文档库 最新最全的文档下载
当前位置:文档库 › 基于comsol的悬臂梁形变实验报告

基于comsol的悬臂梁形变实验报告

基于comsol的悬臂梁形变实验报告
基于comsol的悬臂梁形变实验报告

基于comsol4.2的悬臂梁形变仿真

参考文献:Becker,A.A.,Background to Finite Element Analysis of Geometric Non-linearity Benchmarks,NAFEMS,Ref: -R0065,Glasgow.

一、创建工程

1、选择空间维度:二维。如图一

图一

2、增加物理场:结构力学—>固体力学(solid)。如图二

图二

3、选择求解类型:稳态。如图三

图三

4、点击“完成”,按钮位于“模型向导”栏右上角的符号。

二、创建几何模型

1、单击“几何”,将“长度单位”改为um。如图四

图四

2、右键“几何”,选择“矩形”,设置矩形参数如图五,并单击设定栏右上角的“创建选定”,生成图形。

图五

三、设定材料参数

右键“材料”,选择“材料”,几何是实体选择如图六。在材料目录中添加材料的杨氏模量、泊松比、密度,具体参数如图七。

图六

图七

四、设置边界约束

1、单击“固体力学”,在厚度中输入“10e-6”,如图八。

图八

2、右键“固体力学”,选择“固定约束”,添加边界选择:1,如图九。

图九

3、右键“固体力学”,选择“边界载荷”,添加边界选择:4,将力—>载荷中,X和Y方向的力分别改为:-3.844e6/0.1*load_para和-3.844e3/0.1如图十。

图十

五、划分网格

右键网格,选择“自由剖分三角形网格”,在设定栏右上角点击“创建所有”,如图十一。

图十一

六、设置求解约束

1、打开“求解”下拉菜单,右键“求解器配置”,选择“缺省求解器”,如图十二。

图十二

2、点击“稳态求解器”,将“相对容差”改为:1e-6,如图十三。

图十三

3、右键“稳态求解器”,选择“参数的”,在设定栏输入参数名称:load_para和参数值:range(0,0.01,1),如图十四

图十四4、右键“求解器”,选择“计算”,结果如图十五。

图十五

七、查看结果

1、右键“数据集”,选择“二维切割点”,输入点坐标(100,2.5),如图十六。

图十六

2、右键“派生值”,选择“点计算”,在数据集中选择“二维切割点1”,如图十七。

图十七

3、右键“点计算1”,选择“计算—>新表格”,在表单中会生成一个“表单1”。

4、右键“派生值”,选择“点计算”,在数据集中选择“二维切割点1”,在表达式中点击右侧的“替换表达式”符号,,选择:固体力学—>位移场—>位移场Y。

5、右键“点计算2”,选择“计算—>新表格”,在表单中会生成一个“表单2”。

6、右键“结果”,选择“一维绘图组”,点击新生成的“一维绘图组2”,在数据集中输入“二维切割点1”,在x轴标签中输入:para,在y轴标签中输入:x_displacement(um),如图十八。

图十八

7、右键“一维绘图组2”,选择“点绘图”,在x-轴数据中选择“参数”为“表达式”,在表达式中替换为“load_para”,点击绘图,如图十九

图十九

8、右键“一维绘图组2”,选择“点绘图”,生成“点绘图2”,在y-轴数据中替换表达式,选择:固体力学—>位移场—>位移场Y,x-轴数据中选择参数项为“表达式”,在表达式中输入:load_para,如图二十。点击绘制,曲线如图二十一。

图二十

图二十一

青岛理工大学材料力学实验报告记录

青岛理工大学材料力学实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

材料力学实验报告 系别 班级 姓名 学号 青岛理工大学力学实验室

目录 实验一、拉伸实验报告 实验二、压缩实验报告 实验三、材料弹性模量E和泊松比μ的测定报告 实验四、扭转实验报告 实验五、剪切弹性模量实验报告 实验六、纯弯曲梁的正应力实验报告 实验七、等强度梁实验报告 实验八、薄壁圆筒在弯扭组合变形下主应力测定报告 实验九、压杆稳定实验报告 实验十、偏心拉伸实验报告 实验十一、静定桁架结构设计与应力分析实验报告 实验十二、超静定桁架结构设计与应力分析实验报告 实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验 实验十五、岩土工程材料的多轴应力特性实验报告

实验一 拉伸实验报告 一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录: 1、试件尺寸 实验前: 实验后: 2、实验数据记录: 屈服极限载荷:P S = kN 强度极限载荷:P b = kN 材 料 标 距 L 0 (mm) 直径(mm ) 截面 面积 A 0 (mm 2) 截面(1) 截面(2) 截面(3) (1) (2) 平均 (1) (2) 平均 (1) (2) 平均 材 料 标 距 L (mm) 断裂处直径(mm ) 断裂处 截面面积 A(mm 2) (1) (2) 平均

四、计算 屈服极限: ==0 A P s s σ MPa 强度极限: == A P b b σ MPa 延伸率: =?-= %10000 L L L δ 断面收缩率: =?-= %1000 0A A A ψ 五、绘制P -ΔL 示意图:

基于COMSOL的声悬浮模拟仿真

基于COMSOL的声悬浮模拟仿真 发表时间:2018-11-15T11:43:16.157Z 来源:《科技新时代》2018年9期作者:卜艺浦 [导读] 本文主要研究超声悬浮中液滴的悬浮情况,利用COMSOL有限元分析软件建立超声悬浮仪器的物理模型 江苏省泰兴中学江苏泰兴 225400 摘要:本文主要研究超声悬浮中液滴的悬浮情况,利用COMSOL有限元分析软件建立超声悬浮仪器的物理模型,模拟驻波悬浮的声场,从而得到声压与声压级的分布频域。通过改变悬浮液滴的形状和尺寸,发现声压分布随着液滴参数的变化而发生相应的改变。通过研究液滴并对这些液滴在声场中的声压分布进行分析,最终得出液滴在驻波场中稳定悬浮所需的条件。 关键词:声悬浮;声压;声辐射力;液滴;COMSOL有限元分析软件 1. 引言 超声悬浮是实现无容器环境的一种方便快捷的技术,无容器环境对于材料、生化分析和样品制备非常重要,因为它避免了样品与容器壁的接触,从而隔绝了众多污染源。相较于其他类型的悬浮,声悬浮具有很多方面的优势。与磁悬浮和电悬浮相比,声悬浮技术对样品是否带电或是否具有磁性没有要求,也不会使样品产生热效应;对比光悬浮,声悬浮不必特意使用特定材质样品,比如石墨烯等,也能产生较大的悬浮力;声悬浮也比气流悬浮技术更稳定可控。另外,声悬浮可广泛应用于蛋白质结晶、液态合金深过冷快速凝固研究、液滴动力学、微剂量生化研究,以及胶体液滴的干燥等领域[1]。 超声悬浮一般分为有两种,一种为超声近场悬浮[2],另一种是驻波悬浮[3]。所谓近场悬浮,就是依靠物体下方发射器发射高频声场产生声辐射力与物体自身重力平衡使物体悬浮,这种悬浮方式多应用于无接触条件下移动物体的研究。驻波悬浮仪器一般由超声波发射器、换能器、变幅杆、发射端、反射端、石英管及调谐机构组成,在发射端与反射端之间形成驻波场,从而产生声辐射力使物体悬浮。所谓驻波,就是指振幅相同、传输方向相反的两个波共同形成的波,也就会有两个方向相反的压强,对其中的物体产生方向相反的两个力。一般地,两个声波产生的声压相抵消,和压为0的位置称为波节点,悬浮样品在波节点处受到声辐射力与重力相抵消而稳定悬浮。声悬浮仪器产生的声驻波就是这样与物体相互作用,同时水平方向的声辐射力作为定位力把悬浮物固定悬浮于驻波场的波节点处。驻波产生的声辐射力与(R/λ)3成正比,行波与(R/λ)6成正比,其中R表示物体尺寸,λ表示波长,声悬浮一般要求物体尺寸远小于半波长,因此驻波产生的力比行波大得多[4]。 目前声悬浮技术只能悬浮一些体型质量较小的样品,不能悬浮体型质量较大的物体,这也就造成实验应用的局限性,无法应用于大物体或大剂量的实验。尽管近场悬浮技术有望能在目标质量与尺寸的限制上有所突破,但其技术还不够完善。驻波悬浮技术,相较于近场悬浮,已经是比较成熟的声悬浮技术,能够悬浮密度最大的元素铱并已经在生物医学等领域得到应用[5]。 另外,液滴是自然界中常见的流体单元,可以作为研究对象或实验载体。在生物化学反应中,液滴可作为微反应溶器或是微生物的培养基;在工业应用中,液滴性质影响着液态合金的深过冷快速凝固。换言之,液滴的力学行为对实际应用产生重大影响。为了分析液滴在无容器环境中的力学行为,本文利用COMSOL有限元分析软件对液滴在声场中进行模拟实验,并进行了相关理论分析和总结。 2. 声悬浮对液滴形态的影响 2.1 COMSOL模拟计算方法 COMSOL有限元分析软件是可以分析耦合物理场的软件。利用COMSOL有限元分析软件的模拟仿真,可以更加直观的观察到一些物理现象,更加方便地得到相关的实验数据,并随时作出参数的调整。利用其进行仿真模拟,能为现实中的实验提供理论数据依据。该软件模拟研究声悬浮技术,由一个声波发射传感器和弧型反射面构成,需要设定一些必要的参数,比如声场频率f0,发射端与反射端的距离H,发射器宽度Dr等(见表1),建立声悬浮模型(如图1)。通过网格构建划分,以有限元分析法便可以计算出驻波场的声压分布,悬浮样品

弯扭组合变形实验报告

弯扭组合变形实验报告 水工二班 叶九三 1306010532 一、实验目的 1用电测法测定薄壁圆管弯扭组合变形时表面任一点的主应力值和主方向,并与理论值进行比较。 2测定分别由矩和扭矩引起的应力w σ和n τ,熟悉半桥和全桥的接线方法。 二、实验设备 仪器名称及型号:静态电阻应变仪 精度:1μm 三、试件尺寸及有关数据 试件材料:铝合金 弹性模量:70GPa 泊松比μ=0.33 应变片灵敏系数K=2.20 试件外径D=40mm 试件内径d=36mm 自由端端部到测点的距离L=300mm 臂长a=200mm 试件弯曲截面系数z W =2.16*610-3m 试件扭转截面系数P W =4.32*610-3m 四、实验数据与整理 1.实测数据 弯ε(W ε) 扭ε(n ε) 0ε 45ε 90ε 荷载F (N ) 读数με 增量με 读数με 增量με 读数με 增量με 读数με 增量με 读数με 增量με 0F 0 396 0 358 0 150 0 193 0 -19 1F 396 358 150 193 -19 393 363 150 194 -21 2F 789 721 300 387 -40 391 353 150 193 -20 3F 1180 1074 450 580 -60 394 357 149 192 -21 4F 1574 1431 599 772 -81 平均增量 393.50 357.75 150 193 -20 计算结果: εⅠ=218.7με εⅡ=-88.7με 0?=o 2.28

1σ=14.9MPa 2σ=-1.3MPa W E εσ?=*w =13.7725MPa ||1n n E εμ τ?+= =4.7072MPa 误差分析 w σ(MPa ) n τ(MPa ) I σ ∏σ 0? 实测值 13.7725 4.7072 14.9 -1.3 28.2 理论值 13.8889 4.6296 15.2 -1.4 33 相对误差% 0.84 1.68 1.9 7.1 14.5 思考题 1可以,因为主应力大小与方向是唯一的,不论应变片延哪个方向粘贴, 只要测出平面应力状态下的三要素,就可以计算出主应力的大小与主平 面方向。 2半桥自补偿法好,精度比半桥外补偿法高。 3不需要,因为采用的全桥测法已经将温度影响消除了。

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

基于comsol的悬臂梁形变实验报告

基于comsol4.2的悬臂梁形变仿真 参考文献:Becker,A.A.,Background to Finite Element Analysis of Geometric Non-linearity Benchmarks,NAFEMS,Ref: -R0065,Glasgow. 一、创建工程 1、选择空间维度:二维。如图一 图一 2、增加物理场:结构力学—>固体力学(solid)。如图二 图二

3、选择求解类型:稳态。如图三 图三 4、点击“完成”,按钮位于“模型向导”栏右上角的符号。 二、创建几何模型 1、单击“几何”,将“长度单位”改为um。如图四 图四

2、右键“几何”,选择“矩形”,设置矩形参数如图五,并单击设定栏右上角的“创建选定”,生成图形。 图五 三、设定材料参数 右键“材料”,选择“材料”,几何是实体选择如图六。在材料目录中添加材料的杨氏模量、泊松比、密度,具体参数如图七。 图六

图七 四、设置边界约束 1、单击“固体力学”,在厚度中输入“10e-6”,如图八。 图八 2、右键“固体力学”,选择“固定约束”,添加边界选择:1,如图九。 图九

3、右键“固体力学”,选择“边界载荷”,添加边界选择:4,将力—>载荷中,X和Y方向的力分别改为:-3.844e6/0.1*load_para和-3.844e3/0.1如图十。 图十 五、划分网格 右键网格,选择“自由剖分三角形网格”,在设定栏右上角点击“创建所有”,如图十一。 图十一

六、设置求解约束 1、打开“求解”下拉菜单,右键“求解器配置”,选择“缺省求解器”,如图十二。 图十二 2、点击“稳态求解器”,将“相对容差”改为:1e-6,如图十三。 图十三 3、右键“稳态求解器”,选择“参数的”,在设定栏输入参数名称:load_para和参数值:range(0,0.01,1),如图十四

COMSOL-Multiphysics仿真步骤

COMSOL Multiphysics仿真步骤 1算例介绍 一电磁铁模型截面及几何尺寸如图1所示,铁芯为软铁,磁化曲线(B-H)曲线如图2所示,励磁电流密度J=250 A/cm2。现需分析磁铁内的磁场分布。 图1电磁铁模型截面图(单位cm) 图2铁芯磁化曲线 2 COMSOL Multiphysics仿真步骤 根据磁场计算原理,结合算例特点,在COMSOL Multiphysics中实现仿真。 (1) 设定物理场 COMSOL Multiphysics 4.0以上的版本中,在AC/DC模块下自定义有8种应用模式,分别为:静电场(es)、电流(es)、电流-壳(ecs)、磁场(mf)、磁场和电场(mef)、带电粒子追踪(cpt)、电路(cir)、磁场-无电流(mfnc)。其中,“磁场(mef)”是以磁矢势A作为因变量,可应用于: ①已知电流分布的DC线圈; ②电流趋于表面的高频AC线圈;

③任意时变电流下的电场和磁场分布; 根据所要解决的问题的特点——分析磁铁在线圈通电情况下的电磁场分布,选择2维“磁场(mf)”应用模式,稳态求解类型。 (2) 建立几何模型 根据图1,在COMSOL Multiphysics中建立等比例的几何模型,如图3所示。 图3几何模型 有限元仿真是针对封闭区域,因此在磁铁外添加空气域,包围磁铁。 由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即 (21) 式中,L为空气外边界。 (3) 设置分析条件 ①材料属性 本算例中涉及到的材料有空气和磁铁,在软件自带的材料库中选取Air和Soft Iron。 对于磁铁的B-H曲线,在该节点下将已定义的离散B-H曲线表单导入其中即可。 ②边界条件 由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即 (21) 式中,L为空气外边界。 为引入磁铁的B-H曲线,除在材料属性节点下导入B-H表单之外,还需在“磁场(mef)”节点下选择“安培定律”,域为“2”,即磁铁区域,在“磁场 > 本构关系”处将本构关系选择为“H-B曲线”。此时,即表示将材料性质表达为磁通密度B的函数,也符合以磁矢势A作为因变量时的表达,从而避免在本构关系中定义循环变量。设置窗口如下图所示。

弯扭组合变形实验报告

薄壁圆管弯扭组合变形应变测定实验 一.实验目的 1.用电测法测定平面应力状态下主应力的大小及方向; 2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的 应力。 二.实验仪器和设备 1.弯扭组合实验装置; 2.YJ-4501A/SZ 静态数字电阻应变仪。 三.实验原理 薄壁圆管受力简图如图1所示。薄壁圆管在P 力作用下产生弯扭组合变形。 薄壁圆管材料为铝合金,其弹性模量E 为72 2m GN , 泊松比μ为0.33。薄壁圆管截 图1 面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。Ⅰ-Ⅰ截面现有A 、B 、C 、D 四个测点,其应力状态如图3所示。每点处已按 –450、00、+450方向粘贴一枚三轴450应变花,如图4所示。 图2 图3 图4 四.实验内容及方法 1. 指定点的主应力大小和方向的测定 薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 ()()()?? ? ???-+--±++-=--24502 0454******* 1211εεεεμεεμ μσσE

主应力方向计算公式为 ()()04545045 452εεεεεεα----= --tg 或 ()45 450454522εεεεεα+---=--tg 2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定 只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2 Md M εε= 然后由虎克定律可求得弯矩M 引起的正应力 2 Md M M E E εεσ= = b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可 测得扭矩M n 在450方向所引起的线应变 4 nd n εε= 由广义虎克定律可求得剪力M n 引起的剪应力 ()214nd nd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的线应变 4 Qd Q εε= 由广义虎克定律可求得剪力Q 引起的剪应力 () 2 14Qd Qd Q G E εμετ=+= 五.实验步骤 1. 接通测力仪电源,将测力仪开关置开。 2. 将薄壁圆管上A 、B 、C 、D 各点的应变片按单臂(多点)半桥测量接线方法接至应变仪测量通道上。 3. 预加50N 初始载荷,将应变仪各测量通道置零;分级加载,每级100N ,加至450N ,记录各级载荷作用下应变片的读数应变,然后卸去载荷。 4. 按图5各种组桥方式,从复实验步骤3,分别完成弯矩、扭矩、剪力所引起应变的测定。 六.实验数据及结果处理

28.悬臂梁固有频率测量实验

实验二十八悬臂梁固有频率测量实验 1. 简介 悬臂梁实验台主要是针对高校工程测试课程实验教学需要而设计的,结合drvi快速可重组虚拟仪器开发平台、振动测量传感器和数据采集仪,可以开设悬臂梁固有频率测量实验。 2. 结构组成 悬臂梁实验台的结构示意如图1所示,结构总体尺寸为120×110×150mm(长×宽×高),主要包括的零件有: 图1 悬臂梁实验台结构示意图 1. 悬臂 2. 底座 3. 操作说明 3.1 实验准备 运用悬臂梁实验台进行实验教学所需准备的实验设备为: 1. 悬臂梁实验台(lxbl-a)1套 2. 加速度传感器(yd-37)1套 3. 加速度传感器变送器(lbs-12-a)1台 4. 蓝津数据采集仪(ldaq-epp2)1台 5. 开关电源(ldy-a)1套 6. 脉冲锤1只 7. 5芯对等线1条 备齐所需的设备后,将加速度传感器安装在悬臂梁前端的安装孔上,然后将加速度传感器与变送器相连,变送器通过5芯对等线与数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接,加速度传感器调理电路模块接线如图2所示。在保证接线无误的情况下,可以开始进行实验。

图2 加速度传感器调理电路接线示意图 3.2 实验操作 悬臂梁固有频率测量实验利用加速度传感器来测量悬臂振动的信号,经过频谱变换(fft)处理后得到悬臂梁的一阶固有频率,需要注意的是该实验数据采集采用预触发方式,数据采集仪的触发电平要根据现场情况进行设置,实验过程如下: 1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行服务器和数据采集仪之间的注册。联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。 图3 悬臂梁固有频率测量实验样本图 2. 启动drvi中的“悬臂梁固有频率测量”实验脚本,然后设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。 3. 用脉冲锤敲击悬臂梁,产生脉冲激振。敲击的力幅要适当,着力点要准确,迅速脱开。如检测不到冲击振动信号,则适当修改采集仪中的预触发电平,然后点击面板中的“开始”按钮再次进行测量,此时,信号分析窗口中应显示出悬臂梁受瞬态激励后输出的信

实验一----弯扭组合变形

实验一----弯扭组合变形

弯扭组合变形的实验报告 力学-938小组 一.实验目的 1.测定薄壁圆管表面上一点的主应力; 2.验证弯扭组合变形理论公式; 3.掌握电阻应变片花的使用。 二.实验设备和仪表 1.静态数字电阻应变仪; 2.弯扭组合试验台。 三.实验原理与分析 1.实验计算简图如下所示: 在D点作用一外力,通过BD杆作用在C点,同时产生 弯矩和扭矩; 2.应变测量常常采用电阻应变花,把几个敏感栅制作成特殊夹角 形式,组合在同一基片上。本实验采用45o直角应变花,在A,B,C,D四点(这四点分别布置在圆管正前方、正上方、正后

方,正下方)上各贴一片,分别沿-45o ,0o ,45o 方向,如图所示。测量并记录每一点三个方向的应变值-45εo 、0εo 、45εo 。 正上方和正下方(B 、D 点)处于弯扭组合情况下,同时作 用有弯曲正应力和扭转切应力,其中弯曲正应力上端受拉,下端受压,而前方和后方由于弯矩作用产生的切应力远远小于扭转产生的切应力,所以可以忽略不计,这样,在前后位置只受扭转剪应力。 3. 理论应变的计算公式及简单推导 弯曲正应力计算公式:()4432 z M PLD W D d σπ= = -; (1) 扭转剪应力计算公式:()44 16 n p M PaD W D d τπ== -; (2) 根据(1)(2)式可计算出理论上作用在每点的应力值。 由应力状态理论分析可知,薄壁圆管表面上各点均处于平面应力状态。若在被测位置x,y 平面内,沿x,y 方向的线应变

为,x y εε,剪应变为x y γ ,根据应变分析可知,该点任一方向 α的线应变计算公式为: 1 cos 2sin 22 2 2 x y x y xy αεεεεεαγα+-= + - (3) 将α分别用-45o ,0o ,45o 代替,可得到x,y 方向的应变方程 组: 0454504545x y xy εεεεεεγεε--?=? =+-?? =-?o o o o o o (4) 由此,可得到解出每点-45εo 、0εo 、45εo 值的公式: 0454522 x x y xy x y xy εεεεγεεεγε-? =?? +-? =?? ++?=??o o o (5) 另外,根据2中的分析,利用材料力学相关公式,可得,x y εε, x y γ的理论计算公式为: ()21x y x xy E G E σεεμεμττγ?= ??? =-?? +?==?? (6) 这样,将(1)(2)(6)式代入到(5)式中,即可求解每点 -45εo 、0εo 、45εo 的理论值。 4. 将计算得到的理论值直接与测试仪上显示的数据进行对比,分析 误差。 四. 实验步骤

基于comsol的仿真实验

一、实验目的 熟悉掌握COMSOL Multiphysics软件,通过3D有限元建模方法,建立铂电极-玻璃体-视网膜的分层电刺激模型。深入研究电极如何影响电刺激效果,系统的分析了电极尺寸、电极到视网膜表面的距离等参数对视网膜电刺激的影响,为视网膜视觉假体刺激电极的刺激效果提供指导意义,进一步优化电刺激效果,达到提高人工视觉的修复效果。 二、实验仪器设备 计算机,COMSOL Multiphysics软件 三、实验原理 影响视网膜电刺激效果的因素有许多:电极尺寸、电极距视网膜距离、电极形状、电极排列等,这里主要从电极尺寸,电极距视网膜距离来探讨。视网膜电刺激模型通过参考视网膜解剖结构构建,电刺激的有效响应区域取决于神经节细胞层(GCL)电场强度是否大于1000V/m,当大于该值时认为该区域神经节细胞能够兴奋,进而指导电极尺寸、电极距视网膜距离的参数。 四、实验内容 根据视网膜的解剖结构来构建相应的视网膜分层模型,模型总共分为8层:玻璃体层,神经节细胞层,内网状层,内核层,外网状层,外核层,视网膜下区域,色素上皮层,脉络膜及巩膜。根据视网膜各层的导电特性来设定相应的导电率,模型构建,设置边界条件。在电极处施加相应电流刺激,规定神经节细胞层(GCL)电场强度(>1000V/m)时认为能够引起视神经细胞兴奋,在确定的电流强度下,神经节细胞层(GCL)层电场强度大于1000V/m的区域认为有效响应区域,进而判断电极刺激的有效响应区域,指导电极尺寸r和电极距视网膜距离h等参数设置。其具体实验步骤如下所示: 1、根据视网膜的解剖特性构建视网膜分层模型。模型在三维模式下电磁场子目录下的传导介质DC场下建立。进入建模窗口后,在绘图栏下设置模型为圆柱体,输入各部分的长宽高数值,轴基准点为圆柱体的圆心坐标。模型分为9层(11个求解域),其示图如下:

5薄壁圆管弯扭组合变形测定_实验报告

薄壁圆管弯扭组合变形测定实验 实验日期 姓名 班级 学号 实验组别 同组成员 指导教师(签字) 一、实验目的 二、实验设备名称及型号 三、实验数据记录与处理 1.基本数据 材料常数: 弹性模量 E = 70 GPa 泊松比 33.0=μ 装置尺寸: 圆筒外径 D = 39mm 圆筒内径 d = 34mm 加载臂长 h = 250 mm 测点位置 L I-I =140 mm 2.计算方法 (1)指定点的主应力和主方向测定 实验值:主应力大小:()()()?? ?? ??-+--± ++-= --2 45 02 45 45 45 2 3 1 2 12 11ε εεεμ ε εμ μ σ σE 主应力方向:()() 45 45 045 450 2εεε εεεα ----=--tg 理论值:主应力大小:2 2 3 1 22 T M M τσσ σ σ+?? ? ??± = ;主应力方向:M T tg σ τα220 - = (2)指定截面上的弯矩、扭矩和剪力所分别引起的应力的测定 a.弯矩M 引起的正应力的测定 实验值:2 di M E εσ = 实 理论值:()32 /14 3 απσ -= -D FL I I M 理 ,其中:D d /=α b. 扭矩T 引起的切应力的测定 实验值:)1(4μετ+=di T E 实 理论值:()16 /14 3α πτ-= D Fh T 理 c. 剪力F Q 引起的切应力的测定 实验值:) 1(4μετ+= di F E Q 实 理论值:z max Z 2FS I τδ = 剪,12 3 3 max z d D S -= 3.实验数据 1.指定点的主应力和主方向测定(表1、表2) 2.指定截面上的弯矩、扭矩和剪力所引起的应力测定(表3)

实验报告总结(精选8篇)

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉: 1.手脚勤快,热心帮忙他人。初来匝道,不管是不是自己的份内之事,都就应用心去完成,也许自己累点,但你会收获很多,无论是知识与经验还是别人的称赞与认可。 2.多学多问,学会他人技能。学问学问,无问不成学。知识和经验的收获能够说与勤学好问是成正比的,要记住知识总是垂青那些善于提问的人。 3.善于思考,真正消化知识。有知到识,永远不是那么简单的事,当你真正学会去思考时,他人的知识才能变成你自己的东西。 4.前人铺路,后人修路。墨守陈规永远不会有新的建树,前人的道路固然重要,但是学会另辟蹊径更为重要。

空心圆管在弯扭组合变形下主应力测定

实验二 空心圆管在弯扭组合变形下主应力测定 一、实验目的 1. 用电测法测定平面应力状态下主应力的大小及方向,并与理论值进行比较 2. 测定空心圆管在弯扭组合变形作用下的弯曲正应力和扭转剪应力 3. 进一步掌握电测法 二、实验仪器设备和工具 1. 弯扭组合实验装置 2. A XL 2118系列静态电阻应变仪 3. 游标卡尺、钢板尺 三、实验原理和方法 1. 测定主应力大小和方向 空心圆管受弯扭组合作用,使圆筒发生组合变形,圆筒的'-m m 截面处应变片位置及平面应力状态(如图1)。在B 点单元体上作用有由弯矩引起的正应力σx ,由扭矩引起的剪应力τn ,主应力是一对拉应力σ1和一对压应力σ3,单元体上的正应力σx 和剪应力τn 可按下式计算 W σz x M = W M T n n =τ 式中 M — 弯矩,L P M ?= M n — 扭矩,a P M n ?= W z — 抗弯截面模量,对空心圆筒: ? ?????????? ??-= D d D W Z 4 3132π W T — 抗扭截面模量,对空心圆筒: ??? ??? ????? ??-= D d D W T 4 3116π 由二向应力状态分析可得到主应力及其方向 τσσσσ22 2213n x x +?? ? ??±= σταx n tg 220-= 图1 圆筒的'-m m 截面应变片位置及B 点应力状态 本实验装置采用450直角应变花,在A 、B 、C 、D 点各贴一组应变花(如图2所示),B 点或D 点应变花上三个应变片的α角分别为45-0、00、450,该点主应变和主方向 () ()()εεεεεεεε0450******* 02 2 2 220 13----+±+= 加载臂 固定端 300 B C D A B σ 1 σ 3 σ 3 σ 1 τ n τ n

实验报告实验心得

实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下 子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度 成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就 会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做光伏的实验,你要 清楚光伏的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事 倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还 要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还 不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽 我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛. 通过这次测试技术的实验,使我学到了不少实用的知识,更重要的是,做实验的过程,思考 问题的方法,这与做其他的实验是通用的,真正使我们受益匪浅. 实验心得体会 这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解 决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的 技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、 变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的考虑 和自动化程度的提高,涉及到计算机技术基础和基于labview的虚拟测试技术的运用等。 课程知识的实用性很强,因此实验就显得非常重要,我们做了金属箔式应变片:单臂、 半桥、全桥比较, 回转机构振动测量及谱分析, 悬臂梁一阶固有频率及阻尼系数测试三个实 验。刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题, 也使我感到理论知识的重要性。但是我并没有气垒,在实验中发现问题,自己看书,独立思 考,最终解决问题,从而也就加深我对课本理论知识的理解,达到了“双赢”的效果。 实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻 尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方法; 了解并掌握机械振动信号测量的基本方法;掌握测试信号的频率域分析方法;还有了解虚拟 仪器的使用方法等等。实验过程中培养了我在实践中研究问题,分析问题和解决问 题的能力以及培养了良好的工程素质和科学道德,例如团队精神、交流能力、独立思考、 测试前沿信息的捕获能力等;提高了自己动手能力,培养理论联系实际的作风,增强创新意 识。 实验体会 这次的实验一共做了三个,包括:金属箔式应变片:单臂、半桥、全桥比较;回转机构 振动测量及谱分析;悬臂梁一阶固有频率及阻尼系数测试。各有特点。 通过这次实验,我大开眼界,因为这次实验特别是回转机构振动测量及谱分析和悬臂梁 一阶固有频率及阻尼系数测试,需要用软件编程,并且用电脑显示输出。可以说是半自动化。 因此在实验过程中我受易非浅:它让我深刻体会到实验前的理论知识准备,也就是要事前了 解将要做的实验的有关质料,如:实验要求,实验内容,实验步骤,最重要的是要记录什么 数据和怎样做数据处理,等等。虽然做实验时,指导老师会讲解一下实验步骤和怎样记录数 据,但是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其 实自己也不知道做什么。 在这次实验中,我学到很多东西,加强了我的动手能力,并且培养了我的独立思考能力。 特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的 继续下去。例如:数据处理时,遇到要进行数据获取,这就要求懂得labview软件一些基本

COMSOL光学案例

Modeling of Pyramidal Absorbers for an Anechoic Chamber Introduction In this example, a microwave absorber is constructed from an infinite 2D array of pyramidal lossy structures. Pyramidal absorbers with radiation-absorbent material (RAM) are commonly used in anechoic chambers for electromagnetic wave measurements. Microwave absorption is modeled using a lossy material to imitate the electromagnetic properties of conductive carbon-loaded foam. Perfectly matched layers Port Conductive pyramidal form Unit cell surrounded by periodic conditions Conductive coating on the bottom Figure 1: An infinite 2D array of pyramidal absorbers is modeled using periodic boundary conditions on the sides of one unit cell. Model Definition The infinite 2D array of pyramidal structures is modeled using one unit cell with Floquet-periodic boundary conditions on four sides, as shown in Figure 1. The geometry of one unit cell consists of one pyramid sitting on a block made of the same

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.wendangku.net/doc/2b14879758.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

弯扭组合实验实验报告

弯扭组合实验实验报告

Administrator

实验二弯扭组合试验 一、实验目的 1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角; 2.测定圆轴上贴有应变片截面上的弯矩和扭矩; 3.学习电阻应变花的应用。 二、实验设备和仪器 1.微机控制电子万能试验机; 2.电阻应变仪; 3.游标卡尺。 三、试验试件及装置 弯扭组合实验装置如图一所示。空心圆轴试=42mm,壁厚t=3mm, l1=200mm,件直径D l2=240mm(如图二所示);中碳钢材料屈服极限 s =360MPa,弹性模量E=206GPa,泊松比μ=

0.28。 图一 实验装置图 四、实验原理和方法 1、测定平面应力状态下一点处的主应力大小和主平面的方位角; 圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所 图三 应变 τx στx σ

示。 在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。 根据平面应变状态应变分析公式: α γαεεεεε α 2sin 2 2cos 2 2 xy y x y x - -+ += (1) 可得到关于εx 、εy 、γxy 的三个线性方程组,解得: 45 450 45450 εεγεεεεεε-=-+==--xy y x (2) 由平面应变状态的主应变及其方位角公式: 2 2 21222? ?? ? ??+???? ??-±+=xy y x y x γεεεεεε (3)0 min max 2()2()xy xy x y tg γγα εεεε=- =---或y x xy tg εεγα-- =02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。 图四 圆轴上表面图五 圆轴下表面

梁的振动实验报告

《机械振动学》实验报告 实验名称梁的振动实验 专业航空宇航推进理论与工程 姓名刘超 学号 SJ1602006 南京航空航天大学 Nanjing University of Aeronautics and Astronautics 2017年01月06日

1实验目的 改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。 2实验内容 对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。 3实验原理 3.1 固有频率的测定 悬臂梁作为连续体的固有振动,其固有频率为: ()1,2,.......r r l r ωλ==其中, 其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、 、、 简支梁的固有频率为: ()1,2,.......r r l r ωλ==其中 其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、 、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。 试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3) 横截面积:A =4.33*10-4 (m 2), 截面惯性矩:J =3 12 bh =2.82*10-9(m 4) 则梁的各阶固有频率即可计算出。

3.2、实验简图 图1 悬臂梁实验简图 图2简支梁实验简图

实验三 矩形截面悬臂梁弯曲测弹性模量和泊松比

中国矿业大学力学实验报告 姓名白永刚 班级 土木11-9班 同组姓名 方雷、蔡卫、蔡尧 实验日期2012-10-26 材料弹性模量E 和泊松比μ的测试 一、实验目的 1. 测定常用金属材料的弹性模量E 和泊松比μ。 2. 验证胡克定律。 3. 学习掌握电测法的基本原理和电阻应变仪的操作。 4. 熟悉测量电桥的应用。掌握应变片在测量电桥中的各种接线方法。 5. 学习用最小二乘法处理实验数据。 二、实验设备 1. 电子万能试验机或组合实验台; 2. 静态电阻应变测力仪; 3. 游标卡尺; 4. 矩形截面梁。 三、实验原理和方法 材料在线弹性范围内服从胡克定律,应力和应变成正比关系。单向拉伸时,其形式为 E σε= (1) 式中E 为弹性模量。在εσ-曲线上,E 由弹性阶段直线的斜率确定,它表征材料抵抗弹性应变的能力。E 愈大,产生一定弹性变形所需的应力愈大。E 是弹性元件选材的重要依据,是力学计算中的一个重要参量。 00F = l E A l σε = ? (2) 试件弯曲时,产生纵向伸长和横向收缩,或者产生纵向收缩和纵向伸长。实验表明在弹性范围内,横向应变ε'与轴向应变ε,二者之比为一常数,其绝对值称为泊松比,用μ来表示,即 ε εμ' = (3) 本实验采用电测法来测量E 、μ。 试件采用矩形截面试件,布片方式如图(a)。在试件中央某截面,沿前后两面轴向分别对称地分布有两对轴向应变片R 1,R 1’以测量轴向应变ε。一对横向应变片R 2,R 2’以测轴向应变ε'。

1. 测弹性模量E 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减少测量误差,实验已从初载()000F F ≠开始。与0F 对应的应变仪读数d ε可预调到零。采用增量法,分级加载,分别测量在各项同载荷增量F ?作用下,产生的应变增量ε?,并求ε?的平均值。设试件初始横截面面积为A 0,又因=/l l ε?,则(2)式可写成 0A F E ε?= ?均 (4) 上式即为增量法测E 得计算公式,其中d ε?为试件实际轴向应变增量的平均值, F ?为加载力的阶段差值。 实验前拟定加载方案,通常考虑以下情况: (1) 由于在比例极限内进行试验,故最大应力值不应大于比例极限,实验最 大载荷为 max 0(0.70.8)A S F σ≤- (5) (2) 初载荷0F 可按max F 的10%或稍大于此值来设定。 (3) 分5-7级加载,每级加载后要使应变度数有明显变化。 2. 测泊松比μ 利用试件的横向应变和轴向应变,采用全桥测量法,在弯曲情况下测出横向应变ε'和轴向应变F ε,并随时检验其增长是否符合线性规律。按照定义有 ()F 21d εμε=+ (6) 'F =ε με?? 均 均 (7) 布片方案如图(a)所示。

相关文档