文档库 最新最全的文档下载
当前位置:文档库 › 合成氨资料

合成氨资料

合成氨资料
合成氨资料

合成氨市场价格:

2017年2月6日

安徽昊源2850元/吨左右,日销量至400吨左右,该厂装置产能15万吨/年。

山东寿光联盟2910元/吨,日销量至800吨左右,该厂装置产能130万吨/年。

河北金源化工2655元/吨,日销量至400吨左右,该厂装置产能26万吨/年。

2014-2016年1-5月国内合成氨供应量统计图

2015年至今合成氨地区价格走势图

2016年1-6月合成氨下游产品开工走势图

小中颗粒1610-1680元/吨、大颗粒1680-1690元/吨,;临沂市场批发1630元/吨左右、菏泽1600-1610元/吨。河南主靠工业订单支撑,新单销售稀零,现主流出厂报价1610-1700元/吨。

河北主流1620-1660元/吨。湖北主流报价1710-1730元/吨,部分大颗粒成交1664元/吨;湖南近日多雨、影响走货,市场倒挂严重,存1620-1700元/吨出库。江苏小中颗粒尿素1700-1730元/吨,大颗粒1730元/吨,邳州1620-1630元/吨;徐州、盐城小颗粒尿素批发价1680-1690元/吨;

安徽尿素1660-1680元/吨。

国家海关数据显示,2017年元月中国共出口尿素23.65万吨,环比减少68.2%,同比减少83.3%。

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨生产常用的原料有哪些

1合成氨生产常用的原料有哪些? 原料:(包括提供H2的原料和燃料) 固体原料:焦碳、煤 气体原料:天然气、重油、焦炉气等 液体原料:石脑油、重油、原油等 常用的原料有:焦碳、煤、天然气、重油 2合成氨生产分哪几个基本工序?三个基本工艺步骤是什么/ (1)造气:即制备含有氢、氮的原料气 (2)净化:不论采用何种原料和何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质。 (3)压缩和合成:将合格的氮、氢混合气压压缩到高压,在铁催化剂的存在下合成氨。 3写出天燃气蒸汽转化法生产合成气的主要反应方程式、工艺条件和工艺流程图,说明天然气蒸汽转化法为何要进行二段转化操作? (1)主反应式: CH4 + H2O(g) = CO + 3H2 206.3KJ/mol (1) CO + H2O(g) = CO2 + H2 -41.2KJ/mol (2) 副反应式:CH4 = 2H2 + C 2CO = CO2 + C CO + H2 = H2O + C (2)工艺条件:压力3~4 MPa; 一段转化反应温度800℃; 二段转化反应温度1000℃; 水碳比S=3~4; 空间速度(根据炉型、分段情况、催化剂的不同以及反应的不同时期来确定) (4)书上18页第一段 4干法脱硫与湿法脱硫各有甚么优缺点? 干法:优点:既能脱除有机硫,又能脱除无机硫;出口气含S<1×10-6(无加氢)、S<2×10-8(有加氢)。缺点:脱硫剂再生困难,只可用于脱微量硫。 湿法:优点:液态脱硫剂易于输送,可以再生,能回收硫磺,可用于脱除大量无机硫。

5改良ADA法脱硫由哪几个基本反应过程构成? 原理:分为四步: ①用pH=8.5~9.2的稀碱溶液吸收H2S Na2CO3 + H2S == NaHS + NaHCO3 ②硫氢化物被氧化为S 2NaHS + 4NaVO3 + H2O == Na2V4O9 + 4NaOH + 2S 偏钒酸钠焦性偏钒酸钠(有还原性) 以上两步为脱硫,在脱硫塔中进行。 ③氧化剂(偏钒酸钠)再生 Na2V4O9 + 2ADA(O) + 2NaOH +H2O == 4NaVO3 + 2ADA(H) ④ADA再生 2ADA(H还原态) + O2 == 2ADA(O氧化态) + 2H2O 以上两步为再生,在再生塔中进行。 ADA(O):蒽醌二磺酸钠 6采用低温交换的目的 7写出苯菲尔法脱除CO2吸收和再生主要反应,为什么要加入二乙醇胺? 脱碳:K2CO3 + CO2 + H2O == 2KHCO3 钾碱再生:2KHCO3 == K2CO3 + H2O + CO2 吸收反应(脱碳): KH2AsO3 + CO2 + H2O == KHCO3 + H3AsO3 K2CO3 + CO2 + H2O == 2KHCO3 80~90℃ 钾碱再生: 2KHCO3 == K2CO3 + H2O + CO2 105~110 因为在K2CO3溶液中加入少量二乙醇胺,可大大加快CO2的吸收速度,降低CO2的分压,同时还可除去原料气中的H2S等酸性组分 。 8什么是平衡氨含量,影响平衡氨含量的因素有哪些?有何影响? 在一定温度和压强下,所生成的氨的含量,叫做平衡氨含量。 影响因素:(1)温度、压强,(2)理论计算出当xNH3为最大值时r=H2/N2=3;实践证明在高压下,最大氨含量时的r =2.9~3.0(3)惰性气体组分xi(甲烷、氩气): 应在高压低温下进行

合成氨生产安全技术示范文本

合成氨生产安全技术示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

合成氨生产安全技术示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 氨(NH?)常态下是有特殊气味的强刺激性气体,相对密 度为0.5971(空气=1),易燃,自燃点为65112,能与空 气形成爆炸性混合物(爆炸极限15.7%~27.4%)。氨气 常温加压即可液化(临界压力11.4MPa,临界温度 132.512),沸点为-33.512、凝固点为-77.712。氨 的水溶液称为氨水,呈碱性。 氨主要用途是生产氮肥,还用于生产硝酸、纯碱、化 纤、塑料、橡胶、医药、染料和爆炸晶,液氨可用作制冷 剂。 生产工艺合成氨生产所用原料有固体燃料(煤)、液体 燃料(石油或其产品)、气体燃料(天然气、焦炉气、炼厂 气)。

合成氨的生产分为三部分: 造气——原(燃)料通人空气(氧气)和蒸汽,汽化成为水煤气(半水煤气),该粗原料气由氢气、氮气、二氧化碳、一氧化碳和少量硫化氢、氧气及粉尘组成,原料气经废热锅炉回收热量后存于气柜; 变换净化——气柜来的原料气通过电除尘器除去粉尘进入气压机加压,经脱硫(脱除硫化氢)、变换(将一氧化碳转化为氢和二氧化碳)、脱碳(吸收脱除二氧化碳)后,再次加压进入铜洗塔(用醋酸铜氨液)和碱洗塔(用苛性钠溶液)进一步除去原料气中的一氧化碳和二氧化碳(含量降至十万分之三以下),获得纯氢气和氢气混合气体; 合成——净化后的氢氮混合气(H?:N?=3:1)经压缩机加压至30~32MPa进入合成塔,在铁触媒存在下高温

合成氨联产甲醇系统的安全评价及控制措施

合成氨联产甲醇系统的安全评价及控制措施 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

合成氨联产甲醇系统的安全评价及控制措施近年来,随着市场变化和企业发展要求,甲醇生产厂家似雨后春笋般出现。氨联产甲醇装置项目的开发和推广,弥补了国内市场的产品缺口,给生产企业带来了丰厚的利润,提高企业经济效益和市场竞争力。产品种类增加,物料种类会相应增加。加之新老装置联产,原有装置系统的设备、工艺线路等也要进行局部调整,继而带来操作规程、开停车程序、方案及指挥系统的调整。两套装置一个系统,要保证合成氨、甲醇生产都在最佳工况下进行,加重了部分工段从供给高要求物料组分和全系统生产指挥科学性的难度。整个系统在运行过程中,所用的原料、中间体及最终产品对人体都有不同程度的危害性,轻则损害人体健康,重则危及生命。根据生产过程的危险特性,一旦发生指挥失误、误操作、报警装置失灵、安全联锁失效、处理不及时或处理方法不当等,就会发生泄漏和超温超压现象,进而引起火灾、爆炸、灼烫、中毒窒息等事故,危及员工人身和企业财产安全,严重时可能危及附近居民的生命和财产安全,造成严重的恶性事故。氨联产甲醇生产,在高温、高压、易燃、易爆、易中毒和易腐蚀环境中进行,对操作及指挥者提出了更高标准的要求。 1物料的危害辨识及危险性评价 1.1生产过程中的物料

1.1.1一氧化碳(CO) 危害性辨识 一氧化碳经呼吸道吸入人体后,通过肺泡膜进入血液,与血液中血红蛋白进行可逆性结合,形成碳氧血红蛋白,使血液中的携氧功能发生障碍,造成人体低氧血症,因而导致组织缺氧。轻度中毒者会出现头疼、眩晕、耳鸣、眼花,颞部压迫及博动感,并有恶心、呕吐,心前区疼痛或心悸,四肢无力,甚至有短暂的昏厥;中度中毒者除上述症状外,初期尚有多汗、烦燥,步态不稳,皮肤粘膜樱红,可出现意识模糊,甚至进入昏迷状态;重度中毒者迅速进入昏迷,昏迷可持续数小时或更长时间,出现阵发性和强直性痉挛,有病理反射出现,常伴发脑水肿、肺水肿、心肌损害、心律紊乱或传导阻滞,高热或惊厥,皮肤、粘膜可呈樱红色或苍白、紫绀。 危险性评价 一氧化碳属易燃、易爆、有毒气体,与空气混合浓度在12.5%~74.2%时成为爆炸混合物,爆炸危险度为4.9。遇热容器压力增大,泄漏遇火种有燃烧爆炸的危险。GB13690—92标准将该物质划分为第2.1类易燃气体;GB12268—90标准规定其危规号为21005。

合成氨原料气的生产

合成氨原料气的生产 一.煤气化 (1)气化原理 煤在煤气发生炉中由于受热分解放出低分子量的碳氢化合物,而煤本身逐渐焦化,此时可将煤近似看作碳。 ①反应速率 以空气为气化剂 C+O2→CO2 △H=-393.770kJ/mol C+1/2O2→CO △H=-110.595kJ/mol C+CO2→2CO △H=172.284kJ/mol CO+1/2O2→CO2 △H=-283.183kJ/mol 在同时存在多个反应的平衡系统,系统的独立反应数应等于系统中的物质数减去构成这些物质的元素数。 以水蒸气为气化剂 C+H2O→CO+H2 △H=131.39kJ/mol C+2H2O→CO2+2H2△H=90.20kJ/mol CO+H2O→CO2+H2△H=-41.19kJ/mol C+2H2→CH4△H=-74.90kJ/mol ②反应速率 气化剂和碳在煤气发生炉中的反应属于气固相非催化剂反应。随着反应的进行,碳的粒度逐渐减小,不断生成气体产物。反过程一般由气化剂的外扩散、吸附、与碳的化学反应及产物的吸附,外扩散等组成。反应步骤分为: A. C+O2→CO2 的反应速率研究表明,当温度在775O C以下时,其反应速率大致表示为: R=ky o2 式中 r-碳与氧生成二氧化碳的反应速率 k-反应速率常数 y o2- 氧气的速率 B.C+CO2→2CO的反应速率此反应的反应速率比碳的燃烧反应慢得多, 的一级反应。 在2000O C以下属于化学反应控制,反应速率大致是CO 2

C.CO+H2O→CO2+H2的反应速率碳与水蒸气之间的反应,在400-1000O C 的温度范围内,速度仍较慢,因此为动力学控制,在此范围内,提高温度是提高反应速率的有效措施。 二.制取半水煤气的工业方法 由以上可知,空气与水蒸气同时进行气化反应时,如不提供外部热源,则气+CO)的含量大大低于合成氨原料气的要求。为解决气体成分与热量化产物中(H 2 平衡这一矛循,可采用下列方法: (1)外热法如利用原子能反应堆余热或其他廉价高温热源,用熔融盐、熔融铁等介质为热载体直接加热反应系统,或预热气化剂,以提供气化过程所需的热能。这种方法目前尚处于研究阶段。 50%左右)和水蒸气作为气化剂同 (2)富氧空气气化法用富氧空气(含O 2 时进行气化反应。由于富氧空气中含氮量较少,故在保证系统自热运行的同时,半水煤气的组成也可满足合成氨原料气的要求。此法的关键是要有较廉价的富氧空气来源。 (3)蓄热法空气和水蒸气分别送入燃料层,也称间歇气化法。其过程大致为:先送入空气以提高燃料层温度,生成的气体(吹风气)大部分放空;再送入水蒸气进行气化反应,此时燃料层温度逐渐下降。所得水煤气配入部分吹风气即成半水煤气。如此间歇地送空气和送蒸汽重复进行,是目前用得比较普遍的补充热量的方法,也是我国多数中、小型合成氨厂的重要气化方法。 三.间歇式生产半水煤气 工业上间歇式气化过程,是在固定层煤气发生炉中进行的,如图3-3。块状燃料由顶部间歇加入,气化剂通过燃料层进行气化反应,灰渣落入灰箱后排出炉外。

合成氨工艺流程

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧化碳彻底清除。除去一氧化碳的方法,工业上采用两段法。第一步是把一氧化碳与水蒸汽作用生成氢和二氧化碳;第二步采用铜氨液洗涤法,液氨洗涤法或甲烷化法除去变换中残余的

合成氨综述

合成氨综述 一、序言 众所周知,自然界能够合成氨,不过这只是极少量的,由于世界工业化和全球人口的增长,所以这远远不能满足社会发展的需求。由此合成氨工业本世纪初诞生了,其规模也不断向大型化方向发展。德国化学家哈伯 1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。合成氨反应式如下:N2+3H2≈2NH3合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除氨水可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有百分之八十氨用来生产化学肥料,百分之二十为其它化工产品的原料。因此,随着当今社会发展需求,合成氨在这一个世纪以来取得了快速发展,于此同时,合成氨还将在未来的发展中扮演着更加重要的角色。 二、合成氨简介 合成氨工业中,虽然合成气制备的原料和方法、合成气的净化、合成塔的设计等因素不同,合成氨的生产工艺流程也不相同,但是具有一些相同步骤。由于主要有天然气、石脑油、重质油和煤(或焦炭)等作为生产原料,因此,

氨的合成主要有以下三种方法。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1 0.3体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。中国能源结构上存在多煤缺油少气的特点,煤炭成为主要的合成氨原料,天然气制氨工艺则受到严格限制。 三、合成氨的发展概况 1910年,巴登苯胺纯碱公司建立了世界上第一座合成氨实验工厂,1913年建立了大型工业规模合成氨厂,此后合成氨工厂在全世界范围内雨后春笋般的建立起来。 解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界

以天然气为原料合成氨工艺

. . 目录 1 引言 (1) 1.1 氨的性质 (1) 1.2 氨的用途 (2) 1.3 合成氨的发展历史 (2) 1.3.1 氨气的发现 (2) 1.3.2 合成氨的发现及其发展 (2) 1.3.3 国外合成氨工业发展 (3) 1.3.4 国合成氨工业发展 (3) 1.3.5 国合成氨工业的发展趋势 (4) 1.4 合成氨工段设计主要参数计算的主要容 (5) 2 工艺计算 (6) 2.1 生产流程简述 (6) 2.2 原始条件 (6) 2.3 物料衡算 (8) 2.3.1 合成塔物料衡算 (8) 2.3.2 氨分离器气液平衡计算 (9) 2.3.3 冷交换器气、液平衡计算 (11) 2.3.4 液氨贮槽气、液平衡计算 (11) 2.3.5 液氨贮槽物料计算 (13) 2.3.6 合成系统物料计算 (14) 2.3.7 进出合成塔物料计算 (16) 2.3.8 进出水冷器物料计算 (16) 2.3.9 进出氨分离器物料计算 (17) 2.3.10 冷交换器物料计算 (17) 2.3.11 氨冷器物料计算: (18) 2.3.12 冷交换器物料衡算 (20) 2.3.13 液氨贮槽物料计算 (21) . . .

. . . . . 2.3.14 物料计算结果汇总 (21) 2.4 热量核算 (22) 2.4.1 交换器热量核算 (22) 2.4.2 氨冷器热量核算 (25) 2.4.3 循环机热量核算 (27) 2.4.4 合成塔热量核算 (29) 2.4.5 废热锅炉热量核算 (31) 2.4.6 热交换器热量核算 (33) 2.4.7 水冷器热量核算 (34) 2.4.8 氨分离器热量核算 (35) 3 氨合成过程中的绿色化学化工 (36) 3.1 绿色化学化工的基本概念 (36) 3.2 合成氨工段的原子经济性 (36) 3.3 合成氨工段的热能综合利用 (36) 3.4 合成氨工段的“三废”处理 (37) 4 设备选型 (38) 4.1 合成塔催化剂层设计 (38) 4.2 换热器: (43) 4.3 废热锅炉设备工艺计算 (44) 4.3.1 计算条件 (44) 4.3.2 官给热系数α计算 (44) 4.3.3 管给热系数αi 计算 (47) 4.3.4 总传热系数K 计算 (47) 4.3.5 平均传热温差Δt m 计算 (48) 4.3.6 传热面积 (48) 4.4 水冷器设备工艺计算: (48) 4.4.1 计算条件 (48) 4.4.2 管给热系数的计算 (49) 4.4.3 管外给热系数 (50) 4.4.4 传热温差 (50)

合成氨在线气体分析仪及合成氨的介绍

合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。CO、硫化氢、氨、甲醇等均为有毒物质,若是设备、管道密封损坏以及腐蚀泄漏,将会造成作业场所有有毒有害物质的浓度大幅度增加,故合成氨在线气体分析仪是很有必要的存在。下面给大家简单介绍一下合成氨~ 合成氨别名:氨气。分子式NH3,英文名:syntheticammonia。指由氮和氢在高温高压和催化剂存在下直接合成的氨。世界上的氨,除少量从焦炉气中回收副产之外,绝大部分是合成的氨。合成氨主要用作:化肥、冷冻剂和化工原料。我国合成氨行业运行目前发展形势良好,随着我国合成氨行业运行需求市场的不断扩大,我国合成氨行业运行迎来一个新的发展机遇。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接

作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。 合成氨行业现状 合成氨行业是我国化肥工业的基础,也是传统煤化工的重要组成部分。目前我国合成氨产能达到8300余万吨,年内表观消费量在5800万吨左右,行业产能过剩率在30%以上。 进入8月份以后,合成氨市场步步下移,江苏市场跌幅在6.71%,河北和山东市场跌幅也分别在3.93%和3.54%。 南京智达自动化控制系统在限公司主要从事工业过程自动控制、工业过程在线气体分析、环保在线气体监测、可燃和有毒有害气体检测和报警装置、计算机信息系统集成和软件开发。南京智达成立于1996年7月, 前身是南京智达分析自动化仪器厂,2000年7改制为南京智达分析仪器有限公司,由索纪文先生一手创建。公司目前座落于风景秀丽的南京江宁开发区,占地30亩,拥有现代化的厂房、办公楼和员工休息区,是国家支持的高新技术企业。本公司主要从事研制、生产和销售分析系统、分析仪器产品并承担相关的技术咨询和安装、培训等技术服务。产品广泛应用于冶金、水泥、化工、化肥、电站、石化等国民经济支柱产业和气态污染物监测等环保领域,2010年又单独成立南京智达自动化控制系统有限公司,公司整体实现集团化发展。

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

煤为原料的合成氨工艺流程简图精编版

煤为原料的合成氨工艺 流程简图 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

以煤为原料的合成氨工 艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2(水煤气法) CO+H 2O=CO 2+H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2==COONH 2NH 4(放热),COONH 2NH 4==CO(NH 2)2+H 2O (吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2)2==C 3N 3(NH 2)3(三聚氰胺)+3CO 2+6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO ,其体积分数一般为12%到40%。合成氨需要的两种组分是H 2和N 2,因此需要除去合成气中的CO 。变换反是: CO+H 2O →H 2+CO 2=mol 0298H Δ 由于CO 变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO 含量。第一步是高温变换,使大部分CO 转变为CO 2和H 2;第二步是低温变换,将CO 含量降至%左右。因此,CO 变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转

合成氨工艺流程简述

合成氨工艺流程简述 1、粘结剂制备 先将水加入到粘结剂提取罐内,然后向罐内微通蒸汽,加热温度应≤40℃,开动搅拌机在不断搅拌的情况下投入液体烧碱(30%Na0H),待碱液温度达一定时继续搅拌,投入筛好的褐煤(含腐植酸约35%),含量低的褐煤应适当多投,可根据腐植酸含量高低而调整加入量,边投料边通蒸汽,同时不停搅拌,此时由于化学反应而放出热量产生少量气体、液位有所升高,为防止冒槽现象应酌情减少蒸汽加入量,维护反应温度,时间约2小时反应基本完全,可取少量提取液检查,其颜色为黑褐色,有粘结性,用母指和食指捏后拉开有连丝,冷却后粘结性增大,流动性变差,视为提出制液结束。此时停蒸汽,不停搅拌待用。 2、原料煤的粉碎和粘结剂的加入 原料煤先送入一级粉碎机,粉至3毫米以下,后经皮带机送入鼠笼粉碎机粉至1毫米以下,经皮带机送入双轴搅拌机内,此时由操作工视其送入的煤量酌情控制加液阀加入已提取好的粘结剂,在双轴搅拌机内不断的搅拌推进混匀后落入斜皮带机,送至分仓平皮带机,分仓堆沤备用(粘结剂的加入量是根据经验判断掌握调节,一般加液后的煤屑用手抓一把捏得拢,两指能捏散较为合适)。 3、煤棒制备 沤化合格的原料煤送煤棒机挤压成型后经皮带机输送到煤棒烘干炉中,利用吹风气回收锅炉的尾气(温度~160℃)将煤棒烘干,再经皮带机输送到造气车间供造气炉制取半水煤气用。 4、半水煤气制取 以空气和蒸汽为气化剂,在常压、高温下与煤棒中的炭作用,通过固定床(造气炉)蓄热间歇制气法得到半水煤气,根据氨合成必需的氢、氮气体比例调整空气和蒸汽加入量,保证合成氨系统的循环氢含量,造气过程由微机控制,分为五个阶段: ①吹风 ②上吹制气 ③下吹制气 ④二次上吹

(完整版)合成氨生产工艺及其意义

论文名称合成氨生产工艺及其意义

氨是重要的无机化工产品之一,合成氨工业在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。 合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。 合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。 关键字合成氨农业化学肥料意义

摘要 (2) 关键字 (2) 目录 (3) 正文 (4) 一前言 (4) 1.1 物理性质 (4) 1.2化学性质 (4) 二合成氨工业产品的用途 (5) 2.1氨气用途 (5) 2.2氨水用途 (5) 三合成氨的生产工艺及影响因素 (5) 3.1 原料气制备 (5) 3.1.1 一氧化碳变换过程 (6) 3.1.2 脱硫脱碳过程 (6) 3.1.3 气体精制过程 (6) 3.1.4 氨合成 (7) 3.2 影响合成氨的因素 (7) 3.2.1 温度对氨合成反应的影响 (7) 3.2.2 压力对氨合成反应的影响 (7) 3.2.3 空速对氨合成反应的影响 (7) 3.2.4 氢氮比对氨合成反应的影响 (8) 四.合成氨工艺流程图 (8) 五.研究现状 (8) 六.发展趋势 (9) 6.1原料路线的变化方向 (9) 6.2节能和降耗 (10) 6.3产品联合生产 (10) 7.1合成氨对农业的意义 (10) 7.1.1提高粮食产量 (10) 7.1.2提高土壤肥力 (10) 7.1.3发挥良种潜力 (11) 7.1.4补偿耕地不足 (11) 7.2合成氨对工业生产的意义 (11) 7.3合成氨对其他行业的意义 (12) 致谢 (13) 参考文献 (14)

煤为原料的合成氨工艺流程简图

以煤为原料的合成氨工艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2 (水煤气法) CO+H 2 O=CO 2 +H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2 ==COONH 2 NH 4 (放热),COONH 2 NH 4 ==CO(NH 2 ) 2 +H 2 O(吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2) 2 ==C 3 N 3 (NH 2 ) 3 (三聚氰胺)+3CO 2 +6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12% 到40%。合成氨需要的两种组分是H 2和N 2 ,因此需要除去合成气中的CO。变换 反是: CO+H 2O→H 2 +CO 2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制 变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO 2和H 2 ;第 二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法

合成氨冰机系统操作

合成冰机岗位安全技术操作规程 一、本岗位的任务 将合成塔氨冷器产生的低温低压的气氨经冰机压缩成高温高压的气氨,再经蒸发冷冷凝成液氨后回收后送合成塔或4#氨罐。 二、冰机结构特征及工作原理 该机组由一台低压级螺杆压缩机、一台高压级螺杆压缩机、两台电动机、一个卧式油分离器、一套供油系统和油泵、一套微电脑控制系统、一台氨油冷却器等部件组成。双机双级螺杆式制冷压缩机组具备结构紧凑,占地面积小、傻瓜式操作、系统简单、制冷效率高等特点。双机双级螺杆式制冷压缩机组控制系统采用德国西门子公司可编程序控制器及日本Digital公司的GP系列触摸屏显示器,实现对螺杆式制冷机组运行状况的自动监控;工作过程的自动控制;故障自动检测及自动处理,发生严重故障时能及时保护停机,避免机组损坏。 螺杆式制冷压缩机:它属于容积型回转式制冷压缩机。是利用一对相互啮合的阴阳转子在机体内作回转运动,周期性地改变转子每对齿槽间的容积来完成吸气、压缩和排气过程。在运行中通过向压缩机转子工作腔喷入大量润滑油,来达到润滑、密封、提高压缩机工作效率、降低排气温度和噪声等目的,配有一套高效的油路系统。 三、蒸发冷工作原理 SPL蒸发式冷凝器是以循环使用的水和空气为冷却介质,与管内的气氨进行热交换达到气氨冷凝目的。冷凝器内设水分配系统、冷凝盘管组、填料热交换层、除水器等,外部调好循环水泵、电子水除垢仪、盘管侧面顶部设轴流风机。在轴流风机的作用下,冷凝室内部成负压状态。工作时,冷却水经水分配系统,在强劲风力的作用下均匀地完覆盖在盘管表面,热气氨从盘管上部进入,冷凝后的液氨从盘管底部流出,在该过程中,热气氨与盘管外的水、空气进行热交换,再借助风势,交换效果显著提高。冷却水和空气吸热后温度升高,部分冷却水汽化形成水蒸汽,蒸发带走大量的热量,由风机吸走排入大气。热空气中的水分被除水器载留集水池中,没有被汽化的高温冷却水流入填料热交换层被流经的空气带走热量使其冷却,经充分冷却后的冷却水流回集水池中供循环泵重新送入水分配系统继续循环工作。散失到大气中的水份由集水池内的水浮球阀给予及时补充。 系统的热量主要靠冷却水蒸发带走,除了补充系统的蒸发损失水量外,不需要其它冷却水源。其特点是:

合成氨工艺简介

摘要 煤气化法是我国合成氨的主要制气方法,也是未来更替天然气和石油资源所必将采用的制气方法。即利用无烟煤、蒸汽和空气在碳发生炉内生产合成氨所需要的气体,俗称半水煤气。在已制得的半水煤气中,除了含有按合成工艺所需要的氮气和氢气外,还含有许多杂质和有害气体。由于这些杂质和有害气体很容易使合成触媒中毒而降低触媒效能。为保护触媒,延长其使用寿命,保证合成氨生产的正常进行,半水煤气中的杂质和有害气体必须在合成之前得以及时清除,这就需要对混合气体进行净化处理,并且要求连续性作业,以达到化学反应稳定进行,从而构成了合成氨工艺流程错综复杂和连续性强的生产特点。 一合成氨的生产方法简介 氨的合成,必须制备合成氨的氢、氮原料气。氮可取之于空气或将空气液化分离而制得,氮气或使空气通过燃料层汽化将产生CO或CO2转化为原料气。氢气一般常用含有烃类的各种燃料制取,亦通过焦碳,无烟煤,重油等为原料与水作用的方法制取。由于我国煤储量丰富,所以以煤为原料制氨在我国工业生产中广泛使用。 合成氨的过程一般可分为四个步骤: 1.造气:即制备出含有氮一定比例的原料气。 2.净化:任何制气方法所得的粗原料气,除含有氢和氮外,还含有硫化氢、有机硫、一氧化碳、二氧化碳和少量氧,这些物质对氨合成催化剂均有害,需进行脱除,直 至百万分之几的数量级为止。在间歇式煤气炉制气流程中,脱硫置于变换之前,以 保护变换催化剂的活性。 3.精炼:原料气的最终精炼包括清除微量一氧化碳、二氧化碳、氧、甲烷和过量氮,以确保氨合成催化剂活性和氨合成过程的经济运行。 4.合成:将合格的氢氮混合气体压缩到高压,在催化剂作用下合成氨气。 二合成氨反应的基本原理 1. 造气:合成氨的原料——氢氮可以用下列两种方法取得 (1)以焦碳与空气、水蒸气作用 (2)将空气分离制取氮,由焦炉气分离制氢 采用煤焦固定床间歇式汽化法。反应方程如下: C+H2O=CO +H2 (1) CO+O2=CO2(2) 2.脱硫:无论以固体煤作原料还是以天然气、石油为原料制备氢氮原料气都含有 一定成分的硫元素,无机硫主要含有硫化氢;有机硫主要含有二硫化碳、硫化氧碳等等。 硫化氢对合成氨生产有着严重危害,但不能与铁反应生成硫化亚铁,而且进入变换及合成系统能使铁催化剂中毒,进入铜洗系统使铜液的低价铜生成硫化亚铜的低价沉淀,使操作恶化,铜耗增加。所以半水煤气总的无机碳化物和有机硫化物必须在进入变换、合成系统前除去。 以煤为原料采用间歇式造气炉制半水煤气时,通常先将煤气进行湿法氧化法脱硫,使硫化氢含量降低至30~50毫克/立方米以下,然后经中温变换,使有机硫转化为硫化氢。然后,

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

以天然气为原料合成氨实用工艺

目录 1 引言 (1) 1.1 氨的性质 (1) 1.2 氨的用途 (2) 1.3 合成氨的发展历史 (2) 1.3.1 氨气的发现 (2) 1.3.2 合成氨的发现及其发展 (2) 1.3.3 国外合成氨工业发展 (3) 1.3.4 国合成氨工业发展 (3) 1.3.5 国合成氨工业的发展趋势 (4) 1.4 合成氨工段设计主要参数计算的主要容 (5) 2 工艺计算 (6) 2.1 生产流程简述 (6) 2.2 原始条件 (6) 2.3 物料衡算 (7) 2.3.1 合成塔物料衡算 (8) 2.3.2 氨分离器气液平衡计算 (9) 2.3.3 冷交换器气、液平衡计算 (11) 2.3.4 液氨贮槽气、液平衡计算 (11) 2.3.5 液氨贮槽物料计算 (13) 2.3.6 合成系统物料计算 (14) 2.3.7 进出合成塔物料计算 (15) 2.3.8 进出水冷器物料计算 (16) 2.3.9 进出氨分离器物料计算 (16) 2.3.10 冷交换器物料计算 (17) 2.3.11 氨冷器物料计算: (18) 2.3.12 冷交换器物料衡算 (20) 2.3.13 液氨贮槽物料计算 (21)

2.3.14 物料计算结果汇总 (21) 2.4 热量核算 (22) 2.4.1 交换器热量核算 (22) 2.4.2 氨冷器热量核算 (25) 2.4.3 循环机热量核算 (27) 2.4.4 合成塔热量核算 (28) 2.4.5 废热锅炉热量核算 (31) 2.4.6 热交换器热量核算 (32) 2.4.7 水冷器热量核算 (33) 2.4.8 氨分离器热量核算 (34) 3 氨合成过程中的绿色化学化工 (35) 3.1 绿色化学化工的基本概念 (35) 3.2 合成氨工段的原子经济性 (35) 3.3 合成氨工段的热能综合利用 (35) 3.4 合成氨工段的“三废”处理 (36) 4 设备选型 (37) 4.1 合成塔催化剂层设计 (37) 4.2 换热器: (42) 4.3 废热锅炉设备工艺计算 (43) 4.3.1 计算条件 (43) 4.3.2 官给热系数α计算 (43) 计算 (45) 4.3.3 管给热系数α i 4.3.4 总传热系数K 计算 (46) 计算 (46) 4.3.5 平均传热温差Δt m 4.3.6 传热面积 (46) 4.4 水冷器设备工艺计算: (47) 4.4.1 计算条件 (47) 4.4.2 管给热系数的计算 (47) 4.4.3 管外给热系数 (48) 4.4.4 传热温差 (49)

相关文档