文档库 最新最全的文档下载
当前位置:文档库 › 磁致伸缩材料及铁磁体性质

磁致伸缩材料及铁磁体性质

磁致伸缩材料及铁磁体性质
磁致伸缩材料及铁磁体性质

磁致伸缩材料及铁磁体性质

一.铁磁体的性质

首先要了解下述有关效应:

1.磁滞效应:铁磁体在磁化过程中,磁感应强度总是落后于磁场强度的现象称为磁滞效应。从物理学的知识可以知道,由于磁滞现象的存在,处于交变磁场中的铁磁体有能耗-磁滞损耗存在,这种能耗最终以热能形式散发掉。

假定对铁磁体施加的外加交变磁场是圆频率为ω的简谐量,则:H→=Hm·e jωt(这里上标“→”表示盖参数为矢量,下同)

由于存在磁滞效应,与H相应的磁感应强度为:B→=Bm·e j(ωt-φ1)(式中φ1称为动态磁滞损耗角)

这样,磁场强度与磁感应强度之间的比例系数--交变磁导率必为一个复磁导率μ→:μ→=B→/H→=μ·e-jφ1

式中μ=Bm/Hm称为复磁导率的模,或称动态磁导率,为了和此动态磁导率相区别,我们把稳恒磁场的磁导率称为静态磁导率,以μ表示。

2.涡流效应:铁磁体通常也是导电体,由于磁感应强度的变化,在铁磁体内将有感应电流--涡流产生。涡流的出现必将阻碍材料的磁化而且使能耗也随之增加,这会使得动态磁导率μ比不存在涡流时更小。这里顺便提一句:在涡流检测技术中利用的是涡流效应,但在磁致伸缩效应中,这种涡流效应则是起到损耗能量的作用。

考虑磁滞损耗与涡流损耗同时存在的情况时,复磁导率可表示为:μ→=B→/H→=μX·e-j(φ1+φ2)

式中μ为动态磁导率,X为涡流去磁系数,φ2为涡流损耗角。

3.磁致伸缩效应:实际上,磁之伸缩现象能同时引起多种变化,其主要表现可以归纳如下:

由磁化引起的机械性变形(应变)中包括有:

一元变化(材料沿磁场方向的伸缩--焦耳效应;材料垂直于磁场方向的伸缩--焦耳横向效应和因磁化而使材料发生扭曲--Guillemin效应);

扭曲变化(因纵向磁场及其周围的周向磁场的作用而被磁化时产生的扭曲现象--Wiedemann效应以及已受扭曲产生永久性变形的材料在纵向或周向被磁化时产生的扭曲现象);

体积变化(由磁化引起的体积变化--Bernett效应)。

实际上这些是因磁畴转动变化而引起的。

由机械性变形引起的磁性变化中包括有:

一元变化(材料伸缩方向上磁化曲线的变化--Villari效应,垂直于材料伸缩方向上磁化曲线的变化--Villari横向效应和材料挠曲引起的磁化曲线变化--Guillemin逆效应);

扭曲变化(被周向磁化的棒在扭转时会在周向产生磁化的现象--扭转磁致伸缩效应--Wertheim效应以及被轴向磁化的棒在扭转时会使同一方向产生磁化变化的现象--二次扭转磁致伸缩效应);

体积变化(由流体压力引起的磁化曲线变化--长冈与本多效应)。

实际上这些是强迫磁畴位移而导致磁化强度变化引起的。

下面我们只介绍与磁致伸缩式电声换能器关系密切的特性:

[1]正向线型磁致伸缩效应

在外磁场作用下,细棒形铁磁材料沿磁力线方向发生长度变化(伸长或缩短)的现象称为正向线型磁致伸缩效应。该效应的一个重要特点是它的相对形变仅与磁场大小有关,而与磁场方向无关,即:相对形变△l/l=φ(H2)或△l/l=ψ(B2)

实验表明,在不太大的范围内,上述函数φ或ψ可以认为是线性函数,即:△l/l∝B2

由胡克定律可知,应力与应变成正比,则有:Tm=γB2(式中γ为比例系数,Tm为磁致伸缩应力)

此外:假定应变S=△l/l,应力T=CS,C为杨氏弹性模量。

注意:△l/l是磁致伸缩材料的重要性能参数之一,△l/l越大,表明材料的磁致伸缩效应越强。

不同的磁致伸缩材料在磁场中有不同的表现,如图4.4为某些材料的磁致伸缩曲线,表示这些材料在恒定磁场中相对长度伸缩与磁场强度的关系。由图中可见,当磁场增强时,铁铝合金(87%Fe,13%Al)等伸长,纯镍缩短,而纯铁则先伸长后缩短。

图4.4 某些材料的静磁致伸缩特性

图4.5 磁致伸缩换能器原理

在图4.5中,当线圈通入圆频率为ω的交变电流时,铁磁体将在交变磁感应强度的作用下发生伸缩振动,此时:

B=Bm·cosωt

故:Tm=γB2=γB m2·cos2ωt=γB m2[(1/2)(1+cos2ωt)]=(γB m2/2)+(γB m2/2)cos2ωt

这表明交变应力Tm的频率是输入信号频率的两倍,如同前面章节中述及的电磁式换能器的情况,这将导致信号“失真”。

为了获得无失真的能量转换,我们同样可以采用极化系统,即在原铁磁体上沿轴向另外施加一个稳恒磁场(即极化磁场或称偏置磁场),用B∥和B分别表示极化磁感应强度和简谐交变磁感应强度,则有:

Tm=γ(B∥+ B)2

=γ(B∥2+2B∥B+B2)

=γ(B∥2+2B∥Bm·cosωt+B m2·cos2ωt)

=γ[B∥2+2B∥Bm·cosωt+(B m2/2)(1+cos2ωt)]

=γ[B∥2+(B m2/2)]+2γB∥Bm·cosωt+(B m2cos2ωt/2)

式中第一项为恒定应力,它对激发超声波是不起作用的,第二项为用于激发超声波的交变应力,第三项是畸变部分。当我们取B∥?B m时可将第三项忽略不计。

这样,我们可以把磁致伸缩应力与交变磁感应强度的关系写成:T=2γB∥Bm·cosωt=(2γB∥)Bm=σ(B∥)·B 式中的σ(B∥)=2γB∥称为磁致伸缩应力常数。

同样,我们可以得到在自由状态下磁致伸缩应变与磁感应强度的关系:S=β(B∥)·B

式中的β(B∥)=2CB∥为磁致伸缩应变常数,它与材料有关并与对材料施加的恒定磁感应强度B∥成正比,C为沿磁场方向和伸缩方向的弹性模量。由于T=CS,因此σ(B∥)=Cβ(B∥)

[2]反向线型磁致伸缩效应

被磁化(被极化)的细棒形铁磁材料在受到交变应力作用时发生交变应变,则会引起该棒的磁化状态(磁通密度)发生变化,此即反向线型磁致伸缩效应(正向线型磁致伸缩效应的逆效应),其应变S l与附加磁场强度的关系有:H=λ(B∥)

·S l

式中的λ(B∥)=4πσ(B∥)称为反向磁致伸缩常数。这种效应即是磁致伸缩式换能器接收超声信号的原理。

[3]施加恒定(极化)磁场的方法

图4.6 施加极化磁场的方法之一图4.7 施加极化磁场的方法之二图4.8 施加极化磁场的方法之三

图4.6所示的方法可以达到很大的极化电流。图中磁致伸缩材料上的线圈中同时通入交流和直流电流,电容C为隔直流电容,电感L要充分大以扼制交流进入直流电源。在需要获得大功率的磁致伸缩换能器上多采用这种方法。

图4.7所示的方法是使用永久磁铁来附加极化磁场,由于永久磁铁的磁场有限,不可能获得很大的磁感应强度,故它能获得的发射声功率有限。此外,永久磁铁的磁场会因碰撞、升温以及老化等原因变小,在使用中需要经常对其重新充磁(采用强直流电进行极化)。这种方法和图4.6的方法相比,除了可达到的发射声功率较小外,虽然可以节约一些直流电的消耗功率,但其稳定性显然不如图4.6的方法。

不过,从永磁体的最新发展来看,具有更高的稳定性且磁性强度达到普通永磁体七倍以上的铷铁硼永磁体应该是有其独特的开发前景的。

图4.8所示的方法是把磁致伸缩材料直接制成永久磁体(例如采用硬磁材料经强直流电磁化),以其本身的磁场作为极化磁场,然后再在交变磁场作用下产生磁致伸缩运动。显然,这种方法与图4.7所示的方法有相同的缺点,即其发射声功率有限,并且在使用过程中也会因材料自身的老化、碰撞以及升温等多种原因使原有的极化磁场逐渐减弱,需要经常充磁而且也不够稳定。

二.棒形磁致伸缩换能器

下面以最常见的棒形磁致伸缩换能器为例讨论磁致伸缩(压磁)方程以及磁致伸缩的机电等效类比。

图4.9 棒形磁致伸缩换能器结构示意图

图4.9为简化的棒形磁致伸缩换能器结构示意图,图中的盖板是出于结构上的需要,一般采用软磁材料制成,它只起导磁作用,这里假定只有铁磁棒具有磁致伸缩效应,通有交变电流I的线圈产生交变磁场,使铁磁棒作线型磁致伸缩,由此产生的纵波从铁磁棒两端输出。盖板是铁磁棒振动的负载,铁磁棒和盖板中存在的机械阻可以归为作用在棒端的总机械阻Rm。这样,我们所讨论的机械振动系统就是一个无损耗的、两端有负载的铁磁棒纵向一维振动。

利用T=σ(B∥)·B,S=β(B∥)·B,H=λ(B∥)·S l以及胡克定律T=CS,可以得到铁磁棒线型磁致伸缩方程式:

T=C B S l-σB 和 H= -4πσS l+(1/μS)B

方程式中各变量的符号规定如下:以张应力为正,压应力为负;张应变为正,压应变为负;磁场强度(或磁感应强度)增加为正,减少为负;当磁感应强度增加而产生张应变时为正,反之为负;张应变使磁感应强度增加时为正,反之为负。

一般采用简化的磁致伸缩(压磁)方程为:S=dH B=dT 式中d为磁致伸缩应变磁场系数

由于磁致伸缩材料也是各向异性固体,因此在空间表现上,应变S有6个独立分量,作为磁场强度则有3个独立分量,每一个S分量与3个H分量相关,例如沿X方向的相对伸长S1(△l/l)与磁场强度矢量在X、Y、Z三个方向轴上的分量H1、H2和H3都有关,关系式为:S1=d11H1+d12H2+d13H3

3个坐标轴方向的正应变(S1、S2、S3)与3个独立的切应变(S4、S5、S6,两面夹角的变化值)*都以此形式与H相联系,所以对于d而言,它共有3x6=18个分量。对于其他参量也有同样的情况,只不过其分量数未必相同。然而,由

于材料有一定的对称性,有些分量未必独立存在,有些可以为零,有些彼此相等或以一定关系相连,特别在实际应用中所关心和考虑的实际独立分量则要少得多。对于棒形磁致伸缩换能器,我们只考虑它的纵向振动模式,亦即在纵向(Z方向)上的应力、应变等情况,故可用足标33表示,如d33(在方向3上施加磁场,在方向3上表现的应变)。

*符号S4表示为S23+S32,S3表示为S13+S31,S6表示为S12+S21,通常以X方向为1,Y方向为2,Z方向为3来确定参量与坐标的关系并在参量上以足标形式表示,其他参量也类同。

作为磁致伸缩换能器,其实质应当是机械能与磁能的转换,这之间将存在一定的转换能力,可用耦合系数来表示,习惯上仍把它称为机电耦合系数。对于棒形磁致伸缩材料纵向振动模式时的机电耦合系数有:K33=d33/[(μ33T)(S33H)]1/2参量的上标表示恒定值,如(μ33T)表示在应力T恒定且沿纵向施加时,在纵方向上的磁导率。应当注意,由于棒形磁致伸缩换能器的磁路是开放的,所以仅在棒的中心部分处其磁导率接近该材料在闭合磁路情况下的磁导率(环导磁系数)

下面讨论棒形磁致伸缩换能器的机电等效类比:

假定把棒形磁致伸缩换能器两端钳紧,使应变S=0,则由磁致伸缩效应在材料中引起的应力T=σ(B∥)·B,此时的磁致伸缩力为:F=T·A=σ(B∥)·B·A=σ(B∥)·Φ,式中A为截面积,Φ=BA

在钳紧状态下没有振动产生而只有线圈中通过电流I产生磁通Φ,现令线圈匝数N,自感Lo,则有:NΦ=LoI 或Φ=LoI/N

因此:F =σ(B∥)·Φ =σ(B∥)·LoI/N = α’I,这里令α’=σ(B∥)·Lo/N

根据能量守恒原理:FV=U感I,即机械功率等于电功率,式中U感为感应电势,V为振动速度,因此:

U感=FV/I=α’IV/I=α’V 或 V=U感/α’ (逆效应)

这表明若换能器以速度V振动时,线圈中会产生感应电势U感,若以交变电压U施加在线圈两端时,即可得到电路状态方程:

U=ZoI+α’V

当换能器被钳紧,使V=0时,外加电压全部加在自感为Lo的线圈上,可用Zo表示换能器钳紧时的等效阻抗,如不计损耗(如磁漏、磁滞、涡流等)则有:Zo=jωLo

当换能器振动时,外加电压除在阻抗Zo上产生电流I以外,还要克服磁致伸缩感应电势U感=α’V,此即电路状态方程的物理意义。

当换能器处于空载时,存在换能器力阻抗Z mo,而在有负载时,还存在辐射阻抗Z mL,因此总的力阻抗Zm=Z mo+Z mL,因此在向换能器通入电流I时产生的磁致伸缩力为:F =α’I=ZmV=(Z mo+Z mL)V,此即该换能器的机械振动方程,表明在阻抗Zm上产生速度为V的振动。

根据电路状态方程 U=ZoI+α’V 和机械振动方程 F=(Z mo+Z mL)V,可以得到:

U/I = Zo + (α’V/I)= Z = Zo + (α’)2/Zm (由α’I=ZmV 得到 I=ZmV/α’)

这里:Zm = jωM + K/jω + R mo + Z mL

式中:R mo-铁磁棒振动内耗;Z mL-辐射阻抗(负载阻抗);K/jω=Z mo

对于棒形磁致伸缩换能器有:M=(1/2)ρAl 和 K=π2AC∥/2l

式中:l-铁磁棒长度;A-铁磁棒截面积;C∥-沿磁场方向和伸缩方向的弹性模量

因此:

U/I = Zo+(α’)2/Zm = Zo+[(α’2/jωM)-1 +(jωα’2/K)-1 +(α’2/R mo)-1 +(α’2/Z mL)-1]-1

由此可得到图4.10或4.11所示的机电等效类比图:

图4.10 棒形磁致伸缩换能器的机电等效类比图(导纳型类比)

图4.11 图4.10的变换形式

图4.11中:C=M/α’2;L=α’2/K;R=α’2/R mo;ZL=α’2/Z mL

三.磁致伸缩材料

1.选择磁致伸缩材料时的考虑因素

前面已述及有关磁致伸缩材料性能的几个主要参量以及相关的影响因素,现归纳如下,亦即磁致伸缩换能器的选材原则:

[1]材料应具有显著的磁致伸缩效应,也就是说,其磁致伸缩应力常数和应变常数,以及机电耦合系数要越大越好;

[2]涡流损耗和磁滞损失要越小越好,这也意味着材料的电阻率应当较高或者说电导率较低为好;

[3]机械强度要高,因为在大功率应用时的振动振幅是比较大的;

[4]时间稳定性好,不易老化,以保障使用寿命;

[5]居里温度较高,以保障其温度稳定性好,因为磁致伸缩换能器在使用过程中是必然要发热的;

[6]要从实际应用需要出发,综合考虑应用效果与经济效益,如材料价格、制造成本等。

2.磁致伸缩材料的分类

磁致伸缩材料已发现并制造了许多种,可分为金属与合金、铁氧体以及新开发的新型磁致伸缩材料,下面分别予以介绍:

[1]金属与合金材料

金属与合金材料的特点是机械强度高,性能比较稳定,适合制作大功率的发射换能器,缺点是换能效率不高,如纯镍的电声转换效率约为30%,这意味着要输出10千瓦的声功率时,电振荡器输出功率就需要30千瓦左右,这势必使超声频电振荡发生器要做得很庞大。此外,金属材料的涡流损耗也较大。典型材料有:

镍:这是最早使用的磁致伸缩材料,其特点是在磁场强度或磁感应强度增大时,它的长度变小。镍的电阻率较低,涡流损耗较大(在制作时可以通过把它压延成薄片后以层间绝缘的方式迭制来减少涡流损耗)。此外,其价格昂贵,故目前已多采用其合金,如镍铁-45%Ni最为常用,还有镍钴铬合金等。

铁铝合金:87%Fe+13%Al,这种材料的价格比较低廉而受到广泛应用。其机械性能较脆是它的弱点,但仍可压延成片使用,此外,其耐蚀性也尚不致有太多影响,其性能接近低镍含量的铁镍合金。

铁钴钒合金:这种材料的磁致伸缩效应比镍还强,居里温度也比镍高得多,而且还具有恒磁性,但是它的性能与热处理关系极大(化学成分和热处理都是合金特定状态-磁畴形成的重要条件)。此外还有铁钴合金(由等份量的铁和钴组成,具有很高的饱和磁导率,例如英国<超声学>中介绍的用于15-100KHz的磁致伸缩换能器,采用49%Co+49%Fe 的铁钴合金+2%V--称为坡莫合金,550℃退火,制成0.1mm厚度的冲压片迭制成辐射面为8.5x11mm的换能器,在磁场强度达到10000安/米时达到饱和-采用极化系统,其效率可达70%,图4.example为其结构示意图)

图4.example 英国<超声学>中介绍的一种磁致伸缩换能器结构示意图蒙乃尔合金(Monel metal:68%Ni,28%Cu,1.5%Mn,2.5%Fe):这种材料最重要的特点是耐蚀性好。

在采用金属与合金的磁致伸缩材料时,要特别注意其热处理规范,下面介绍几种材料常用的热处理规范:

镍:将材料放入100℃炉内,以100-200℃/小时的速度升温到700℃,保温2小时,再以150-200℃/小时的速度冷却到150℃,然后取出在空气中自然冷却。

铁钴钒合金:把材料加热到850℃,保温5小时,以50℃/小时的速度冷却,以上步骤均在真空中或氢气保护下进行。

铁钴合金(K65):这种合金的热处理规范与铁钴钒合金相似,只是冷却速度为100℃/小时。

铁铝合金:把材料置于惰性介质中加热到750℃,保温2小时,在炉内冷却到600℃,然后在600-250℃范围内以25℃/小时的速度冷却,然后开炉冷却。

[2]铁氧体

所谓铁氧体,是一种具有高电阻率的铁氧非金属磁性材料,通常是以四氧化三铁(Fe3O4)为基体再加入其他成分烧结而成,因而便于直接烧结成所需的几何形状。铁氧体材料的优点是电声效率高(可达75%以上,如要输出10千瓦声功率时,电振荡器只要输出约13千瓦左右即可,因此所需电振荡器的体积显然比用镍的情况小得多),由于电阻率高而使得涡流损耗和磁滞损失也较小,而且磁致伸缩效应显著,适合用作接收换能器,此外,其价格低廉也是重要的优点之一。缺点主要是烧结体的机械强度差,在承受一定的应力时会显著恶化磁致伸缩性能(降低机电耦合系数-可下降2/3,降低磁导率-可下降40%),在相差不多的压应力作用下,镍的机电耦合系数只下降1/7左右,磁导率下降20%左右,因此,铁氧体磁致伸缩换能器的单个功率不能太大,若要功率大时,则需采用多个并联使用的措施,而且铁氧体和容器只能胶合不能焊合,也影响其用途的推广。另外,铁氧体的老化和温度稳定性也不够理想。

典型的铁氧体材料有镍铁氧体、镍钴铁氧体、镍铜钴铁氧体等,其机电耦合系数范围在0.2-0.3,适用于数千赫兹到100千赫兹的频率范围。

[3]新型磁致伸缩材料

近年来新开发的新型磁致伸缩材料很多,比较突出的有:

铁系非晶态强磁体:非晶态金属是一种原子排列杂乱无序(类似液体),结构稠密的固体金属,这是特异状态的物质,是由熔融金属高速冷却制成的。它具有较强的韧性和较大的变形能力,耐蚀性也很强。由于非晶态金属的原子排列无秩序,在原理上不会存在结晶体的磁性能各向异性。含有多量铁的非晶态强磁性体具有很大的磁致伸缩效应和高磁导率等,是优良的电声换能材料。如:Fe80P13C7、Fe66CO12Si8B14、Fe78Si10B12等。

稀土类-铁合金:利用稀土金属与铁组成的合金R-F2有很大的磁致伸缩效应和其他一些优异性能,适合制作高输出的换能器,缺点是制造成本很高,加工性能差,脆性大等,尚有待改进。典型材料有:铽镝铁合金如(Tb0.26Dy0.74)Fe2和(Tb0.27Dy0.73)Fe2-δ合金系等。

四氧化三铁系统材料:这是在四氧化三铁中添加了少量的氧化钴(CoO)、氧化硅和氧化钛,从而可以消除四氧化三铁磁性能上的各向异性,控制它的低电阻抗值,获得较高的磁致伸缩性能,如饱和磁致伸缩(△l/l)s=60x10-6,K33~0.25,共振频率的温度系数T f=0.98x10-5(120℃,1/度),可用到高压力和变温度的苛刻工作环境中去。

表4.1-4.3给出了部分磁致伸缩材料的性能参数,表中的“最佳极化磁场”是指在初始磁化曲线上最高值K33所需的场强;“μ33S/μ0(最佳值)”是指S1,S2≠0,S3=0时的磁导率μ33S=0=μ33T(1-K332)。注意:表中给出的参数值仅为参考值。“饱和磁致伸缩”是指材料达到饱和磁化时的磁致伸缩。

超磁致伸缩材料的应用现状

专题综述 文章编号:100320794(2006)0520725203 超磁致伸缩材料的应用现状 方紫剑,王传礼 (安徽理工大学,安徽淮南232001) 摘要:稀土超磁致伸缩材料作为一种新型功能材料具有应变大、响应速度快等优点。介绍了超磁致伸缩材料(G M M)及基本特性,且较全面地论述了超磁致伸缩材料2类执行器在各领域(特别是在液压元件和微型马达)中的应用及研究现状。 关键词:超磁致伸缩材料;液压元件;微型马达 中图号:TP39文献标识码:A Applications of G iant Magnetostrictive Material FANG Zi-jian,WANG Chu an-li (Anhui University of Science and T echnology,Huainan232001,China) Abstract:The giant magnetostrictive material(G M M)has the advantages of high strain and fast response.The giant magnetostrictive material and its basic characteristics are presented.The current researches on applica2 tions of tw o kinds of G MA in various fields(particularly in the field of hydraulic com ponents and micro-m o2 tors)are com prehensively introduced. K ey w ords:giant magnetostrictive material;hydraulic com ponent;micro-m otor 1 超磁致伸缩材料(G M M)的性能特点 G M M与压电材料(PZT)和传统磁致伸缩材料Ni、C o等相比,具有独特的性能:(1)在室温下的磁致伸缩应变大,是Ni的40~50倍,是PZT的5~8倍;(2)能量密度高,是Ni的400~500倍,是PZT的10~25倍;(3)响应速度快,一般在几十毫秒以下,甚至达到微秒级;(4)输出力大,负载能力强,可达到220~800N;(5)其磁极耦合系数大,电磁能机械能的转换效率高,一般可达72%;(6)居里点温度高,工作性能稳定。此外,声速低,约是Ni的1Π3,PZT的1Π2。鉴于G M M的上述优良特性,这种材料在许多领域中已引起人们的广泛重视。 2 物理效应与应用形式 2.1 超磁致伸缩材料的物理效应 (1)Joule效应 磁性体被外加磁场磁化时,其长度发生变化的现象,可用来制作磁致伸缩转换器。 (2)Villari效应 由于形状变化,致使其磁化强度发生变化的现象,可用于制作磁致伸缩传感器。 (3)ΔE效应 随磁场变化,杨氏模量也发生变化的现象,可用于声延迟线。 (4)Viedemann效应 在磁性体上施加适当的磁场,当有电流通过时磁性体发生扭曲变形的现象,可用于制作扭转马达等。 (5)AntiViedemann效应 当磁致伸缩材料沿轴向发生周向扭曲,同时沿轴向施加磁场,则沿周向出现交变磁化的现象,可用于扭转传感器。 (6)Jum p效应 当超磁致伸缩材料外加预应力时,磁致伸缩呈跃变式变化,磁导率也发生变化。 以上效应是超磁致伸缩材料的应用研究基础,利用这些效应可做成各种器件。 2.2 超磁致伸缩材料在工程中应用的2种形式 按照是否采用基片可将超磁致伸缩执行器 (G MA,G iant Magnetostrictive Actuator)分为2类: (1)直动型 直动型超磁致伸缩执行器一般使用超磁致伸缩棒(例如T erfenol-D),当作用在其上的磁场变化时产生形变,从而推动负载运动。 (2)薄膜型 这类执行器一般是采用在非磁性基片(通常是用一些半导体材料如Si制成)的上、下表面采用闪蒸、离子束溅射、电离镀膜、直流溅射、射频磁控溅射等方法分别镀上具有正(如:TbFe)、负(如:SmFe)磁致伸缩特性的薄膜制成,当在长度方向外加磁场时,产生正磁致伸缩的上表面薄膜伸长,而产生负磁致伸缩的下表面薄膜缩短,从而带动基片发生偏转。 3 两种G MA的应用现状 基于超磁致伸缩材料的微位移执行器具有大位移、强力、响应快、可靠性高、漂移量小、驱动电压低等优点,因而在液压元件、微型马达、声纳换能器等工程领域均显示出良好的应用前景。2种形式的G M M在工程中都有广泛的应用,本文着重介绍了2种形式的G M M在液压元件和微型马达中的应用。 3.1 直动型G MA的应用现状 目前,直动型超磁致伸缩执行器较多应用于微型泵、各种阀门、微型马达、声纳等产品中。 (1)微型泵 瑞典ABB公司用T erfenol-D为驱动元件设计了微型泵;日本用T erfenol-D制成了微型隔膜泵;英国SanT echnology公司的DariuszA.Bushko和James. H.G oldie用T erfenol-D棒制成了微型高压隔膜泵,其结构如图1,结合水力和电控装置,可实现强力、大行程的水力驱动,既可线性输出又可旋转输出,体积小且易于控制,其工作原理通过线圈驱动G M M 第27卷第5期2006年 5月 煤 矿 机 械 C oal Mine Machinery V ol127N o15 M ay.2006

磁致伸缩材料的设计和应用

磁致伸缩材料的设计和 应用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

磁致伸缩材料的设计和应用 Olabi A Grunwald (都柏林城市大学机械制造自动化学院) 摘要:磁致伸缩效应是指材料在外加磁场条件下的变形。磁畴的旋转被认为是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场可以使越来越多的磁畴在磁场方向更为强烈和准确的重新定位。所有磁畴都沿磁场方向排列整齐即达到饱和状态。 本文将展示磁致伸缩效应的研究方法现状和其应用,诸如:大型作动器响应、标准Terfenol-D 作动器、基于Terfenol-D的直线马达(蜗杆驱动)、用于声纳换能器的Terfenol-D、用于无线旋转马达的Terfenol-D、基于Terfenol-D的电动液压作动器、无线型直线微型马达、磁致伸缩薄膜的应用、基于磁致伸缩效应的无接触扭矩传感器和其他应用。研究表明,磁致伸缩材料具有许多优良的特性,从而可以被用于许多先进设备。 关键词:磁致伸缩效应;作动器;传感器;Terfenol-D 1.前言 磁致伸缩效应是指材料在外加磁场条件下的变形。磁致伸缩效应于19世纪(1842年)被英国物理学家詹姆斯.焦耳发现。他观察到,一类铁磁类材料,如:铁,在磁场中会改变长度。焦耳事实上观察到的是具有负向磁致伸缩效应的材料,但从那时起,具有正向磁致伸缩效应的材料也被发现了。对于两类材料来说,磁致伸缩现象的原因是相似的。小磁畴的旋转被认为是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场

浅谈磁致伸缩材料

周文文41255020 计1201 浅谈磁致伸缩材料 摘要:这学期我学习了《智能材料与结构》这门课程。短短九周的时间,使我对智能材料的各个板块都有了广泛认识的同时,对于磁致伸缩材料这一方面也产生了很大的兴趣。本文主要对于磁致伸缩材料的定义、原理与应用进行详细的介绍,并简明扼要的讲述磁致伸缩材料的发展现状及趋势和超磁致伸缩的应用与前景。 关键词:磁致伸缩效应磁致伸缩材料应用超磁致伸缩 1、磁致伸缩效应及其历史 磁致伸缩是磁性材料由于磁化状态的改变,其尺寸在各方向发生变化。物质都具有热胀冷缩的现象。除了加热外,磁场和电场也会导致物体尺寸的伸长或缩短。铁磁性物质在外磁场作用下,其尺寸伸长或缩短,去掉外磁场后,其又恢复原来的长度,这种现象称为磁致伸缩现象(效应)。 1842年,英国物理学家詹姆斯.焦耳发现有一类铁磁类材料,如:铁,在磁场中会改变长度。焦耳事实上观察到的是具有负向磁致伸缩效应的材料,但从那时起,具有正向磁致伸缩效应的材料也被发现了。 磁致伸缩现象的是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场可以使越来越多的磁畴在磁场方向更为强烈和准确的重新定位。所有磁畴都沿磁场方向排列整齐即达到饱和状态。 图1中即为长度随磁场强度变化的理想化曲线。

H 2、磁致伸缩材料 材料、信息与能源称为现代人类文明的三大支柱,其中材料最为基础,国民经济的各部门和高技术领域的发展都不可避免地受到材料一特别是高性能材料发展的制约或推动。传统的电工材料一般是指电工设备中常用的具有一定电、磁性能的材料,按用途可分为4大类:绝缘材料、半导体材料、导体材料和磁性材料。但随着科学技术的迅猛发展,各种新型高性能材料不断涌现。为电工及相关行业的发展起到巨大的推动作用,应用领域也在不断拓宽,因此,把应用于电工产品的材料和以电、磁性能为特征的新功能材料均定义为电工材料,提出了新型高性能电工材料的概念,目前主要包括超导体材料、超磁致伸缩材料、磁性液体材料、电(磁 )流变液、乐电(铁电)材料和磁光材料等。这些材料因其具有优异的性能,给电工行业带来了新的活力,在军民两用高技术领域有着广泛的应用前景。 自从发现物质的磁致伸缩效应后,人们就一直想利用这一物理效应来制造有用的功能器件与设备。为此人们研究和发展了一系列磁致伸缩材料,主要有三大类:即:磁致伸缩的金属与合金,如镍(Ni)基合金(Ni, Ni-Co合金, Ni -Co-Cr合金)和铁基合金(如 F e-Ni合金, Fe-Al合金, Fe- Co-V 合金等)和铁氧体磁致伸缩材料,如 N i-Co和 Ni-Co-Cu铁氧体材料等。这两种称为传统磁致伸缩材料,其λ值(在20—80ppm之间)过小,它们没有得到推广应用,后来人们发现了电致伸缩材料,如( Pb, Zr,Ti)C03材料,(简称为 P ZT或称压电陶瓷材料),其电致伸缩系数比金属与合金的大约200~400ppm,它很快得到广泛应用;第三大类是近期发展的稀土金属间化合物磁致伸缩材料,例如以( Tb,Dy)Fe2化合物为基体的合金。 由于磁致伸缩材料在磁场作用下,其长度发生变化,可发生位移而做功或在交变磁场作用可发生反复伸张与缩短,从而产生振动或声波,这种材料可将电磁能(或电磁信息)转换成机械能或声能(或机械位移信息或声信息),相反也可以将机械能(或机械位移与信息)。转换成电磁能(或电磁信息),它是重要的能量与信息转换功能材料。

超磁致伸缩材料

重庆科技学院磁性材料课程论文 论文题目:稀土超磁致伸缩材料的制备和应用指导老师:马毅龙 姓名:汪永红 学号:2009440547 年级:金属材料工程09级2班 成绩: 评语: 2012 年6月10 日

稀土超磁致伸缩材料的制备和应用 汪永红 (重庆科技学院冶金与材料工程学院,重庆401331) Fabrication and application of Rare Earth Giant Magneto-Stricfive Materials Wang Yong-hong (School of Metallurgy and Materials Engineering of Chongqing University of Science and Technology,Chongqing 401331,China) 摘要:稀土超磁致伸缩材料(Rare Earth Giant Magneto-Stricfive Materials)作为2l世纪一种最具有战略性的材料,其优良的特性和广泛的应用前景在国际范围内得到普遍重视,已成为磁致伸缩材料研究的重点。简要介绍了稀土超磁致伸缩材料的概念、制备方法及其应用,并指出了一些研究反方向。 关键词:稀土超磁致伸缩材料,制备,应用 Abstract:As a new strategic material in 21st century,RE-GMSM has been taken into account and become the keystone on magneto-strictive material studies because of i t s superior properties and extensive application prospects. A brief description of the conception,fabrication and applications of RE—GMSM was presented.Some suggestions for the development directions were also mentioned. Key Words:rare earth giant magneto-strictive materials;fabrication;application 1 前言 稀土超磁致伸缩材料(RE—GMM)主要是指稀土一铁系金属间化合物材料:铽镝铁(Tb-Dy-Fe) 磁致伸缩材料。这类材料具有比铁、镍等大得多的磁致伸缩值,磁致伸缩应变( =△I/I )比一般磁致伸缩材料高约100倍,因此被称为稀土超磁致伸缩材料[1]。 铁磁性晶体在外磁场中被磁化时,其长度尺寸及体积大小均发生变化,去掉外磁场后,其又恢复原来长度与体积的现象被称为磁致伸缩或磁致伸缩效应[2]。磁致伸缩可分为:线磁致伸缩和体积磁致伸缩[3]。当磁性体被磁化时,沿磁化方向伸长或缩短,称为线磁致伸缩。发生线磁致伸缩时,磁性体的体积几乎不变。当磁化未达到饱和时,主要是产生线磁致伸缩,磁致伸缩一般均指线磁致伸缩。磁性体磁化状态改变时,体积发生膨胀或收缩的现象则称为

超磁致伸缩材料及其应用

超磁致伸缩材料及其应用 周全祥(2009级应用物理学) 摘要:超磁致伸缩材料(GMM)是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,在智能系统中具有广泛的应用前景,其力学响应行为涉及变形场、磁场、涡流场、温度场相互耦合问题,直接关系到智能系统的性能指标和可靠运行。目前人们已经设计并制造出各种智能结构和器件,如:主动减振装置、高精度线性马达、超磁致伸缩微泵、微阀门、微定位装置等等,使得磁致伸缩材料在众多的功能材料中备受瞩目。超磁致伸缩材料Terfenol-D与压电陶瓷材料相比具有更优越的性能。 关键字:超磁致伸缩材料,工作特性,制备工艺,非线性,换能器,制动器Abstract:Giant Magnetostrictive Materlal,GMM in abbreviatory,is one kind of new funetion materials and can give giant magnetostriction strains with temperature indoor and low magnetie field.It has good features such as giants trains,high force,high energy density,high mechanical-magnetic coupling coefficient,mierosecond response and so on.Magnetostrictive materials have an immeasurable applied prospect in smart devices.A considerable coupling effect among mechanical field,magnetic field,thermal field,electrical field is therefore being a relevant concern in the applications of magnetostrietive devices.Motivated by the need to promote a more efficient design process and higher performance achievement of development of materials,devices and system designs.GMM is a kind of new type of functional material,which has been used to design and fabricate many intelligent devices such as active vibration absorbers,linear motors,micro-pumps,micro-valves,and micro- positioners etc. Terfenol-D than piezoceramic material has more superior performance. Key words:giant magnetostrictive material,working chracteristic,preparation technique,nonlinear,transducer,displacement actuator

铽镝铁合金稀土超磁致伸缩材料(GMM)

铽镝铁合金稀土致伸缩材料(GMM) 铽镝铁合金是一种新型的稀土超磁致伸缩材料(GMM),因其诸多优良特性,在各行各业的新产品开发中具有广阔的应用前景,必将带来深远的影响力。 铽镝铁合金具有一系列优良的性能:磁致伸缩系数大大,比纯Ni大50倍,比PZT材料大5-25倍。磁致伸缩时产生的推力很大,直径约10mm的铽镝铁棒材,磁致伸缩时产生约200公斤的推力;能量密度高,其能量密度比Ni基合金大400~800倍,比PZT大14~30倍;能量转换效率(用机电祸合系数表示)高达70%,而Ni基合金仅有16%。PZT材料仅有0-60%;其曲线线性好,弹性模量随磁场而变化,可调控;响应速度快,达到10-6秒;频率特性好,可在低频率(几十至1000赫兹)下工作,工作频带宽;可在低场(几十至几百奥斯特)下工作;工作电压低,可在几伏至100伏电压下工作,可用电池驱动,而PZT的电极化电压在2kV/mm 以上,有电击穿危险;稳定性好,可靠性高,其磁致伸缩性能不随时间而变化,无疲劳,无过热失效问题。另外,与PZT陶瓷相比,超磁致伸缩材料在低场大功率传感器上也具有不可替代的地位。超磁致伸缩材料在声纳的水声换能器技术,电声换能器技术、海洋探测与开发技术、微位移驱动、减振与防振、减噪与防噪系统、智能机翼、机器人、自动化技术、燃油喷射技术、阀门、泵、波动采油等高技术领域有广泛的应用前景。 类似牌号:Terfenol-D,GMM,TbDyFe 目前铽镝铁合金在国内应用仍处于起步阶段,今有少数单位具有生产能力。A-ONE是目前国内可以供应铽镝铁合金产品最全的生产厂家之一。 苏州埃文特种合金可提供铽镝铁合金产品规格: 圆柱形,直径4~50mm,长度≤200mm 长方体:长宽2~35mm,高2~100mm 圆环:外径8~50mm,壁厚2~4mm,长度2~100mm 圆片:直径4~50mm,最小厚度1mm 方片(矩形片):最薄1mm 层叠片:直径10~50mm,长5~100mm,最小层叠厚度2mm 粉末:协商供应 品牌:A-ONE 供货能力:有长期稳定的批量生产能力,月产量可达80~120kg。 部分规格有库存现货。没有MOQ,只要有需求就可以供货。 铽镝铁合金作为一种新型的稀土超磁致伸缩材料,其室温下的磁致伸缩应变量(磁致伸缩系数)之大是以往任何场致伸缩材料所无法比拟的。它比传统的镍钴(Ni-Co)等磁致伸缩合金的应变量大几十倍,是电致伸缩材料的五倍以上。可高效地实现电能转换成机械能,传输出巨大的能量。在10-5~10-6秒的极短时间内,精密、稳定地形成与磁场静、动态特性相匹配的无滞后型响应。其响应稳定,速度敏捷,使铽镝铁合金作为驱动元件的机械系统反应滞后时间显着降低,这也是铽镝铁合金元件在交变磁场中快速产生伸缩应变响应的重要特性,从而使它在工业的科技开发中作为执行元件、控制元件、敏感元件得到了越来越广泛的应用 稀土超磁致伸缩材料在声学领域的应用成果之一,是平板扬声器技术。平板扬声器(Flat panel technology)具有优异的频响特性和音质,可以产生360度的声场,几乎穿越任何平面,开辟了设计各种新型扬声器的可能性。 把稀土超磁致伸缩材料元件用于微位移机构,可以快速、精确、稳定地控制复杂的位移运动。

超磁致伸缩材料及其应用

超磁致伸缩材料及其应用 13新能源(01)班 张梦煌 1305201026 超磁致伸缩材料(GMM)是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,在智能系统中具有广泛的应用前景,其力学响应行为涉及变形场、磁场、涡流场、温度场相互耦合问题,直接关系到智能系统的性能指标和可靠运行。目前人们已经设计并制造出各种智能结构和器件,如:主动减振装置、高精度线性马达、超磁致伸缩微泵、微阀门、微定位装置等等,使得磁致伸缩材料在众多的功能材料中备受瞩目。超磁致伸缩材料Terfenol-D与压电陶瓷材料相比具有更优越的性能。 超磁致伸缩材料(giant magnetostrietive material,简写为GMM)是A.E.Clark 等人于70年代发现的,是一种新型的功能材料,它能有效地实现电能与机械能的相互转换。由于具有应变值大、电能一机械能转换效率高、能量传输密度大、高响应速度等特点,该材料已引起广泛的注意,并逐步开始应用于声纳、超声器件、微位移控制、机器人、流体器件中。表1.1给出了电磁场,变形场和温度场之间能量转换的不同效应。形状记忆合金和压电陶瓷都已在航空航天结构中被用于控制和制动。形状记忆合金非常适合用在高冲程量、低带宽的领域中,例如旋翼叶片的飞行追踪。而压电陶瓷适用于低冲程量、高带宽的情形,例如被安置在直升飞机的后缘襟翼上以降低较高的谐波振动。 磁致伸缩材料可以提供机械能和磁能之间的转化,其带宽在30KHz左右,低于电致伸缩材料和压电陶瓷,但高于形状记忆合金。在过去的几年中,能产生大于0.001应变的磁致仲缩材料受到广泛的关注,这主要是因为这种材料非常适合应用在一些需要较大驱动力和较小位移的领域,如可变形表面,主动振动控制和精确制造等等,在商业应用中也可以产生巨大的经济效益。磁致伸缩器件由于其独特的功能优势在许多危险工作条件和高温环境下性能出众,并且能够在低频磁场下调节应力和位移。相对于电致伸缩材料和压电陶瓷,磁致伸缩材料的优势

电致、磁致伸缩材料功能及应用

二谈电致、磁致伸缩材料功能及应用 一、电致伸缩材料 在外电场作用下电介质所产生的与场强二次方成正比的应变,称为电致伸缩。这种效应是由电场中电介质的极化所引起,并可以发生在所有的电介质中。其特征是应变的正负与外电场方向无关。在压电体中(见压电性),外电场还可以引起另一种类型的应变;其大小与场强成比例,当外场反向时应变正负亦反号。后者是压电效应的逆效应,不是电致伸缩。外电场所引起的压电体的总应变为逆压电效应与电致伸缩效应之和。对于非压电体,外电场只引起电致伸缩应变。电介质在电场作用下发生弹性形变的现象。是压电效应的逆效应。因电介质分子在电场中发生极化,沿电场方向排列的分子相互吸引而引起。当场强大小发生周期性变化时,能引起材料沿电场方向发生振动。若在电介质材料(如钛酸钡等)两端所加交变电压的频率与材料的固有频率相同时,材料将发生共振。 (1)电致伸缩效应与压电效应 电致伸缩效应也是一种基本的机—电耦合效应,但是对它的实研究开展得较迟,因为电致伸缩是个二次效应,通常由其产生的形变非常小,给实验带来了困难,因此人们对它不太熟悉。 众所周知,电介质晶体在外电场作用下应变与电场的一般关系式 =?+??式中,第一项表示逆压电效应;d为压电系为: S d E M E E 数,第二项表示电致伸缩效应;M为电极伸缩系数,它是由电场诱导极化而引起的形变与电场平方成正比。逆压电效应仅在无对称中心晶

体中才有;而电致伸缩效应则为所有电介质晶体都有,不过一般说来它是很微弱的。压电单晶如石英、罗息盐等它们的压电系数比电致伸缩系数大几个数量级,结果在低于IMV/m的电场作用下只看到第一项的作用,即表现为压电效应。 在一般铁电陶瓷中,电致伸缩系数比压电系数大,在没有极化前虽然单个晶粒具有自发极化但它们总体不表现净的压电性。在极化过程中净的极化强度被冻结(即剩余极化)并产生一个很强的内电场,如BaTIO。陶瓷净的剩余极化产生一个27MV/m的内电场,这样高的内电场起了电致伸缩效应的偏压作用,因此极化后陶瓷在弱外电场作用下产生宏观线性压电效应。一般铁电陶瓷的电场与应变曲线呈蝴蝶形而不表现出电致伸缩效应的二次方曲线。如图1所示。 但是,只要有这样一些铁电陶瓷室温刚好高于它的居里点,不具有自发极化、没有压电性,介电常数又很高在外电场作用下能被强烈地感应极化伴随产生相当大的形变,就有可能表现出纯的大电致伸缩效应呈现出抛物线形的电场—应变曲线。

磁致伸缩材料在功能材料中的应用

磁致伸缩材料在功能材料中的应用 摘要:磁致伸缩材料是一种重要的功能材料,当改变外磁场时磁致伸缩材料的长度及体积均会发生变化,反之当材料发生变形或受力时材料内部的磁场也会随之发生变化。它具有电磁能和机械能相互转换的功能,是声呐换能器的重要材料,在大桥桥梁减震、油井探测、海洋探测与开发、高精度数字机床、微位移传感器、高保真音响等方面有着广泛的用途。 关键字:磁致伸缩材料,功能材料 1.特性 磁致伸缩材料(图1)的重要特点是具有磁致伸缩效应——即磁体在外磁场中被磁化时,其长度及体积均发生变化的现象[1],它由焦尔发现,所以又称焦尔效应。稍后,维拉里又发现了磁致伸缩的逆效应,即铁磁体在发生变形或受到应力的作用时会引起材料磁场发生变化的现象,这种现象也称为铁磁体的压磁现象。磁致伸缩效应可分为线磁致伸缩和体积磁致伸缩,其中长度的变化称为线性磁致伸缩,体积的变化称为体积磁致伸缩。在绝大部分磁性体中,体积磁致伸缩很小,实际的用途也很少,因此大量的研究工作和磁致伸缩材料的应用主要集中在线磁致伸缩领域,因而通常讨论的磁致伸缩是指线磁致伸缩。使用材料长度的变化量与原长度的比值λ,也就是磁致伸缩系数来表示磁致伸缩量的大小,它的单位是ppm(10-6),即百万分之一,伸缩范围通常为几十到几千ppm。磁致伸缩量虽然用肉眼无法观察到,但却在换能器和传感器上有着强大的用途。图2是磁致伸缩示意图。 图1 磁致伸缩材料 图2 磁致伸缩示意图 2.分类 自从发现物质的磁致伸缩效应后,人们就一直想利用这一物理效应来制造有用的功能器件与设备。为此人们研究和发展了一系列磁致伸缩材料,主要有三大类:(1)传统磁致伸缩材料,包括磁致伸缩的镍基合金、铁基合金和铁氧体,其磁致伸缩系数λ值较小,使得它们没有得到推广应用;(2)20世纪末发展的以Tb-Dy-Fe和SmFe材料为代表的稀土金属间化合物超磁

超磁致伸缩材料研究现状

超磁致伸缩材料研究现状 超磁致伸缩材料Terfenol-D是本文研究中应用的重要材料,有必要介绍一下,尤其关于材料在本文研究中的本构关系。 1.1 超磁致伸缩材料介绍 超磁致伸缩材料是基于铁磁材料在磁场下产生磁致伸缩的一种性能十分优异的智能材料,他的独特性主要来源于显著的的伸长率(100-1000倍)和高能量密度(10-50倍)。第一次由 A.E.Clarck等人在常温下研制出超磁致伸缩材料Td x Dy1-ХFe2[41,42,43](也被成为Terfenol-D),最初阶段材料在磁力学特性上重复率低、造价高、不清楚的操作条件限制了其在实际设备上的应用发展,随着制造技术的发展以及大量学者的广泛研究[44],其优越的性能越来越显著,广泛应用于各类作动器、传感器、换能器[45,46]。 表2-1 Terfenol-D、Ni、PZT性能比较 性能参数Terfenol-D Ni PZT 饱和磁致伸缩系数10-61500~2000 -40~-35 100~600 机电耦合因数0.7~0.75 0.16~0.3 0.45~0.72 能量密度(KJ/m3)14~25 0.03 0.65~1.0 能量转换效率﹪49~56 9 23~52 响应时间10-6s <1.0 10 密度(kg/m3)9250 8900 7490 声速(m/s)1640~1940 4950 3130 相对磁导率3~10 60 居里温度/℃380~387 >500 130~400 应力输出(Mpa)30 1 15 为了比较,在表2-1[44,47,48,49]列举了超磁致伸缩材料的基本物理性质和压电材料PZT及镍的性质。很容易可以看出,与PZT相比超磁致伸缩材料展现出10倍到20倍的位移,15倍到25倍的能量密度,10倍以上的响应时间。如今,超磁致伸缩材料具体的优势有:高磁弹性、磁针伸缩量大、通过控制成分可选择的正负磁致伸缩、居里温度高、对于疲劳失效有非常低的磁化系数、通过磁场的非接触驱动、低电压驱动、高能量密度、较小磁滞、快速响应、可控的温度特性、频率特性好、磁机转换效率高、输出应力大[44,47,50,51,52]。当然超磁致伸缩材料也有他的劣势,比如:磁场驱动的必要性、由线圈产生焦耳热、高频涡流损耗、耐腐蚀性差、价格昂贵[12,44,53]。

超磁致伸缩材料项目投资分析计划书

超磁致伸缩材料项目投资分析计划书 规划设计 / 投资分析

摘要说明— 超导体是一种抗磁体,低于临界温度时,超导体排斥任何试图施加于它的磁场,当某种材料在低于某一温度时,出现电阻为零的现象即超导现象。在超导材料中添加稀土可以使超导现象更加容易实现。 当某种材料在低于某一温度时,出现电阻为零的现象即超导现象,该温度即是临界温度(Tc)。超导体是一种抗磁体,低于临界温度时,超导体排斥任何试图施加于它的磁场,这就是所谓的迈斯纳效应。在超导材料中添加稀土可以使临界温度Tc大大提高,一般可达70~90K,从而使超导材料在价廉易得的液氮中使用,这就大大地推动了超导材料的研制和应用的发展。 超导现象是1911年由一位荷兰物理学家首先发现的,当水银温度降低到43K时,水银便失去了电阻。随后超导体的研究开发一直在进行,到1973年,科学家们制得一种铌锗合金,其临界温度是23.3K。1986年发现一些新的超导体,超导研究也因此取得了突破性进展,当时发现一种镧钡铜氧陶瓷,其临界温度为35K。1987年2月又发现YBa2Cu3O7-x高温超导体的临界温度达90K以上,大大超过了氮的沸点(77K)。新型稀土高温材料可以在液氮温度下工作。 人们预测,到本世纪末高温超导体将是稀土非常大的潜在市场。稀土超导体可用于采矿、电子工业、医疗设备、悬浮列车及能源等许多领域。80年代中期发现高温超导材料曾在世界范围掀起研究热潮。进入90年代,

随着人们对高温超导材料认识的逐步加深,研究工作进入提高阶段,虽然从事超导研究的人员和发表的文章的数量减了下来,但各国对超导研究的投入并未减少。在这一背景下,我国超导研究也经历了适当缩小规模、突出重点和更加明确加强应用的变化过程。自在Y-Ba-Cu-O超导体研究方面取得重大突破以来,超导研究正在向实用化方向发展。总之,稀土在超导材料中的应用将越来越广泛,发展前途十分广阔。 该超磁致伸缩材料项目计划总投资19320.02万元,其中:固定资产投资14193.36万元,占项目总投资的73.46%;流动资金5126.66万元,占项目总投资的26.54%。 达产年营业收入49287.00万元,总成本费用37707.71万元,税金及附加410.19万元,利润总额11579.29万元,利税总额13586.62万元,税后净利润8684.47万元,达产年纳税总额4902.15万元;达产年投资利润率59.93%,投资利税率70.32%,投资回报率44.95%,全部投资回收期 3.72年,提供就业职位967个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后

超磁致伸缩材料及其应用研究_李松涛

超磁致伸缩材料及其应用研究 * 李松涛 孟凡斌 刘何燕 陈贵峰 沈 俊 李养贤 (河北工业大学材料科学与工程学院 天津 300130) 摘 要 稀土超磁致伸缩材料是一种新型稀土功能材料.文章概述了超磁致伸缩材料(GMM )的研究历史;对比了一种实用的超磁致伸缩材料(Terfenol -D )和压电陶瓷材料(PZT )的性能;阐述了超磁致伸缩材料当前在以下两个方面取得的研究进展:(1)关于工艺方法的研究:包括直拉法、区熔法、布里奇曼法和粉末烧结、粘结等方法;(2)关于材料组分的研究:包括对Fe 原子的替代研究以及开发轻稀土超磁致伸缩材料的研究.文章最后叙述了超磁致伸缩材料的应用领域,以及发展我国稀土超磁致伸缩材料的意义.关键词 超磁致伸缩,稀土金属间化合物 Giant magnetostrictive materials and their application LI Song -Tao MENG Fan -Bin LI U He -Yan CHEN Gui -Feng SHEN Jun LI Yang -Xian (Scho o l o f M ate rial Sci enc e &Engi nee rin g ,He bei Uni ver sit y of Tech no lo gy ,Tian jin 300130,C hin a ) Abstract Rar e -earth giant magnetostrictive materials (GMM )are a type of ne w functional mater ials .A br ief de -scription is given of the histor y of giant magnetostrictive materials ;and their char acteristics are compared with those of piezoelectr ic mater ials .Curr ent research developments are descr ibed ,in particular :(1)fabrication technology ,in -cludingthe Czochraski ,FSZ ,Bridgman ,po wder -sintering and powder -bonding methods ;(2)c omposition studies of GMM ,including the substitution for Fe in RFe 2and exploitation of light rare -earth GMM .Applications and the impor -tance of GMM researc h in China are r eviewed . Key words giant magnetostr iction ,rar e -earth -transition inter metallics * 国家自然科学基金(批准号:50271023)和教育部科学重点 (批准号:02017)资助项目 2004-03-23收到初稿,2004-06-07修回 通讯联系人.E -mail :ad mat @js mail .h eb ut .edu .cn 1 磁致伸缩效应简介 1842年,焦耳(Joule )发现沿轴向磁化的铁棒,长度会发生变化,这种现象称为磁致伸缩效应,又称为焦耳效应[1],从广义讲包括顺磁体、抗磁体、铁磁体以及亚铁磁体在内的所有磁性材料都具有磁致伸缩性质.但是顺磁体、抗磁体材料的磁致伸缩值很小,实际应用价值不大;而对于部分铁磁性及亚铁磁性材料,磁致伸缩值较大,数量级可以达到103ppm ,具有很高的实用价值,引起研究人员的重视. 磁致伸缩材料的应用主要涉及到以下几种效应: (1)磁致伸缩效应(焦耳效应):材料在磁化状态改变时,自身尺寸发生相应变化的一种现象.磁致伸缩有线磁致伸缩(长度变化)和体磁致伸缩 (体积变化)之分,其中线磁致伸缩效应明显,用途广,故一般提到的磁致伸缩都是指线磁致伸缩. (2)磁致伸缩的逆效应(Villari 效应):对铁磁体材料施加压力或张力(拉力),材料在长度发生变化的同时,内部的磁化状态也随之改变的现象.(3)威德曼效应(Wiedemann )效应:在被磁化了的铁磁体棒材中通电流时,棒材沿轴向发生扭曲的现象. (4)威德曼效应的逆效应(Matteucci 效应):将铁磁体棒材绕轴扭转,并沿棒材的轴向施加交变磁场时,沿棒材的圆周方向会产生交变磁场的现象.

国内外超磁致伸缩材料及作动器的

科技信息 1.超磁致伸缩材料的特点与应用 1.1超磁致伸缩材料的特点 磁致伸缩材料主要有三大类:磁致伸缩的金属与合金、铁氧体磁致 伸缩材料和稀土金属间化合物磁致伸缩材料。前两种称为传统磁致伸 缩材料,其磁致伸缩应变过小,没有推广应用价值。而稀土金属间化合物磁致伸缩材料也称为稀土超磁致伸缩材料。与其他智能材料相比,稀土超磁致伸缩材料具有以下特点:应力负载大(可达700MPa)、能量转换率高(机电耦合系数可达0.75)、温度适应范围宽(小于200℃)、响应快(微秒级)、驱动电压低(小于30V)等。另外具有频率特性好,工作频带宽;稳定性好,无疲劳,无过热失效等优点。因此有专家认为,稀土超磁致伸缩材料可广泛应用到机械、电子、航天、农业等其他领域,是21世纪的战略材料。 1.2超磁致伸缩材料的应用分析 迄今已有1000多种超磁致伸缩材料器件问世,应用面涉及航空航天、国防军工、电子、机械、石油、纺织、农业等诸多领域,大大促进了相关产业的技术进步。超磁致伸缩材料在声频和超声技术方面也有广阔的应用前景,国外已用超磁致伸缩材料来制造出超大功率的超声波换能器。日本已用稀土超磁致伸缩材料来制造海洋声学断层分析系统和海洋气候声学温度测量系统的水声发射换能器,可用于测量海水温度和海流的分布图。德国材料研究所已将超磁致伸缩薄膜材料应用于微型泵的研究之中。 随科技发展的日新月异,超磁致伸缩材料的重要性必将越来越突出,应用也将更广泛。预计未来超磁致伸缩材料的应用领域包括航空航天、超精密机械加工、海洋工程、汽车制造、石油产业等。 1.3超磁致伸缩材料在我国的研究与应用 在国内,北京钢铁研究总院于1991年率先制备出GMM棒材,此后又开展了低频水声换能器、光纤电流检测、大功率超声焊接换能器等的研究。北京科技大学采用具有自主知识产权的一步法工艺和设备生产稀土超磁致伸缩材料,减少了过程污染,杂质和氧含量低,合金成分控制准确,提高了材料的性能和产品的一致性;同时易于实现自动化控制,生产效率比传统工艺提高了100-150倍,成本大大降低。稀土冶金及功能材料国家工程研究中心研究的材料水平已接近国际先进水平并可小批量生产,另外还开发了廉价Terfenol-D生产亦达到实用水平。研究开发的大功率换能器及电磁阀取得初步结果。北京工商大学把超磁致伸缩材料用于电机技术,研制了超磁致伸缩谐波电机。 刘福贵等对超磁致伸缩力传感器进行了研究,建立了磁致伸缩力传感器输入输出关系的磁-机械强耦合模型,测试了超磁致伸缩棒材的磁致伸缩逆效应特性,设计了超磁致伸缩力传感器的结构,研制并制作了超磁致伸缩压力传感器的实验测试装置,对超磁致伸缩力传感器的输入-输出特性进行了实验研究。 李国平等为减少车削过程中车刀产生的振动对工件加工精度的影响,开发了一种车削振动控制系统。研究了超磁致伸缩执行器(GMA)和专用刀架的工作原理,并分别建立了它们的传递函数模型。根据人工免疫原理,设计了一种免疫PID控制器,并在数控(CNC)车床上进行了现场实验测试,结果证明该系统能很好地抑制车削加工时产生的振动干扰。李小鹏等针对汽车减震问题展开研究,综合考虑了汽车车身的固有振动特性,提出并设计了基于超磁致原理的汽车用磁控悬架方案,突破了以往汽车减振的工作模式,将超磁致伸缩材料同汽车工程有机结合起来。 2.国外超磁致伸缩作动器的发展 2.1超磁致伸缩直线作动器的研究 近几十年来超磁致伸缩作动器的研制与开发引起了国际上的极大关注。上世纪末,德国柏林大学Kiese Wetter教授利用超磁致伸缩材料棒制作了一种尺蠖式作动器,这是世界上第一台超磁致伸缩驱动器,已在造纸工业中进行商业化应用。该驱动器定子采用管状非磁性材料,当移动线圈通入电流且未知发生变化时,超磁致伸缩棒运动部分分别在纵向和径向上产生磁致伸缩变化,像虫子一样蠕动前进。它的最大驱动力可达到1000N,速度可达0.2m/s。Musoke等利用尺蠖原理和多相激励设计了一种大推力的直线电机,推力可达17N。 图1是Clark.A.E设计的尺蠖型直线电机。该电机的驱动机构两端各自装有一个闸片,当施加交变磁场时,电机的单步小位移将不断累加成为长行程的线性运动。 图1Clark提出的直线电机 2009年,Kim Won-jong等人发表了一种振动型超磁致伸缩直线电机,见图2。 图2Kim Won-jong提出的超磁致伸缩直线电机其主要性能参数:最大输出力410N,有效行程45mm。利用线圈(coils)产生磁场,该磁场为通过活动元件(active element)的运动磁场(magnetic field),当在定子(stator)与活动元件之间施加适当的预压力时,活动元件将做直线运动,运动的方向与磁场运动方向相反。该电机功率90W时,可产生410N推力,行程达45mm。 2.2超磁致伸缩旋转作动器的研究 1991年,美国的Vranish采用超磁致伸缩材料,利用Kiesewetter电机的原理开发出了转动式的步进马达。它的扭矩输出达12.2N·m,精度高达800μrad。 匹兹堡州立大学研究了一种新型超磁致伸缩旋转电机,该电机利用两个超磁致驱动器在两个相位差90°的正弦信号激励下能在定子中产生转动,再利用摩擦力带动转子运动,电机结构图如图1所示。 图3匹兹堡州立大学磁致伸缩旋转电机 2.3超磁致伸缩阀的研究 S.Karunanidhi等把超磁致作动器与放大机构结合起来用于高动伺服阀,实验研究发现该阀的响应快于传统伺服阀。 图4具有机械放大结构的超磁致伸缩作动器 3.超磁致伸缩作动器在国内的发展 3.1超磁致伸缩微位移作动器 贾振元等建立了执行器的微位移传递机构、磁路、驱动线圈及其冷却等几个关键部分的数学模型,并提出其设计理论和方法,同时研制了超磁致伸缩微位移执行器样机。浦军等基于超磁致伸缩材料的磁致伸缩特性设计了一种用于微位移驱动的致动器,分析了致动器工作磁场的组成,计算了线圈的工作电流,并以此为依据设计了稳流电源。张磊等设计了一种微位移作动器,该作动器基本上工作在线性区域内,其位移伸缩量大,低频动态性能较好,高频谐波分量影响 国内外超磁致伸缩材料及作动器的研究 盐城工学院詹月林陈西府 [摘要]超磁致伸缩作动器具有推力强、反应快和分辨率高等特点,在精密定位、精密驱动、机器人、微型阀等领域展现了广阔的应用 前景。本文在介绍超磁致伸缩材料及其应用的基础上,分析了国内外超磁致伸缩作动器的研究动态、应用状况等,并对几类超磁致 伸缩作动器的原理、结构进行了阐述。最后提出了超磁致伸缩作动器的四个研究方向。 [关键词]超磁致伸缩材料作动器电机 执行器 (下转第164页) — —163

相关文档