文档库 最新最全的文档下载
当前位置:文档库 › 涂装烘干室热平衡计算

涂装烘干室热平衡计算

涂装烘干室热平衡计算
涂装烘干室热平衡计算

涂装烘干室热平衡计算

(一)工作时热耗

工作时单位时间的热耗量计算如下:

Q=k(Q1+Q2+Q3+Q4+Q5+Q6+Q7)

式中:Q——总热耗(J/h)

Q1——烘干室外壁散热量(J/h)

Q2——烘干室地面散热量(J/h)

Q3——加热工件和输送机移动部分的热损(J/h)

Q4——加热涂料(或水分)蒸发的热量(J/h)

Q5——加热空气耗热量(J/h)

Q6——热风循环耗热量(J/h)

Q7——烘干室门热损量(J/h)

k——储备系数。(取1.1—1.3)

1.烘干室外壁散热量

Q1=K×F(t-t0)

式中:K——烘干室保温板的传热系数(J/m2·h·℃),取5800。

F——烘干室保温板的表面积m2(不含底面积)

t——工作温度80(℃)

t0——车间环境温度,取20℃

涂装烘干室为单行程式,尺寸:长×宽×高为15000mm(L)×3000mm (W)×3000mm(H)。

Q1=K×F(t-t0)

=5800×153(80-20)

=53244KJ/h

2.烘干室地面散热量

Q2=K1×F1(t-t0)

式中:K1——地面的传热系数(J/m2·h·℃),按经验值取10500。

F1——烘干室所占地面面积m2

t——工作温度80℃。

t0——车间环境温度,取20℃

则:Q2=K1×F1(t-t0)

=10500×7(80-20)

=4410 KJ/h

3.热工件和输送机移动部分的热损

Q3=(G1C1+G2C2)×(t2-t1)

式中:G1——按重量计算的工件最大生产率(kg/h)

C1——工件的比热容(0.481kJ/kg·℃)

G2——每小时加热输送机移动部分的重量(kg/h)

C2——输送机移动部分的比热容(0.481kJ/kg·℃)

t2——烘干室出口温度(80℃)

t1——烘干室进口温度(20℃)

根据业主提供的资料,工件最大生产率4444.4 kg/h,加热输送机移动部分的重量1500 kg/h。

则:Q3=(G1C1+G2C2)×(t2-t1)

=(4444.4×0.481+1500×0.481)×(80-20)

=14296KJ/h

4.加热涂料蒸发的热量

Q4=G3C3×(t-t0)

式中:G3——每小时进入烘干室的最大涂料消耗量(kg/h)

C3——涂料的比热容(J/kg·℃)

t——烘干室的工作温度(℃)

t0——车间环境温度(℃)

首先计算,每小时进入烘干室的最大涂装材料消耗量;

G3=δ×ρ×f×10-3(kg/h)

δ——电泳涂层厚度,δ=20μm

ρ——电泳涂层的干膜密度,ρ=1.3-1.4g/cm3

f——涂装表面积计算的生产率322m2/h。

5.加热空气耗热量

1)空气量计算

烘干室空气量计算如下:

G5=(4G溶剂×δ空气)/α下限

式中:G溶剂——每小时进入烘干室内的溶剂质量(g/h)

δ空气——车间内空气密度(kg/m2)

α下限——溶剂蒸气的爆炸下限计算值(g/ m2)

2)加热空气耗热量计算

Q5=G5C5×(t-t0)

式中:G5——每小时进入烘干室新鲜空气的重量(kg/h)

C5——空气的比热容(J/kg·℃)

t——烘干室的工作温度(℃)

t0——车间环境温度(℃)

6.循环风管损失热量

Q6= K‘×K2×F2(t-t0)

式中:K2——外部循环风管传热系数(J/m2·h·℃),按经验值取5800。

F1——烘干室所占地面面积m2

t——工作温度(℃)

t0——车间环境温度,取℃

6.烘干室门洞热损

Q7= C0×¢×F0×[(T1/100)4-(T2/100)4]

式中:C0——绝对黑体辐射常数(J/m2·h·k4),取20520。

F0——烘干室敞开门洞的面积m2

T1——烘干室内空气的绝对温度(k)

T2——车间环境的绝对温度(k)

¢——孔口修正系数,一般取0.65-0.86

(二)最大燃料消耗量计算

G r=(K1×Q max)/ (η1×η2×Q r)

式中:G r——燃料的最大消耗量(kg)

Q max——烘干室的最大热损耗量(J/h)

Q r ——燃料的热值(J/kg)

K1——燃料加热系统的补偿系数,一般直接加热取1-1.5。

η1——燃烧器的工作效率,一般取80%-95%。

η2——燃烧器烟气的利用率,烟气不会用的一般取60%-70%,回用的取80%-95%。

(三)再循环空气量的计算

1.每小时再循环空气量

G x=Q max /(1000×△t)

式中:G x——每小时再循环空气量(kg/h)

Q max——烘干室的最大热损耗量(J/h)

△t-------加热器进出口温差,烘干温度为180℃左右,△t一般取烘干室工作温度的30%。

2.风机循环风量计算

V=( G x+ G5)/δ空气

式中:V——循环风量(m3/h)

G x——每小时再循环空气量(kg/h)

G5——每小时进入烘干室新鲜空气的重量(kg/h)

δ空气——循环空气密度(kg/m2)

3.热风循环次数计算

N=60V/ V0

式中:N——烘干室热风循环次数(次/h)

V——循环风量(m3/h)

V0——烘干室的室内体积(m3)

一般涂层烘干室N取(4-7)次/min,脱水烘干室N取(5-10)次/min.

涂装车间设计

涂装车间设计 1.涂装车间设计:是对涂装车间进行基本建设,扩建或技术改造前的全面规划工作。 2.涂装车间:是将涂料涂覆于被涂物表面上,制成满足特定质量要求的施工场所。 3.现代化涂装车间的特点:①工业化水平高、自动化程度高的涂装设备。(保证涂层质量 和产量)②具有完善的环保和消防设施;③资源、能源利用合理;④物流畅通;⑤涂装成本低;⑥方便生产管理. 4.涂装车间设计过程:初步设计和施工图设计阶段 涂装车间设计的程序: 设计的前期工作→项目建议书→可行性研究分析→初步设计→施工图设计 5.涂装工艺师在整个设计中的工作担当的角色: 初设方案→施工图设计→向相关专业提出设计任务书及提供工艺资料→各专业完成总图设计→汇总各专业的设计,对各专业设计进行审查、会签→绘制最终安装的平面图 6.设计基础资料:原始资料和设计数据。 原始资料:①自然条件②地方法规③工厂标准④厂房条件⑤动力能源⑥工厂状况⑦产品资料设计基础数据:车间生产任务;生产纲领;工作制度;年时基数;生产节奏;涂装标准。 7.年时基数:每年生产的实际时数。 工作制度:据车间生产任务及生产条件来确定的生产班制。 生产节奏:是平均的生产节拍,即每件产品(or每个吊具)间的间隔时间,or生产单件产品需要的时间。 生产纲领:是车间在单位时间内(年、月、日)分工种的任务指标。 8.涂装车间设计的内容包括如下六大部分: ①涂装工艺设计(包括设备造型与计算)②厂房建筑设计③给水与排水设计 ④通风采暖设计⑤供热设计⑥供电照明设计 9.涂装工艺设计通常分为以下四个阶段: 第一阶段:明确涂装目的(即涂装标准or等级),查清涂装时的条件(底材种类)。 第二阶段:选择性能和经济上适宜的涂料。(与零件底材相配套,达到涂层性能要求,且与涂装条件相适应。) 第三阶段:根据涂装场所,被涂物形状、大小、材质、产品、涂装品种及涂装标准选定适宜的涂装方法。 第四阶段:根据涂料,底材,涂装环境,涂装方法,资源利用,污染等制定多种方案进行比较,通过价值工程计算,最后选定作业条件。 10.工艺设计的基本工序:前处理(除油、除锈、磷化)→涂装→烘干 11.磷化:是指金属表面与含磷酸二氢盐的酸性溶液接触,发生化学反应而在金属表面生成稳定的不溶性的无机化合物膜层的一种表面化学处理方法,所生成的膜称为磷化膜 P比:磷化膜中P相所占的比例(P/(P+H)),P为磷酸二锌铁(Zn2Fe(PO4)2·4H2O),H为磷酸锌Zn3(PO4)2·4H2O。 12.电泳涂装对磷化膜的要求:

除锈涂装作业指导书(全面详细)

除锈涂装作业工艺指导书 目次 1.内容与适用范围------------------------------------------ 2.引用标准--------------------------------------------------- 3.涂装作业原则要求--------------------------------------- 4.喷丸除锈作业--------------------------------------------- 5.涂装前表面清洁作业----------------------------------- 6.环境条件-------------------------------------------------- 7.涂装程序------------------------------------------------- 8.涂装作业------------------------------------------------- 9.修补涂装作业------------------------------------------- 10.报验项目-------------------------------------------------

1.内容与适用范围 本标准规定了船舶建造中涂装前表面处理、涂装及涂层修补、报检项目等作业内容的工艺规范。 本标准适用于船舶产品(除特殊要求船舶外)、海上设施及其它钢结构的除锈涂装作业。 2.引用标准 GB8923-88 涂装前钢材表面锈蚀等级和除锈等级 CB*3230-85 船体二次除锈评定等级 CB/T3513-93 船舶除锈涂装质量验收技术要求 CB/T231-98 船舶涂装技术要求 CB/T3718-95 船舶涂装膜厚检测要求 CB*3381-91 船舶涂装作业安全规程 3.涂装作业原则要求 3.1建造方针书中应对涂装技术、工序、建造方法、涂装作业程序等作出明确规定。3.2 在保证新产品涂装质量的前提下,尽量选择减少重复施工、降低劳动强度、充分实施现代化的壳舾涂一体化的作业。 3.3 体现高空作业平地做、场外作业场内做、封闭作业敞开做、水上作业陆地做、仰立作业俯向做的指导思想。 3.4 按阶段,按区域逐步完善的作业方式。 3.5 涂装工艺阶段分为钢材预处理、分段涂装、船台涂装、码头涂装、坞内涂装及舾装件涂装。 3.6 分段涂装和舾装件涂装应尽量避免露天作业。 3.7 船台涂装、码头涂装和坞内涂装严格控制环境的温度和湿度。 3.8 涂装作业的表面清理、漆膜检验及报验项目按CB/T3513-93(船舶除锈涂装质量验收技术要求)中 3.2船舶除锈涂装验收项目(见表 3.8.1)和 5.2表面清理质量要(见表3.8.1)

液压系统温升及散热器选型计算

液压系统温升及散热器 选型计算 The manuscript was revised on the evening of 2021

液压系统温升及散热器选型计算 液压系统油液温升计算及冷却器选型 摘要: 介绍了液压系统的系统损耗功率及油液温升的计

算。通过对两种冷却器的比较, 提出了正确的选型方法。 关键词: 液压系统; 油液温升; 冷却器; 损耗功率 1 前言 液压系统的压力、容积和机械损失构成总的能 量损失, 这些能量损失都将转化为热量, 使系统油温升高。油温的变化将直接影响液压元件的寿命; 油温升高将使油液氧化, 加速油液的变质; 油温过高还严重影响液压油的稳定性, 进而影响液压系统的寿命和传动效率。为此, 必须对系统进行发热与温升计算, 以便对系统温升加以控制。下面对液压系统的发热量及温升计算和冷却器的选择予以介绍。 2 系统损耗功率和温升计算 损耗功率计算 液压系统发热的主要原因是由液压泵和执行器 的功率损失以及溢流阀的溢流损失造成的。其系统的损耗功率即发热功率为: H=P( 1- η) 式中: P—系统泵组的总驱动功率; η—系统效率。 η=ηP ηC ηA 其中: ηP —液压泵的效率, 可从产品样本中查到; ηA —液压执行器总效率, 液压缸一般取~; ηC —液压回路的效率。 ηC

= Σp1 q1 Σp P q P 式中: Σp1 q1 —各执行器负载压力和负载流量即输入 流量乘积的总和; Σp p q p —各液压泵供油压力和输出流量乘积的 总和。 系统的损耗功率即发热功率H 也可按下式估 算, 由于热能的损耗总量约占泵组驱动功率的15% ~30%, 因此: H=( 15%~30%) P 油液温升计算 液压系统中产生的热量H, 由系统中各个散热 面散发至空气中, 其中油箱是主要散热面。因为管道散热面积相对较小, 且与其身的压力损失产生的热量基本平衡, 故一般略去不计。当只考虑油箱散热 时, 其散热量H O 可按下式计算: H O=KAΔt 式中: K—散热系数[ W(/ m2·℃) ] , 计算时可选用推荐值: 当通风很差( 空气不循环) 时, K=8[ W/ ( m2·℃) ] ; 通风良好( 空气流速为1m/s 左右) 时, K=14~20[ W(/ m2·℃) ] ; 风扇冷却时, K=20~25[ W(/ m2·℃) ] ; 用循环水冷却时, K=110~175[ W(/ m2·℃) ] 。 A—油箱散热面积, m2;

高炉冶炼物料平衡计算

高炉冶炼综合计算 1.1概述 组建炼铁车间(厂)或新建高炉,都必须依据产量以及原料和燃料条件作为高炉冶炼综合计算包括配料计算、物料平衡计算和热平衡计算。从计算中得到原料、燃料消耗量及鼓风消耗量等,得到冶炼主要产品(除生铁以外)煤气及炉渣产生量等基本参数。以这些参数为基础作炼铁车间(厂)或高炉设计。 计算之前,首先必须确定主要工艺技术参数。对于一种新的工业生产装置,应通过实验室研究、半工业性试验、以致于工业性试验等一系列研究来确定基本工艺技术参数。高炉炼铁工艺已有200余年的历史,技术基本成熟,计算用基本工艺技术参数的确定,除特殊矿源应作冶炼基础研究外,一般情况下都是结合地区条件、地区高炉冶炼情况予以分析确定。例如冶炼强度、焦比、有效容积利用系数等。 计算用的各种原料、燃料以及辅助材料等必须作工业全分析,而且将各种成分之总和换算成100%,元素含量和化合物含量要相吻合。 将依据确定的工艺技术参数、原燃料成分计算出单位产品的原料、燃料以及辅助材料的消耗量,以及主、副产品成分和产量等,供车间设计使用。配料计算也是物料平衡和热平衡计算的基础。 依据质量守恒定律,投入高炉物料的质量总和应等于高炉排出物料的质量总和。物料平衡计算可以验证配料计算是否准确无误,也是热平衡计算的基础。物料平衡计算结果的相对误差不应大于0.25%。 常用的热平衡计算方法有两种。第一种是根据热化学的盖斯定律,即按入炉物料的初态和出炉物料的终态计算,而不考虑炉内实际反应过程。此法又称总热平衡法。它的不足是没有反应出高炉冶炼过程中放热反应和吸热反应所发生的具体空间位置,这种方法比较简便,计算结果可以判断高炉冶炼热工效果,检查配料计算各工艺技术参数选取是否合理,它是经常采用的一种计算方法。 第二种是区域热平衡法。这种方法以高炉局部区域为研究对象,常将高炉下部直接还原区域进行热平衡计算,计算其中热量的产生和消耗项目,这比较准确地反应高炉下部实际情况,可判断炉内下部热量利用情况,以便采取相应的技术措施。该计算比较复杂。要从冶炼现场测取大量工艺数据方可进行。 1.2配料计算 一.设定原料条件 1、矿石成分: 表 1-1原料成分,%

油漆喷涂作业指导书

油漆喷涂作业指导书 为了保证油漆的喷涂质量,提高工作效率,特制定本规程。 油漆涂装的目的,是为了在被涂的表面形成防护性或装饰性漆膜。油漆涂装的成功与否,取决于一些参数,其中包括: ▲表面处理 ▲漆膜厚度 ▲涂覆方式 ▲涂覆时的各种条件 一、表面处理 1、概述 适当的表面处理对于防护漆的成功使用至关重要。清除油脂、老化涂层以及表面污物(如底材上的氧化皮和锈蚀、混凝土上的浮浆,以及镀锌钢表面的锌盐等),是表面处理最重要的环节。 2、清除污物 钢表面防护漆的性能,在很大程度上受到与涂层直接接触的底材表面条件的影响。其中主要的影响因素如下: A)表面污物,包括盐类、油脂、钻孔液和切削液。 B)锈蚀和氧化皮。 C)表面粗糙度。 表面处理的主要目的是确保上述所有污物都清除干净,减少初期锈蚀的机会,并形成表面粗糙度,保证即将涂覆的油漆具有充分的附着力。 3、清除油脂 在进行下一步表面处理或者给钢涂漆之前,必须清除表面所有的可溶盐、油脂、钻孔液和切削液,以及其它污物。最常见的方法是先用溶剂清洗,然后用干净的抹布擦净。试擦步骤极为关键,因为如果试擦彻底,那么溶剂清洗反而会将污物扩散。 4、人工处理 钢表面上松散的氧化皮、锈蚀和老化涂层可以用钢丝刷刷掉、用砂纸砂去、用手工工具刮掉或铲除。

但是,所有这些方法都不彻底,尤其是紧紧附着在钢表面的薄锈层,更难清除。 5、动力处理 一般来说,在清除松散的氧化皮、老化涂层和锈蚀时,用动力工具比用人工效果好,而且省力。但是动力工具不能除去紧紧附着在钢表面的锈蚀和氧化皮。通常采用的动力工具,包括动力钢丝刷、冲击工具(如撞针枪)、砂轮机及砂皮磨光机。但是,必须注意,不要抛光金属表面,尤其是在使用动力钢丝刷时,否则会破坏涂覆所需的表面粗糙度。 6、喷射处理 目前最有效的清除氧化皮、锈蚀和老化涂层的方法是喷射处理。高压喷出的磨料包括石英砂、棱角砂或钢丸。 用于特定的涂料要求的喷射处理级别取决于很多,其中最重要的是所先用的涂料配套方案是哪一种。 喷射处理之前,应该清除油脂及焊渣。如果表面有盐份油脂,看起来可以用喷射处理方法清除,便实际情形并非如此。虽然肉眼看不见,这些污物却仍在原处形成薄膜,从而影响将来涂层的附着。喷射处理过程中暴露的表面缺陷,如焊缝、金属片及锐利的边角,必须磨平。否则,涂料会从锐利的边角流散开,导致涂层变薄,降低防护性能。要用涂料均匀地覆盖焊渣,几乎不可能。队了会减弱附着力外,这也是涂层提前失效的一个常见原因。经喷射处理后形成的表面粗糙度很重要。它取决于所使用的磨料、气压及喷射技术。粗糙度太小会使油漆无法良好地附着;粗糙度太大,又会使涂覆表面不平整,很可能导致涂层提前失效。这对车间底漆之类的薄层涂覆来说,尤其如此。下表列出了各种喷射处理方式形成 二、漆膜厚度 适当的漆膜厚度对于涂料使用的成功与否至关重要。显然,如果膜厚不够,通常会导致涂层提前失效。但是漆膜太厚也同样具有危险性。现代高科技涂料,如果涂覆过厚,可能导致两种结果:或者除料含有的溶剂不能充分挥发出来,从而大大降低附着力,或者是底漆龟裂。对于大多数涂料而言,规定的膜厚极限已经考虑了实际施工中的合理偏差。但是,在涂覆过程中,应该始终以规定的膜厚为准。 至于某个具体表面的实际干膜厚度应该是多少,将取决于所采用的涂料的类型及待涂表面的性质。

涂装作业流程指导书

1.0目的: 为保证涂装产品品质及交期,规范涂装作业流程。 2.0适用范围: 适用于本公司涂装车间作业。 3.0术语与定义: 无 4.0职责与权限: 4.1计划部 负责《涂装课生产每日计划》的制定及变更,协调涂装所需生产物料准时送达涂装车间。 4.2品质部 4.2.1负责对涂装首件按照SIP判定是否合格。 4.2.2负责对涂装完成品按照AQL水准进行抽检,判定批量是否合格。 4.2.3负责对涂装全检出的不良品进行抽检,判断是否符合标准。 4.3涂装经理 4.3.1负责调度涂装部内部各项事务,使之正常进行。 4.3.2对涂装全盘撑控,配合公司出货及对部门成本运营控制。 4.4涂装课长 4.4.1负责生产计划审核,并监督日常产量及交期管控。 4.4.2负责本课工作的统筹安排并与其它部门进行沟通协调。 4.4.3负责监督本课成本节约、良率及效率提升。 4.5涂装工程师 4.5.1负责涂装产前的工艺评估,跟踪新产品、治具的检讨及更改。 4.5.2对新产品或新油漆的用量的评估。 4.5.3负责车间异常处理及生产制程的优化。 4.6涂装领班 4.6.1负责督导组长日常工作,并审核每日生产统计结果。 4.6.2采取措施减少生产作业过程中的损耗浪费,降底生产成本。 4.6.3监督组长日常工作,并审核每日生产统计结果。 4.7前置组长 4.7.1依照生产排程,对生产进行排线,确保满足交货。 4.7.2协助技术员,保证良率,完成每天任务。 4.7.3负责设备保养、点检,完成每日生产数据的统计记录。 4.8涂装技术员 4.8.1负责做到首件→试产→量产,经常巡线、确保品质及效益。 4.8.2负责当班产量达成、良率提升、油漆成本控制。 4.8.3负责涂装设备的保养、点检,生产数据的记录。 4.9调油员 4.9.1按照所生产产品的标准油漆调配参数调配当班生产排程所需各类油漆。 4.9.2负责调油参数记录及油漆报表记录。 4.10全检组长 4.10.1安排人员完成每天喷涂后的产品100%全检,确保产品品质合格。 4.10.2对下工序退料不良确认并对本组品质不良流出原因的追溯与分析,指导员工对品质标准掌握的改善。

热平衡计算.(DOC)

2.热平衡计算 单位时间内熔体固化放出的热量等于冷却水所带走的热量 ⑴ 进入模腔的总热量 G i n Q in ???= (公式11-1) 式中: Q in ——进入模腔的总热量(/KJ h ) n ——每小时注射次数 i ?——塑料熔体进入模腔时(1max t )及冷却结束时(1min t )塑料热含之差(/KJ kg )查图4-2-13 公式计算 1max 1min ()p E i C t t L ?=-+。(公式11-2) P C ——平均比热,查表4-2-4; E L ——潜热,查表4-2-4 (/kJ kg )。 G ——每次注射量(kg ) ⑵模具散热量L R c out Q Q Q Q ++= (公式11-3) 1)对流散发走的热量 ()021t t F Q m c -??=α (公式11-4) 式中: C Q ——对流散发走的热量(/KJ h ) 1α——传热系数0211t t A m -=α (公式11-5) F ——模具表面积(2m ) 2m t —模具平均温度(℃)查表4-2-6 0t —室温(℃) '''F F F τ=+ (公式11-6) 'F 为模具四侧面积,''F 为模具对合面积; τ 为开模率() ' '' ''θθθθτ+-= (公式11-7) θ注射时间,'θ制件冷却时间,''θ注射周期 1360 4.1868(0.25) 300 A t =?++

当0<2m t <300℃时,由实验得: 2)制品所需冷却时间计算 冷却时间定义:从熔体充满型腔起,到可以开模取出制件止的这段时间。常以制件巳充分凝固,具 有一定强度和刚性为准,具体的标准为: (a)制件最厚部断面中心层温度冷却到该种塑料的热变温度以下所需的时间。 (b )制件断面的平均温度,冷却到所要求的某一温度以下所要的时间: (c )某些较厚的制品,断面中心部分尚未凝固,但有一定的壳层已经凝固,此时取出制品,可不产 生让大的变形,这段时间也可定为制件的冷却时间。 (d)结晶性塑料制件最厚部位断面的中心层温度,冷却到其熔点以下所需的时间。 2)制品所需冷却时间计算 ①可查表4-2-5确定 ②可理论计算 制件最厚部断面中心层温度冷却到热变温度以下所需的时间。 ?? ???????? ???='W w 22 --4ln k t T T T T S m ππθ (公式11-8) t--制品的壁厚,㎜ w T --模具温度,℃ 表4-2-6 m T --塑料熔体温度,℃ 表4-2-6 s T --塑件的热变形温度,℃ κ --塑料热扩散系数,㎜2 /s 表4-2-4 3)由辐射散发的热量 (公式11-9) 式中:R Q ——由辐射散发的热量(/KJ h ) 'F ——为模具四侧面积(2m ) ?? ????? ???? ??+-??? ??+?=4 42'R 100273100273Q t t F m ε

转炉物料平衡与热平衡计算

氧气转炉炼钢物料平衡计算与热平衡计算 1物料平衡计算 1.1计算原始数据 基本原始数据铁水和废钢成分、终点钢水成分(表1);造渣用溶剂及炉衬等原材料的成分(表2);脱氧和合金化用铁合金的成分及其回收率(表3);其他工艺参数(表4) 表合金成分及其回收率 2

表 其他工艺参数设定值 1.2物料平衡基本项目: 收入项目:收入量=铁水+废钢+溶剂+氧气+炉衬蚀损+合金 支出项目:支出量=钢水+炉渣+烟尘+渣中铁珠+炉气+喷溅。 1.3计算步骤 以100kg铁水为基础进行计算。 第一步:计算脱氧和合金化前的总渣量及其成分。 总渣量包括铁水中元素氧化,炉衬蚀损和加入溶剂的成渣量。其各项成渣量分别列于表5 表7。总渣量及其成分如表8所示。 第二步:计算氧气消耗量。 氧气实际消耗量系消耗项目与供入项目之差。见表9.

表 铁水中元素的氧化产物及其成渣量 表炉衬蚀损的成渣量 石灰加入量计算如下:由表7-5—表7-7可知,渣中已含(CaO) =-0.014+0.004+0.002+0.910=0.902kg ;渣中已含(SiO2) =1.50+0.009+0.028+0.020=1.557kg。因设定的终渣碱度 R=3.5 ,故石灰加入量为:[R E Q(SiO2)- E Q(CaO)]/[3 (CaO 石灰)-R )]=(3.5X 1.557-0.902)/ (88%-3.5 X 2.5%)=5.73kg。 X3 (SiO 2石灰 由CaO还原岀来的氧量,计算方法同表 5的注

表 总渣量及成分 ① 由表 1-8 知,除 FeO 和 Fe 2O 3 外的渣量 6.799+1.724+1.052+0.137+0.63+0.44+0.63+0.028=11.56kg 而终渣刀 w (FeO) =15% (表 1-4),故渣的总量 11.56-86.75%=13.326kg 。 ② 所以,w (FeO) =13.326 X 8.25%=1.099kg ③ w(Fe 2O 3)= 13.066 X 5%-0.033-0.005-0.008=0.620kg 表9实际耗氧量 2

喷涂车间操作工安全操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 喷涂车间操作工安全操作规程 (标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

喷涂车间操作工安全操作规程(标准版) (1)由于涂装车间存在多种危险、有害因素,也存在多种危险源,涂装车间人员及进入涂装车间人员及承包商人员必须学习并遵守涂装车间安全管理规定要求,明确各种危险有害因素防范措施,避免安全事故发生; (2)禁止非设备操作人员操作设备,设备操作人员严格遵守设备安全操作规程,做好设备日常检查、维护工作,禁止拆除设备安全防护装置操作设备,禁止设备 运行时进入设备内部进行检修和维护保养。 (3)进行调漆、喷漆作业时,必须穿戴好防静电服、防静电鞋、橡胶手套、防护眼镜、防毒口罩。 (4)打磨房、喷漆房、调漆区域必须保持通风状态下才能进行工作,员工熟练掌握消防器材的使用方法,出现紧急情况时,按照

应急处理程序进行处理。 (5)禁止人员随意进入烘干炉或过滤风箱内,禁止人员随意攀爬楼梯进入设备高处,特殊需要时必须经过车间主任同意。 (6)废弃的油漆桶及冲洗枪的废稀料要集中盛放入指定标识好的容器内,并随时封闭良好。浸润过油漆稀料的抹布不要乱扔,必须集中放到指定的废桶内,集中由公司统一处理 天津市卓扬电子有限责任公司 2017年1月1日 云博创意设计 MzYunBo Creative Design Co., Ltd.

回转窑系统热平衡计算

回转窑系统热平衡计算 1 热平衡计算基准、范围及原始数据 1.1 热平衡计算基准 物料基准:一般以1kg 熟料为基准; 温度基准:一般以0℃为基准; 1.2 热平衡范围 热平衡范围必须根据回转窑系统的设计或热工测定的目的、要求来确定。在回转窑系统设计时,其平衡范围,可以回转窑、回转窑加窑尾预热分解系统、或再加冷却机和煤磨作平衡范围。范围选得大,则进出口物料、气体温度较低,数据易测定或取得,但往往需要的数据较多,计算也烦琐。因此一般选回转窑加窑尾预热分解系统作为平衡范围。 1.3 原始数据 根据确定的计算基准和平衡范围,取得必要的原始数据,这是一项非常重要的工作。计算结果是否符合实际情况,主要取决于所选用的数据是否合理。对新设计窑或改造窑来说,主要是根据同类型窑的生产资料,结合工厂具体条件和我国实际情况、合理地确定各种参数;对于生产窑来说,主要通过热工测定取得实际生产中各种参数。若以窑加窑尾预热系统为平衡范围,一般要取得如下原始数据:生料用量、化学组成、水分、入窑温度;燃料成分、工业分析和入窑温度;一、二次空气的比例和温度;空气过剩系数、漏风系数;废气温度;飞灰量、灰温度及烧失量;收尘器收尘效率;窑体散热损失;熟料形成热等等。熟料形成热可根据熟料形成过程中的各项物理化学热效应求得,也可用经验公式计算或直接选定。 2 物料平衡与热量平衡 计算方法与步骤说明于下: 窑型:悬浮预热器窑 基准:1kg 熟料;0℃ 平衡范围:窑+预热器系统 根据确定的平衡范围,绘制物料平衡图和热量平衡图,如图1和图2所示。 图1 物料平衡图 图2 热量平衡图

2.1 物料平衡计算 2.1.1 收入项目 (1)燃料消耗量 m r (kg/kg 熟料) 设计新窑或技术改造时,m r 是未知量,通过热平衡方程求得,已生产的窑,通过热工测定得到。 (2)入预热器物料量 ① 干生料理论消耗量 s ar r gsL 100100L a A m m --= 式中,m gsL —干生料理论消耗量,kg/kg 熟料;A ar —燃料收到基灰分含量,%;a —燃料灰分掺入熟料中的量,%;L s —生料的烧失量,%。 ② 入窑回灰量和飞损量 ηfh y h m m = )1(fh Fh η-=m m 式中,m yh —入窑回灰量,kg/kg 熟料;m fh —出预热器飞灰量,kg/kg 熟料;m Fh —出收尘器飞灰损失量,kg/kg 熟料;η—收尘器、增湿塔综合收尘效率,%。 ③ 考虑飞损后干生料实际消耗量 s fh Fh gsL gs 100100L L m m m --? += 式中,m gs —考虑飞损后干生料实际消耗量,kg/kg 熟料;L fh —飞灰烧失量,%。 ④ 考虑飞损后生料实际消耗量 s gs s 100100 W m m -? = 式中,m s —考虑飞损后生料实际消耗量,kg/kg 熟料;W s —生料中水分含量,%。 ⑤ 入预热器物料量 y h s m m +=入预热器物料量(kg/kg 熟料) (3)入窑系统空气量 ① 燃料燃烧理论空气量 )O 0.033(S 0.267H 0.089C ar ar ar ar LK -++='V LK LK 293.1V m '='

装载机液压系统热平衡分析

装载机液压系统热平衡分析 发表时间:2019-04-17T09:43:54.903Z 来源:《防护工程》2018年第36期作者:兰忠 [导读] 为装载机的工作特性和液压系统的热特性进行数据支持,为我国装载机技术的发展提供较为准确的优化方向。 中铁二局第二工程有限公司四川成都 610091 摘要:随着工程机械的快速发展,装载机由于具有作业效率高、灵活机动、操作轻便及负载能力高等优点,在建筑业及矿业中得到广泛应用。本文在对装载机液压系统热特性的分析过程中,通过对装载机主要元件的产热和散热情况的研究,建立了装载机运行过程中的液压热平衡模型,基于计算机软件和程序分别将装载机工作装置的动力学和液压系统合成仿真模型。 关键词:装载机;液压系统;热平衡分析 引言 装载机属于典型的机、电、液一体化设备。主要由机械本体、液压系统、电气控制系统组成。本文对装载机液压系统热平衡进行分析,通过数学建模的形式为今后的设备安全和优化提供一定的依据。 1装载机液压系统油温过高的危害 油温过高,会使油液粘度降低,泄漏增大,运动元件之间的油膜变薄或被破坏,运动阻力增大,磨损加剧;橡胶密封件变形,提前老化失效,造成泄漏;加速油液氧化变质,降低油液使用寿命,并析出沥青物质,堵塞阻尼小孔和阀口,导致压力阀调压失灵、流量阀流量不稳定和方向阀卡死不换向;油的空气分离压力降低,空气逸出,产生气穴,从而导致装载机工作性能降低。 2装载机压系统热平衡建模阐述 首先,对于容性元件可以根据能量守恒定律以及流体焓的定义转化该类型元件的产热量数据。公式如下: 其中,qg表示经过管道流体流量的数据,ξ表示沿程阻力系数,v表示液压系统内部流体的流动速度,l表示液压管道的长度,λ表示阻力元件产生的损失热量系数,d表示液压系统的管道直径。 3液压系统热平衡计算 3.1液压系统系统发热功率计算 发热功率的计算,可采用两种方法:一种是通过元件的功率损失计算发热量,这种方法直接分析发热源,可采取针对性措施减少发热量;另一种是通过系统的输入功率和执行元件的有效输出功率来计算发热量,这种方法不需要考虑每一个发热源,但需要掌握系统工况随时间变化的特性。 3.1.1按元件功率损失计算 (1)液压泵功率损失引起的发热功率:H1=P(1-η)。其中:P—液压泵的总功率,P=pq/η;η—液压泵的总效率,一般在0.7~0.85之间,常取0.8;p—液压泵实际出口压力;q-液压泵实际流量。 (2)液压阀功率损失引起的发热功率:H2=p1q1。其中:p1—通过阀的压力损失,根据测试数据统计,一般取阀口压降为1.4MPa;q1—流经该阀的流量。 (3)管路及其他功率损失引起的发热功率:H3=(0.03~0.05)P。此项功率损失,包括很多复杂的因素,由于其值较小,加上管路散热的关系,在计算时一般取全部能量的0.03~0.05倍。 (4)系统总的发热功率损失:H=∑Hi=H1+H2+H3。 3.1.2按系统输入功率和执行元件有效输出功率计算 当把液压系统当作能量整体,电动机向液压泵输入能量和执行元件向外输出能量的差值即为系统的损失即系统的发热量。系统的发热

干燥过程的物料平衡与热平衡计算

干燥过程的物料与热平衡计算 1、湿物料的含水率 湿物料的含水率通常用两种方法表示。 (1)湿基含水率:水分质量占湿物料质量的百分数,用ω表示。 100%?= 湿物料的总质量 水分质量 ω (2)干基含水率:由于干燥过程中,绝干物料的质量不变,故常取绝干物料为基准定义水分含量。把水分质量与绝干物料的质量之比定义为干基含水率,用χ表示。 100%?= 量 湿物料中绝干物料的质水分质量 χ (3)两种含水率的换算关系: χ χ ω+= 1 ω ω χ-= 1 2、湿物料的比热与焓 (1)湿物料的比热m C 湿物料的比热可用加与法写成如下形式: w s m C C C χ+= 式中:m C —湿物料的比热,()C kg J ?绝干物料/k ; s C —绝干物料的比热,()C kg J ?绝干物料/k ; w C —物料中所含水分的比热,取值4、186()C kg J ?水/k (2)湿物料的焓I ' 湿物料的焓I '包括单位质量绝干物料的焓与物料中所含水分的焓。(都就是以0C 为基准)。 ()θθχθχθm s w s C C C C I =+=+='186.4 式中:θ为湿物料的温度,C 。

3、空气的焓I 空气中的焓值就是指空气中含有的总热量。通常以干空气中的单位质量为基准称作比焓,工程中简称为焓。它就是指1kg 干空气的焓与它相对应的水蒸汽的焓的总与。 空气的焓值计算公式为: ()χ1.88t 24901.01t I ++= 或()χχ2490t 1.881.01I ++= 式中;I —空气(含湿)的焓,绝干空气kg/kg ; χ—空气的干基含湿量,绝干空气kg/kg ; 1、01—干空气的平均定压比热,K ?kJ/kg ; 1、88—水蒸汽的定压比热,K ?kJ/kg ; 2490—0C 水的汽化潜热,kJ/kg 。 由上式可以瞧出,()t 1.881.01χ+就是随温度变化的热量即显热。而χ2490则就是0C 时kg χ水的汽化潜热。它就是随含湿量而变化的,与温度无关,即“潜热”。 4、干燥系统的物料衡算 干燥系统的示意图如下: (1)水分蒸汽量W 按上述示意图作干燥过程中的0水量与物料平衡,假设干燥系统中无物料损失,则: 2211χχG LH G LH +=+ 水量平衡 G 1

喷涂(油漆)作业指导书

喷涂作业指导书

1,目的: 规定了喷漆的设备操作,工艺范围,工艺流程,工具,质量该控制标注及安全操作规程。2,适用范围: 本标准规定了公司产品涂装的操作方法、技术要求和检验方法; 3,术语及定义: (1)涂料:是一种有机高分子胶体混合物的溶液,将其涂布在物面上能干结成膜,学名叫“有机涂料”,长叫做“油漆”; (2)涂装:将涂料涂布在物面上的施工过程即油漆施工; (3)稀释剂:用来溶解及稀释涂料,以达到施工应用目的的物料; (4)底漆:直接涂布在物体表面的打底涂料; (5)防锈漆:由防锈颜料和适当的漆料配置而成,用以防止大气中的氧气和水分对金属(主要指钢铁锈蚀的涂料); (6)起泡:漆膜干结后,局部与涂物体比啊秒失去附着力,形成直接不同的球状小泡向上膨胀隆起,内部包藏着液体或气体,或者发生破裂的现象; (7)流挂:涂料施工于垂直物体表面,未干前涂层下流,干后漆膜厚度不匀,并成留痕的现象; (8)针孔:漆膜在干结过程中,表面出现的一种凹陷的透底的针尖细孔现象; (9)渗色:在底层漆上涂覆一层漆后,底层漆的颜色由于新漆层溶剂的作用而渗透于表面的现象; (10)桔皮:涂料喷涂施工后,由于漆腊流平性差,干燥后的漆腊表面形成起伏不平的类似桔皮的现象; (11)褪色:色漆漆膜在暴露中,由于光、热或其它因素的作用,颜色减退失去其原有

的颜色的现象; (12)附着力:指漆膜与被涂物件两种物质表面通过物理和化学力的作用结合在一起的坚牢程度; (13)脱落与脱皮:由于涂层和物体表面或新旧涂层之间丧失了附着力,涂层表面形成小片或鳞片脱离的现象称为脱落。当涂层和底表面间的附着力完全丧失,使涂膜整张脱落时称为脱皮; 4,操作步骤: 一、工作前 (1)上班首先阅读当天制令单,了解并记录有特殊喷漆要求的单号; (2)检查工作过程中需要的工具,如挂钩、吹枪等是否到位,完好。如果没有或损坏需及时上报; (3)检查当天使用的原、辅材料,如果不够需向上级领导反映,班组长做好材料的领取工作; (4)打开空压机电源、检查设备运行情况,如有异常需修理完好后方可使用;(5)完成上述工作后,将工作场地清理干净; 二、工作中 (1)检查:对上道工序的来料进行检查,查看是否有漏印、划伤、胶水印、纸头、颗粒、撞伤等不良,如有则退回上道工序; (2)吹灰:左手拿除尘布,右手拿吹枪,边吹边用气枪吹,将整个都擦一布。在吹灰过程中同时注意有无划伤、颗粒、胶水、撞伤等不良,如有则挑出返回上道工 序。吹灰时气枪不要对着喷台这边吹; (3)喷漆: 1、喷漆人员在喷漆时需做好个人防护工作,戴上防护眼镜、防护面具和防

涂装车间的安全防护

涂装车间的安全防护 一、涂装车间的防火安全设施 ①涂装车间的所有结构件都应采用耐火材料制成。 ②使用易燃涂料的涂装车间是属于火灾危险区,应采取相应的消防措施,一般应布置在厂房的旁边,并用防火墙与其他车间隔开。涂装工场、仓库等地应设避雷装置。 ③所有的门应开在最近的处于外出口处,而且门要朝外开。通向太平门的通道要保持畅通无阻。 ④在与相邻的车间有传送装置的情况下,出人口应装防火门。 ⑤供涂装车间、调漆部和涂料库用的消防灭火用具,每30m应保证有下列消防工具:两个泡沫灭火机,0.3-0.5m3容积的砂箱,一套石棉衣和一把铁铲。涂装车间顶棚应设置熔喷水头和消防灭火水栓。 ⑥所用的各种电气设备和照明灯、电动机、电气开关等都应有防爆装置,电源应设在防火区域以外。 ⑦涂装车间的所有金属设备都应接地可靠,防止静电积聚和静电放电。 ⑧涂装车间内严禁烟火,不许带火柴,打火机等火种进入车间。在安装和维修设备需动用明火时,应采取防火措施,检查确保安全。 ⑨喷漆室、烘干室等涂装设备的设计都应符合防火安全技术要求。

⑩工作人员都应经安全技术教育培训,才能上岗。 ⑾不要将工具和涂装用料放在车间过道上。 ⑿顾客和其他无关人员不能进入喷涂车间的工作场地。 二、火灾类型及灭火方法 涂装车间的职工都应熟知防火知识、火灾类型及其扑灭方法,还会使用各种消防工具,一旦发现火警,尤其在电器附近着火时,应立即切断电源,以防火灾曼延和产生电击事故。当工作服上着火时切勿惊慌奔跑,应就地打滚将火熄灭。当粉尘(如粉末涂料和铝粉颜料等)着火时,不能使用水灭火,以避免扩大火灾面积。 所有的火灾都可以通过抑制3个基本因素(即热、燃料、氧气)被扑灭。大多数灭火剂的工作原理是降低燃烧物的温度和隔离空气。想有效的使用灭火剂,必须将灭火剂对准火焰的底部。灭火剂应定期检查,并安放在车间方便取得的地方。 三、如何选择灭火剂 ①水在低温时如果不加人防冻剂就会冻结住; ②标准化学干粉也叫普通或一般化学干粉(碳酸氢钠,即小苏打); ③紫色K型化学干粉灭火剂对B类火灾的扑灭最强。灭火后应立刻清理掉残液,以免造成车身表面的损坏(碳酸氢钾); ④普通化学干粉灭火剂是唯一能对A、B、C类火都起作用的。然而对有一定深度的液化油脂则不宜使用这种灭火剂。灭火后应立刻清理掉残液,以免车身表面的损坏,(磷酸铵);

液压系统的设计计算

液压系统的设计计算2 题目:一台加工铸铁变速箱箱体的多轴钻孔组合机床,动力滑台的动作顺序为快速趋进工件→Ⅰ工进→Ⅱ工进→加工结束块退→原位停止。滑台移动部件的总重量为5000N ,加减速时间为0.2S 。采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。快进行程为200MM ,快进与快退速度相等均为min /5.3m 。Ⅰ工进行程为100mm ,工进速度为min /100~80mm ,轴向工作负载为1400N 。Ⅱ工进行程为0.5mm ,工进速度为min /50~30mm ,轴向工作负载为800N 。工作性能要求运动平稳,试设计动力滑台的液压系统。 解: 一 工况分析 工作循环各阶段外载荷与运动时间的计算结果列于表1 液压缸的速度、负载循环图见图1

二 液压缸主要参数的确定 采用大、小腔活塞面积相差一倍(即A 1=2A 2)单杆式液压缸差动联接来达到快 速进退速度相等的目的。为了使工作运动平稳,采用回油路节流调速阀调速回路。液压缸主要参数的计算结果见表2。 按最低公进速度验算液压缸尺寸 故能达到所需低速 2 7.163 1005.06.253 min min 2 2cm v Q cm A =?=>= 三 液压缸压力与流量的确定

因为退时的管道压力损失比快进时大,故只需对工进与快退两个阶段进行计算。计算结果见表3 四液压系统原理图的拟定 (一)选择液压回路 1.调速回路与油压源 前已确定采用回油路节流调速阀调速回路。为了减少溢流损失与简化油路,故采用限压式变量叶片泵 2.快速运动回路 采用液压缸差动联接与变量泵输出最大流量来实现 3.速度换接回路 用两个调速阀串联来联接二次工进速度,以防止工作台前冲(二)组成液压系统图(见图2)

闭式液压系统热平衡计算

闭式液压系统内部油温的热平衡是决定系统工作寿命,甚至能否正常工作的重要因素之一。因而在设计闭式液压系统时,设计者需要对整个系统的热平衡进行一个概算,从而对这个系统的温升有一个评估和判断,极大的避免了盲目试验。笔者结合现在的认识,对闭式液压系统做如下的概略分析,以期抛砖引玉之效。 在设计计算系统热平衡之前,首先需要确定对于这个系统,最高的内部油温t2不超过100℃,在系统工作压差超过14Mpa时,设计t2定为95℃,油箱温度t1定位65℃,系统温度循环如下图所示: 系统发热量: 在闭式液压系统中,由于局部和沿程压力损失、内部泄漏及运动部件摩擦力的存在,会导致一部分系统功率损失,这一部分损失的功率会转化成热量被系统的油液及元器件所吸收,使系统温度升高。根据能量守恒定律,系统损失的功率将转化成热量,即系统的损失功率为系统的发热功率。如果设系统的功率为P,总效率为η=0.65~0.75,系统的总发热功率为Pt,则有 P=Q△P(1-η)/60(kW)(1) 式中:Q为主泵的流量,L/min;△P为系统的工作压差,Mpa。 系统散热量: 整个散热系统可理解分为三级,第一级为补油泵的冲洗散热,第二级为油散热器的散热,第三级为油箱散热。 补油泵的一级冲洗散热。闭式系统的大部分热量是靠补油泵的低温油液置换冲洗带走。若不计液压元件表面散热,单位时间内,当补油泵的低温油和系统的高温油达到热平衡(温度计为t)时,系统发热量等于冲洗散热量,则散热功率: P=LρC△T/60(kW)(2) 式中:L为补油泵流量,L/min。ρ为液压油密度0.85kg/L。 C为液压油比热容,kJ/(kg·°C),取1.88。 △T为低温油和热平衡油温度之差,°C。△T=t-t1 设补油系数为K=L/Q=0.15~0.25。(3) 联合(1)、(2)和(3)式得△T=(4) 由式(4)可知,对于选定的液压油品、液压泵和马达,液压油密度ρ、液压油比热容C、总效率为η和补油系数K为定值,系统一级温升△T与系统的工作压差△P成正比。 在忽略系统泄漏的前提下,系统达到热平衡的温度t=(5) △T=t-t1(6) 由(4)、(5)、(6)和(7)可得:t2=(1+K)t-Ktl=K△T+t。(7)求出的t2与上文设定值进行比较,也即满足条件t2≤95℃。 液压油散的二级散热。散热器所需的散热功率: P=(t-t3)CρQ/60,(kW)(8) 式中:Q为进入油散的回油流量,L/min.t3为油散出口油温,℃液压油箱的三级散热。液压油箱的散热功率: P=KA(t1-T)x10,(kW)(9) 式中:K为油箱散热系数,与通风条件有关,一般30~55W/m·℃ A为油箱的散热面积,m。T为环境温度,℃ 从散热器进入油箱的油液冷却至油箱温度t1所需功率近似等于液压油箱的自然散热功率,从而保证油箱油温的基本恒定,即: P=△TCρQ/60(10) T=t3-t1(11)

涂装生产线安全操作规程通用版

操作规程编号:YTO-FS-PD640 涂装生产线安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

涂装生产线安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、目的: 为了维护设备完好和安全使用,保证喷漆、喷粉室的操作安全及工作质量。 二、适用范围: 本规程适用于涂装生产线的喷漆房、喷粉房。 三、操作规程: 开机前的准备工作: 1.1、将电器控制柜上的所有开关置于“关”或“停止”的位置,将所有旋钮置于“零”位。再打开喷漆总空气关。 1.2、清除阻碍喷漆工件输送线正常运行的物体。 1.3、清除水帘柜循环水箱内杂物,保证循环泵正常工作。 1.4、检查压缩空气干燥设备所有阀门是否处于工作位置,并将放水阀开启,释放管中冷凝水然后关闭。 1.5、检查水帘柜抽风机、送风机是否有异物碰撞及螺丝是否松动。

1.6、检查为燃烧机配置的油箱油量及循环热风机动的冷却水位。 1.7、打开悬挂线上的链条加油装置,确保链条润滑正常。 1.8、待上述一切正常后,方可开机操作。开机操作步骤: 2.1、开启电控柜燃烧按钮,根据产品所需温度,调整各项参数设置,使燃烧机处于工作状态。 2.2、开启电控柜上送风机,抽风机,保证喷漆室空气符合使用要求。 2.3、开启空压空气干燥设备,待空气干燥设备循环处理空气一个周期,并释放终端气管中的余气,并将喷漆房内地面洒水。 2.4、如发现上述工作有异常,应立即停机,待处理好后,再重新开机工作。 关机操作步骤: 3.1待工作完毕,并做好相关清洁工作后,分别关闭、燃烧机、循环水泵、空气干燥设备,送风机、悬挂输送线、抽风机。 3.2关闭燃烧机5分钟后,再关闭循环风机。 3.3将喷漆室总电源空气开关拉下。 停电时的处理:

相关文档