒸气为气化剂,在气化炉内进行煤的气化反应,可以生产出不同组分不同热值的煤气。为了提高煤气化的气化率和气化炉气化强度,改善环境,70年代以来发达国家加快了新一代煤气化技术的开发和工业化进程。总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。固态床、流化床、气流床等几种不同类型的煤气化技术均取得了较大的进展和较好的效果。 2.1 固定床 固定床(慢移动床),常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有22台炉子,多用于生产城市煤气;如以烟煤为原料用于生产合成气,CH4蒸汽转化工段(例如山西潞城引进装置)。该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。 2.1.1 固定床间歇式气化炉(UGI) 以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低原料单一、能耗高,间歇制气过程中,大量吹

煤气化技术特点

煤气化技术特点 第一部分:固定层制气工艺。 1- 1 常压固定层间歇制气工艺: 工艺特点是:常压气化,固体加料10- 50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1100℃。代表炉型有美国的U.G.I 型和前苏联的U.G.Ⅱ型。工艺过程从略。 技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。 技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气废水排放多,污染严重,面临淘汰。 1- 2 常压固定层连续制气。 常压固定层连续制气工艺的技术特点:常压气化,固体加料,固体排渣,连续制气,富氧空气(氧占50%)或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。 技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80- 84%。 技术缺点:需要空分装置,投资比较大。 固定层连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。 1- 3 固定层加压气化工艺:前西德鲁奇公司(Lurgi)开发。 工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。 技术优点:加压气化3.1Ma,生产强度大,碳转化率高约90%。 技术缺点:反应温度略低700~1100℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。 第二部分:流化床气化工艺。 流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更充分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。气流床反应物料之间的传热和传质速率更快,过程更容易控制,生产能力也有了较大的提高。下面就流化床气化工艺发展过程中的几种工艺的技术特点分别作一下介绍。 2- 1 温克勒(Winkler)常压流化床气化工艺:是前西德莱茵褐煤公司和伍德公司二十世纪二十年代开发的,是世界上最早的流化床气化工艺。 工艺特点:常压气化,粉煤进料粒度小于9.5mm,干法排渣,氧气或空气加蒸汽作气化剂,炉体上部有分离空间,使煤气当中夹带的半焦和灰颗粒分离,并且用二次空气加蒸汽进一步气化,气化温度815~1100℃,碳转化率70~73%,适用煤种:褐煤、次烟煤、弱粘结性煤。 主要技术问题:炉底的炉箅经常出现局部高温,结渣,偏炉现象。炉出口气体带出物较多,排灰的含碳量较高。 2- 2 恩德常压流化床气化工艺:是朝鲜恩德郡七.七化工厂二十世纪六十年代在常压温克勒气化工艺的基础上开发的。 工艺特点:常压气化,粉煤进料粒度小于10mm,干法排渣,氧气或空气加蒸汽作气化

科林气化技术

科林气化技术

科林CCG粉煤加压气化技术 技术拥有单位:德国科林工业技术有限责任公司 2014-5-20 来源:《中国煤化工》编辑部作者:德国 科林工业技术有限责任公司 德国科林工业技术有限责任公司(简称科林公司)是世界著名的洁净煤利用技术的研发者、拥有者及工业解决方案供应商,全部拥有科林粉煤气化(CHOREN Coal Gasification)技术。科林的前身是欧洲洁净煤利用技术领域的先驱和领导者——前德国燃料研究所(DBI)。上世纪90年代,前德国燃料研究所研发部部长Wolf博士创立了科林,科林名称的由来是:“C-Carbon-碳,H-Hydrogen-氢,O-Oxygen-氧,REN-RENewable-可再生”。科林核心技术团队来自于前德国燃料研究所及黑水泵气化厂。公司总部及技术研发工程中心位于德国萨克森州的德累斯顿。科林在干粉煤气流床气化技术领域拥有40多年的研发、设计、制造、建设及运行经验,能够为业主提供全方位、立体化的煤气化解决方案。 科林CCG粉煤气化工艺过程主要是由给料、气化与激冷等系统组成,采用干粉煤加压进料,以纯氧作为氧化剂(部分煤种需添加少量水蒸气),在气化室内在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气,并实现高温液态排渣。原料气化和达到气体平衡所需的热量由原料碳氧化成一氧化碳和二氧化碳所释放。气化温度的选择主要由煤的熔融特性及粘温特性确定,气化压力的确定主要取决于产品煤气的利用工艺,通常为4.0MPa。通过科林CCG气化工艺可以把原煤、石油焦等转化为清洁的、高附加值的一氧化碳和氢气,可用于生产合成氨、甲醇、合成油、合成天然气等化工产品,还可用于发电或者生产城市煤气。

相关文档
相关文档 最新文档