文档库 最新最全的文档下载
当前位置:文档库 › 基于ANSYS对微型直流电磁继电器电磁系统的分析

基于ANSYS对微型直流电磁继电器电磁系统的分析

基于ANSYS对微型直流电磁继电器电磁系统的分析
基于ANSYS对微型直流电磁继电器电磁系统的分析

·研究与分析·低压电器(2010?17

斌(1981—),

男,工程师,硕士,研究方向为继电器设计及工艺研究。

基于ANSYS 对微型直流电磁继电器电磁系统的分析

斌,赵瑞平

(中国振华电子集团群英厂,贵州贵阳550018)

要:基于有限元的分析方法,对某型号直流电磁继电器的电磁系统进行研究。

首先,给出继电器的机械反力特性曲线并绘制出电磁系统的3D 模型。然后,利用ANSYS 软件对该继电器的电磁系统进行静态吸力特性仿真分析,得到静态电磁吸力及磁场分布情况,绘制出继电器的吸力特性曲线。最后,验证继电器电磁系统的设计是否合理,

为继电器的优化设计提供有效的分析手段。关键词:继电器;仿真分析;吸力特性曲线

中图分类号:TM 503+

.1

文献标识码:A 文章编号:1001-

5531(2010)17-0001-03Analysis on Electromagnetic System of Small DC

Electromagnetic Relay Based on ANSYS

XIAO Bin ,ZHAO Ruiping

(China Zhenhua Electronics Group of Qunying factory ,Guiyang 550018,China )

Abstract :Based on the analysis method of finite element ,electromagnetic system of the DC electromagnetic relay was research.The mechanical relay reaction curve of relay would be drafted and completed the 3D model of the system of electromagnetic.The static characteristic was analyzed by using the ANSYS software to obtain the dis-tribution of static electromagnetic attraction and the magnetic field ,the relay ’s attractive torque characteristic curve was drawed.Finally ,the design reasonable of electromagnetic relay system was validated ,then effective means for the relay optimization was supplied.

Key words :relay ;simulation analysis ;attractive torque characteristic curve

赵瑞平(1962—),男,高级工程师,研究方向为继电器设计及工艺研究。

0引言

电磁继电器主要由电磁系统和接触系统组成。在设计电磁继电器时,通常先算出继电器的机械反力曲线,然后再计算出电磁系统的吸力特性曲线来验证继电器的设计是否合理。

电磁系统吸力特性曲线的计算基本上有两种

不同的算法,一是用“路”的方法;另一是用“场”的方法。传统的计算方法主要采用“路”的方法,也就是利用阻抗网络的方法进行电磁系统的计

算,这种算法首先得计算气隙磁导,不仅计算方法十分复杂,而且计算结果也不是很准确。近年来,随着计算技术的发展和电子计算机的广泛应用,

使得电磁系统电磁场的计算方法发生了很大的变

化,可以运用数值计算方法来更准确地计算磁场和电磁吸力。即利用“场”的方法,将磁场的连续问题离散化,把计算无限多个点上的数值变为计算在有限多个节点上的数值,即有限元分析法。

本文利用ANSYS 软件对某型号微型密封直流电磁继电器电磁系统进行分析,绘制出吸力特性曲线来验证继电器电磁系统的设计是否合理。

1机械反力曲线

某型号微型密封直流电磁继电器机械反力特性曲线如图1所示。图中:δ为衔铁行程的工作气隙;F m 为机械反力;1点处为继电器释放状态;

1—

低压电器(2010?17)·研究与分析

·

图1某微型直流电磁继电器的机械反力特性曲线

2点处为常闭触点准备断开的状态;3点处为常闭触点刚断开的状态;4点处为常开触点刚接通的状态;5点处为继电器吸合稳定状态。

2有限元仿真分析

2.1建立模型

有限元分析的第一步是建立几何模型。本文使用SolidWorks软件绘制了三维模型,再导入ANSYS进行分析。导入前,首先应对模型进行修改,去掉不必要的圆角、倒角等,并简化对计算无关的部分,待分析继电器电磁系统模型如图2所

示。图中:δ、δ

1为工作气隙;δ

2

为非工作气隙

图2某型号继电器电磁系统模型(mm)

2.3建立激励模型

对于继电器电磁系统的电磁吸力仿真,采用

的激励载荷就是继电器线圈,文中采用ANSYS的

SOURCE36单元为线圈建立模型,建立线圈模型

如图3所示

图3增加线圈后的模型

文中分析的继电器在额定工作电压27V时线

圈电阻R=1560Ω,匝数=4200匝,分析时,分

别取动作电压为10.8V,释放电压为2.5V。

2.2建立空气模型、分配材料属性

网格划分前应先建立空气模型,给出磁场计

算的空间范围。然后再为几何模型的各个部分设

置材料属性。轭铁、衔铁、铁心材料为真空退火处

理后的电工纯铁DT4E,材料B-H曲线如图4所

示;空气、线圈相对导磁率为1。自定义B-H曲

线时,应注意在拐角处多取几个点,否则会引起计

算的不收敛

图4真空处理后电工纯铁DT4E的B-H图形

2.4网格划分

赋予模型相应的材料属性后,接下来进行网

格划分。网格划分是有限元前处理中的主要工

作,也是整个有限元分析的关键。网络划分的质

量优劣将对计算结果产生相当大的影响。网格划

分时应适当控制其尺寸,保证划分结果不会出现

畸形单元也无需较长时间;网格划分越细,计算的

结果越接近实际值,但计算耗费的时间则更长。

铁心、轭铁、衔铁网格划分后图形如图5所

示,由于SOURCE36单元建立的线圈为虚拟电流

源,因此不必进行网格划分

图5轭铁、衔铁、铁心网格划分后图像—

2

·研究与分析·低压电器(2010?17)

2.5加载约束

划分网格之后要做的工作就是添加约束条件。电磁场问题求解中,有各种各样的边界条件,可概括:自然边界条件、匹配边界条件、狄利克莱

边界条件、

对称边界条件和匹配边界条件。该例中分析使用系统默认的边界条件,即磁力线平行

边界条件,选择坐标原点为约束条件。要求解衔铁上受到的电磁吸力,必须对衔铁施加力标志。加力标志后的模型如图6所示

图6衔铁施加力标志后的图形

3静态吸力仿真分析

ANSYS 的静态磁场分析是在给定气隙和电

压(电流)的情况下,分析得到电磁吸力和磁感应

强度的分布。

利用求解分析模块得到分析结果,在电压U =10.8V ,工作气隙δ=0.03mm ,非工作气隙δ2=0.01mm 时,衔铁上受到Z 方向的Mexwell 力为0.53N 。

图7为电压是10.8V ,工作气隙δ=δ1=0.03mm ,非工作气隙δ2=0.01mm 时,仿真得到的磁感应强度矢量图,其磁感应强度云图如图8所示。在电磁系统中,通过轭铁、铁心、衔铁和工作气隙δ、δ1的磁通为主磁通,其他位置所通过的

磁通均为漏磁通。

从图7、8可以看出,

到继电器图7

电磁系统磁感应强度矢量图

图8

工作气隙为0.03mm 时磁感应强度B 的云图

各部分磁感应强度的分布情况,在铁心与轭铁铆接处漏磁最大,随着δ2的增大漏磁也逐渐增大,最终导致电磁效率降低,电磁吸力减小。

4绘制吸力特性曲线

为了得到衔铁处于不同气隙时的电磁吸力,仿真过程中,分别在激励电压为10.8V 和释放电压为2.5V 时逐渐增大气隙δ来计算静态电磁吸力,并将有限元仿真计算的电磁吸力绘制成吸力特性曲线如图9所示

图9

继电器的吸力特性曲线

将图1的机械反力特性曲线用虚线标绘在图

9中,同吸力特性曲线比较。当释放电压为2.5V 时,吸力曲线低于机械反力曲线,故衔铁可以释

放;当激励电压为10.8V 时,吸力曲线高于机械反力曲线,继电器可以动作。

5仿真结果应用

(1)实际工程应用中,一般情况下只测量衔

铁闭合时的电磁吸力。从静态吸力仿真的结果来

看,衔铁闭合时(电压U =10.8V ,工作气隙δ=

(下转第31页)

3—

·配网自动化·低压电器(2010№17)

动调整、修改和完善。

(3)Agent可根据所处环境,在系统中进行灵活的访问和迁移。在网络计算环境中,甚至可将自己迁移到网络中的其他主机上,大大提高了分析、诊断的灵活性,实现自我复制与衍生。

(4)为有效地利用数据资源,知识库中的数据可与其他系统公用。

(5)与先进的控制技术相结合。在线监测系统与控制系统相结合,对电网进行实时分析、诊断和预测,确定并采取适当的措施,以消除、减轻和防止供电中断和电能质量的扰动。

5结语

智能电网在线监测与故障诊断系统不同于以往传统的故障诊断方法,也不同于基于信号处理和解析模型的方法,一种是随着人工智能发展起来的基于知识的故障诊断方法;不需要监测对象的精确数学模型,具有某些“智能”特性,是一种很有发展前途的方法。智能电网的在线监测与故障诊断系统将更多地与智能控制技术相结合,实现电网的自动控制,体现智能电网自我恢复(自愈)的特点。但由于客观现实的复杂、多样性,使得专家的知识领域有时很难提炼到用规则来表示这一步,使专家系统的发展受到一定的限制。

【参考文献】

[1]Research Reports International.Understanding the smart grid,RRI00026[R].2007.

[2]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-6.

[3]孟凡超,高志强,王春璞.智能电网关键技术及其与传统电网的比较[J].河北电力技术,2009,28(11):

4-5.

[4]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].北京:科学技术出版社,2006.

[5]吴胜,王书芹.人工智能基础与应用[M].北京:电子工业出版社,2007.

收稿日期:

檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿

2010-06-30(上接第3页)

δ1=0.03mm,非工作气隙δ2=0.01mm)上受到Z方向的Mexwell力为0.53N,与该型号继电器实际测量0.5 0.6N的电磁吸力较为接近。因此,在实际工程应用中,若需要增减继电器电磁系统电磁吸力时,可先更改电磁系统结构模型,然后再仿真分析电磁吸力,得出更改后的结构是否能满足设计要求,从而减少不必要的摸底验证,降低设计成本,提高设计效率。

(2)实际工程应用中,还可以根据图9的电磁吸力特性曲线来调校继电器机械和电气参数。若机械反力曲线明显高于释放电压的吸力特性曲线,可以通过减小接触系统复原力的方式来降低继电器释放电压;若机械反力曲线明显低于动作电压的吸力特性曲线,可以通过增加接触系统复原力的方式来提高继电器动作电压。

(3)根据仿真的结果还可以看出工作气隙δ=0.03mm时,电磁系统的漏磁主要集中在铁心与轭铁的铆装部位,在工程应用中,若想增加电磁系统的电磁效率,可利用工艺手段来减小铁心与轭铁铆接部位的间隙,达到减小漏磁的目的。

6结语

通过上述的有限元仿真分析方法,可以快速且准确地验证继电器电磁系统设计是否合理,从而达到降低设计成本,提高设计效率的目的。工程人员还可以利用仿真结果,分析电磁系统磁感应强度的分布、漏磁大小等,为继电器的优化设计提供有效的手段。

【参考文献】

[1]邹海峰.小型电磁继电器[M].西安:陕西科技出版社,1984.

[2]孙明礼,胡仁喜,崔海蓉,等.ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版

社,2007.

收稿日期:2010-07-26

13

基于ANSYS软件的电机电磁场有限元分析解读

基于ANSYS软件的电机电磁场有限元分析 发表时间:2007-9-11 作者: 黄劭刚夏永洪张景明来源: 万方数据 关键字: APDL语言同步发电机电磁场有限元 介绍了应用ANSYS自带的APDL编程语言进行软件开发,将该软件应用于同步发电机空载磁场分析中,在电机的电磁场计算中实现了电机的自动旋转、自动施加载荷的功能,使用、修改方便,并且计算速度快。通过对电磁场计算结果的后处理,得出了同步发电机的旋转磁场波形和电压波形。样机测试结果验证了分析结果的正确。 1 前言 ANSYS软件是一个功能强大、灵活的,融结构、热、流体、电磁、声学于一体的大型通用有限元分析软件。广泛用于核工业、石油化工、航空航天、机械制造、土木工程等一般工业及科学研究领域的设计分析。 在实际的电机电磁场分析中,电机的转子磁极形状、定子齿槽形状、气隙大小以及铁磁材料均已确定,但是当转子相对十定子齿槽的位置不同时一,其计算结果也不相同。为了分析电机电磁场问题,若把定、转子相对位置固定不变进行求解,再对电磁场计算结果进行傅立叶级数分解来计算电机绕组的电势则误差太大。为此,需要对定、转子不同位置时一分别进行计算,然后通过电磁场的计算结果求出电机何个定子齿部磁通随转角变化的关系,然后根据磁通的变化率求出电机基波绕组的电势。ANSYS软件是目前应用最为广泛、使用最方便的通用有限元分析软件之一,应用ANSYS软件来分析电机电磁场是非常有效的。但是当采用ANSYS软件的图形用户界面( GUI)操作方式时,每次定、转子之间的旋转、网格剖分、施加载荷进行求解、查看计算结果等都需要人工进行重复操作,使用起来非常繁琐,并且效率低。为此,木文采用ANSYS软件的APDL语言编写的软件对同步发电机的空载磁场进行研究,实现了电机定、转子之间的自动旋转,自动网格剖分,自动施加载荷以及自动求解的功能。整个电磁场分析过程无需人工进行干预,使用方便,便于修改,并且大大提高了计算速度。通过对同步发电机电磁场计算结果进行后处理,得出了同步发电机的旋转磁场波形和电压波形。 2 软件实现 ANSYS软件提供了图形用户界面与命令流两种方式来分析电机电磁场问题。在电机电磁场计算中,命令流方式和图形用户界面方式相比,具有以下优点:(1)通用性好,对于同系列、同型号的电机电磁场计算只要对电机的尺寸参数进行修改即可,而采用ANSYS的图形用户界面方式进行电机电磁场计算,每次计算都要重新输入图形,没有通用性;(2)通过合理应用ANSYS的APDL语言编写一个两重循环程序就可实现转子自动旋转和自动施加励磁电流的功能,与ANSYS 的图形用户界面方式相比,减少了人机交互的次数,缩短了计算时间。 2.1软件编写

8、时间继电器

机械设备电气控制 时间继电器概述: 继电器?特点:通电或断电时不瞬间动作,而是经过一定的延时作用和用途:按整定时间长短通断电路?分类: 按构成原理分:电磁式 电动式 空气阻尼式晶体管式数字式 按延时方式分:通电延时型 断电延时型

五、时间继电器 JS14P 数字式 JS7空气阻尼式 JS14A晶体管式图6-10(a) 常见时间继电器外形 机械设备电气控制

通电延时型:接受输入信号后延迟一定时间,输出信号才产生;当输入信号消失后,输出瞬时复原。 线圈:触点:上电 延时 触点动作 如果KT断电触点才恢复平常状态 演示程序 继电器 机械设备电气控制

断电延时型:接受输入信号时,瞬时产生相应的输出信号;当输入信号消失后,延时一定时间输出才复原。 上电 线圈: 延时 触点: 触点动作触点恢复原状态 演示程序 机械设备电气控制

第1章低压电器 机械设备电气控制 1、、时间继电器图形文字符号 延时断开瞬时闭合动断触点 瞬时断开延时闭合动断触点 通电延时线圈瞬时闭合延时断开动合触点 断电延时线圈 延时闭合瞬时断开动合触点 图6-10(b) 时间继电器图形文字符号 KT KT KT KT KT KT

(1)电磁式时间继电器 电磁式时间继电器一般在直流控制电路中应用较广。它是利用电磁阻尼原理,在直流电压继电器的线圈电路上或结构上采用措施以达到延时的目的。 (a)短路线圈法 (b)阻尼套法 延时时间的调节: 电磁式时间继电器延时时间的长短是靠改变铁心与衔铁间非磁性垫片的厚度(粗调)或改变释放弹簧的松紧(细调)来调节的,垫片厚则延时短,薄则延时长;弹簧紧则延时短,松则延时长。 机械设备电气控制

ANSYS电磁分析解决方案

ANSYS 电磁分析解决方案 ——最完整的电磁分析技术 产品关键字 ? 完整的电磁分析技术 ? 独特的耦合场分析特性 ? 良好的易用性和统一的软件结构 ? 精确求解电大尺寸电磁辐射/散射问题 ? 系统级EMC/EMI 概述 自电子电气产品进入生活以来,产品设计师们就一致关心着能够满足用户各种需求的指标。对于产品性能的可靠性分析,由最初的经验预估、理论计算,发展到了如今的计算机仿真,产品设计朝着计算机实现虚拟设计、虚拟实验的必然方向前进。 性能相对简单、测试成本较低的电子电气产品,可以通过原型或者简化实验完成性能评估。对于具有复杂性能和复杂结构的电子电气产品,往往要求昂贵的测试设备,较长的实验周期,并对周围的测试环境有较强的依赖性。这样条件下要完成某种产品在多种状态的性能评估,需要较高成本,并且难以满足一致性标准。而现代电子电气产品的复杂性,需要在产品设计阶段就能给出指导产品设计的原则和标准,并完成产品的优化、更新设计。 计算机硬件条件的飞速发展和工程实际的市场需求,促进了计算机数值分析方法的不断进步,使计算机仿真对产品设计的指导意义愈加明显。1970年,市场的广泛需求促使了专业的仿真软件公司——ANSYS 成立,并开始向用户提供在结构场、温度场、流体场和电磁场等领域的全面解决方案。 复杂电子电气产品中的电磁场往往具有结构材料复杂、具有复杂的激励和边界条件等挑战,因此在工程实践和科学研究中出现了针对不同问题的分析方法:按照数学方程的不同,分为微分方程方法(代表性的如有限元FEM ,时域有限差分方法FDTD 等)和积分方程方法(代表性的如矩量法MOM 等);按照计算的电尺寸大小,分为高频渐近方法(物理光学方法PO ,一致渐近绕射理论UTD 等)和“低频”数值方法(有限元FEM ,矩量法MOM )。对于复杂的电磁问题,往往单一的方法不能完全解决问题,需要多种方法,多种工具混合使用。 产品特色 ● 最完整的电磁分析技术 ANSYS 充分利用各种电磁计算方法的优点,发展了多个适用于不同领域的电磁分析模块,这些模块优势互补、在统一的软件界面(ANSYS PrepPost ) 下共同解决各种复杂的电磁分析问题。

时间继电器的作用及功能原理

时间继电器的作用及功能原理 2011年11月04日11:30?来源:本站整理?作者:秩名?我要评论(0) 时间继电器是一种使用在较低的电压或较小电流的电路上,用来接通或切断较高电压、较大电流的电路的电气元件,也许可以这样说:用来控制较高电压或较大功率的电路的电动开关:给继电器工作线圈一个控制电流,继电器就吸合,对应的触点就接通或断开。在供电电路中,继电器也被称为接触器。 关键字:时间继电器,继电器 从驱动时间继电器工作的电源要求(驱动线包工作电压)来分,一般继电器分交流继电器与直流继电器,分别用于交流电路和直流电路,另外,依据其工作电压的高低,有6、9、12、24、36、110、220、380等不同的工作电压,使用于不同的控制电路上。时间继电器另一个区分点是它的触点(执行接通或断开被控制电路的开关),分别有常开、常闭、转换的区别,另外还有触点多少的区别,可以控制多大的工作电压及电流(即触点允许控制的功率)的区别,供不同用途选用;另外特殊触点还有带自锁(动作后即使控制电压消失,触点自己保持失去控制时的状态),带延时吸合或延时释放功能等种类,供特殊情况下使用。 1.时间继电器当吸引线圈通电或断电后其触点经过一定延时再动作的继电器。 (1)结构(图2-3) (2)时间继电器的符号(图2-4) (3)时间继电器认识 类型认识:电磁式、空气阻尼式、电动式、电子式 ①直流电磁式时间继电器——用于直流电气控制电路中,只能直流断电延时动作。 优点:结构简单、运行可靠、寿命长;缺点:延时时间短。 ②空气阻尼式时间继电器——利用空气阻尼作用获得延时。 分:通电延时、断电延时两种。 ③电子式时间继电器——分R-C式晶体管和数字式时间继电器。 优点:延时范围宽、精度高、体积小、工作可靠。 晶体管式时间继电器以RC电路电容充电时电容器上的电压逐步上升的原理为基础。电路有单结晶体管电路和场效应管电路两种。

ANSYS电磁场分析指南解读

回旋加速器 在一般电磁场分析中关心的典型的物理量为: -磁通密度?能量损耗 -磁场强度?磁漏 ?磁力及磁矩? S-参数 ?阻抗?品质因子Q ?电感?回波损耗 ?涡流?本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场 1.2ANSYS 如何完成电磁场分析计算 ANSYSU Maxwell 方程组作为电磁场分析的出发点。有限元方法计算的未知 量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根 ANSY 电磁场分析指南第一章 发表时间: 2007-9-20 作者 : 安世亚太 来源 : e-works 关键字 : ANSYS 电磁场分析 CAE 教程 第一章磁场分析概述 1.1 磁场分析对象 利用ANSYS/Ema 或ANSYS/Multiphysics 模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: 电力发电机 磁带及磁盘驱动器 变压器 波导 螺线管传动器 谐振腔 电动机 连接器 磁成像系统 天线辐射 图像显示设备传感器 滤波器

据用户所选择的单元类型和单元选项的不同, ANSYS+算的自由度可以是标量磁 位、矢量磁位或边界通量。 1.3 静态、谐波、瞬态磁场分析 利用ANSY 测以完成下列磁场分析: ?2-D 静态磁场分析,分析直流电(DC )或永磁体所产生的磁场,用矢量位方 程。参见本书“二维静态磁场分析” ?2-D 谐波磁场分析,分析低频交流电流(AC )或交流电压所产生的磁场,用 矢量位方程。参见本书“二维谐波磁场分析” ?2 -D 瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包 含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ?3-D 静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。 参见本书“三维静态磁场分析(标量位方法)” ?3-D 静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。 参见本书“三维静态磁场分析(棱边元方法)” ?3-D 谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议 尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法) ?3-D 瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用 棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场 分析(棱边元方法)” 3-D 静态磁场分析,用矢量位方法。参见“基于节点方法 ?基于节点方法的3-D 谐波磁场分析,用矢量位方法。参见“基于节点方法 的 3-D 谐波磁场分析” 1.4 关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D 模型,什么时候选择3-D 模型?标量位方法和矢量位方 法有何不同?棱边元方法和基于节点的方法求解 3-D 问题又有什么区别?在下面 将进行详细比较。 1.4.12-D 分析和 3-D 分析比较 3-D 分析就是用 3-D 模型模拟被分析的结构。现实生活中大多数结构需要 3- D 模型来进行模拟。然而3-D 模型对建模的复杂度和计算的时间都有较高要求。 所以,若 ?基于节点方法的 的 3-D 静态磁场分析” ?基于节点方法的 的 3-D 瞬态磁场分析” 3-D 瞬态磁场分析, 用矢量位方法。参见“基于节点方法

继电器的基础知识及应用

继电器的基础知识及应用 时间继电器是一种当电器或机械给出输入信号时,在预定的时间后输出电气关闭或电气接通信号的继电器。 时间继电器的常用功能有: A:通电延时(On-delay Operation) F:断电延时(Off-delay Operation) Y:星三角延时(Star/Delta Operation) C:带瞬动输出的通电延时(With inst. Contact On-delay Operation)G:间隔延时(Interval-delay Operation) R:往复延时(On-off repetitive delay Operation) K:信号断开延时(Off-signal delay Operation) 1、控制电源 时间继电器的电源端子间一般能承受1500V的外来浪涌电压,如果浪涌电压超过此值时,须使用浪涌吸收装置,以防止时间继电器击穿烧毁;当时间继电器重复工作时,本次电源关断到下次电源接通的时间(休止时间)必须大于复位时间,否则,未完全复位的时间继电器在下一次工作时就会产生延时时间偏移、瞬动或不动作; 断电延时型时间继电器的电源接通时间必须大于0.5秒,以便有充足的能量储备而保证在断开电源后按预设时间接通或分断负载; 时间继电器的电源回路一般情况下是高阻抗的,因此,切断电源后的漏电流要尽可能小(半导体或用RC并接的触点来开关时间继电器),以

免有感应电压而假关断引起误动作(对于断电延时型而言,会产生断电后延时时间到但继电器不释放现象)。一般情况下电源端子的残留电压应小于额定电压的20%,对断电延时型而言应小于额定电压的7%; 时间继电器在完成其控制工作后,尽量避免继续通电。到时后连续通电会使产品发热,从而加快电子元件老化,大大缩短使用寿命。 2、负载连接 时间继电器的输出触点由于受产品体积的限制,往往负载能力不强,因此要对触点进行保护,可在触点两端并接吸收装置(如:RC、二极管、齐纳二极管等)。 不要用时间继电器去直接控制大容量负载,有的负载看上去不大,但由于负载电流特性而出现烧熔触点的现象,下表是负载形式和浪涌电流之间的关系。 负载形式浪涌电流 电阻负载标准额定电流 电磁铁负载10~20 倍标准额定电流 电机负载5~10倍标准额定电流 白炽灯负载10~15 倍标准额定电流 水银灯负载1~3 倍标准额定电流 钠汽灯负载1~3 倍标准额定电流 电容性负载20~40 倍标准额定电流 电感性负载5~15 倍标准额定电流

ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如果EMI测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。。 2目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经开

始高速通道设计的预研。在相关PCB布线工具的帮助下,将复杂的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ●高速通道中,连接器,电缆等三维全波精确和建模仿真, 这些结构的寄生效应对于信号的传输性能有至关重要的影 响; ●有效的PCB电源完整性分析工具,对PCB上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE模型,IBIS模型和S参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ●有效的PCB的辐射控制与仿真手段,确保系统EMI性能达 标。 现在EDA市场上已经有一些SI/PI和EMI/EMC仿真设计工具,但存在多方面的局限性。我们的PCB布线工具虽然能解决一定的问题,

时间继电器图形符号

时间继电器: 时间继电器是指当加入(或去掉)输入的动作信号后,其输出电路需经过规定的准确时间才产生跳跃式变化(或触头动作)的一种继电器。是一种使用在较低的电压或较小电流的电路上,用来接通或切断较高电压、较大电流的电路的电气元件。 时间继电器是电气控制系统中一个非常重要的元器件,在许多控制系统中,需要使用时间继电器来实现延时控制。时间继电器是一种利用电磁原理或机械动作原理来延迟触头闭合或分断的自动控制电器。其特点是,自吸引线圈得到信号起至触头动作中间有一段延时。时间继电器一般用于以时间为函数的电动机起动过程控制。 时间继电器的主要功能是作为简单程序控制中的一种执行器件,当它接受了启动信号后开始计时,计时结束后它的工作触头进行开或合的动作,从而推动后续的电路工作。一般来说,时间继电器的延时性能在设计的范围内是可以调节的,从而方便调整它的延时时间长短。单凭一只时间继电器恐怕不能做到开始延时闭合,闭合一段时间后,再断开,先实现延时闭合后延时断开,但总体上说,通过配置一定数量的时间继电器和中间继电器都是可以做到的。 随着电子技术的发展,电子式时间继电器在时间继电器中已成为主流产品,采用大规模集成电路技术的电子智能式数字显示时间继电器,具有多种工作模式,不但可以实现长延时时间,而且延时精度高,体积小,调节方便,使用寿命长,使得控制系统更加简单可靠。 选用时间继电器时应注意,其线圈(或电源)的电流种类和电压

等级,按控制要求选择延时方式、触点形式、延时精度以及安装方式。 分类: 按其工作原理的不同,时间继电器可分为空气阻尼式时间继电器、电动式时间继电器、电磁式时间继电器、电子式时间继电器等。 空气阻尼式时间继电器利用空气通过小孔时产生阻尼的原理获得延时。其结构由电磁系统、延时机构和触头三部分组成。电磁机构为双口直动式,触头系统为微动开关,延时机构采用气囊式阻尼器。 电子式时间继电器 电子式时间继电器是利用RC电路中电容电压不能跃变,只能按指数规律逐渐变化的原理,即电阻尼特性获得延时的。 特点:延时范围广,最长可达3600 S,精度高,一般为5%左右,体积小,耐冲击震动,调节方便。 电动机式时间继电器 电动机式时间继电器是利用微型同步电动机带动减速齿轮系获得延时的。 特点:延时范围宽,可达72小时,延时准确度可达1%,同时延时值不受电压波动和环境温度变化的影响。 电动机式时间继电器的延时范围与精度是其他时间继电器无法比拟的,其缺点是结构复杂、体积大、寿命低、价格贵,准确度受电源频率影响。 电磁式时间继电器。电磁式时间继电器是利用电磁线圈断电后磁通缓慢衰减的原理使磁系统的衔铁延时释放而获得触点的延时动作

ansys分析电磁场

三维螺线管静态磁场分析 要求计算螺线管,如下图所示,衔铁所受磁力,线圈为直流激励,产生力驱动衔铁。线圈电流为6A,500匝。由于对称性,只分析1/4的模型,如图1所示: 图1螺线管制动器 在仿真分析时,空气相对磁导系数为1.0;使用智能网格划分(LVL=8);设定全部面为通量平行,这是自然边界条件,自动得到满足。因为是采用的1/4对称模型,所以磁力的计算结果要乘以4。

施加边界条件: ! /SOLU D,2,MAG,0 ! !SOLVE ! ALLSEL,ALL MAGSOLV,3,,,,,1 FINISH ! 建立的模型如下图所示:

对模型进行智能网格划分,如下图所示: 仿真分析所得磁场强度分布图为:

衔铁所受磁力分布图为: 衔铁所受磁力分布图为:

计算所得衔铁所受磁力为: SUMMARY OF FORCES BY VIRTUAL WORK Load Step Number: 2. Substep Number: 1. Time: 0.2000E+01 Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.14339E+02 0.11359E+02 -0.12846E+02 ___________________________________________________ SUMMARY OF FORCES BY MAXWELL STRESS TENSOR Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.79007E+01 0.55769E+01 -0.11511E+02 _____________________________________________________ Note: Maxwell forces are in the Global Cartesian coordinate system. Virtual work forces are in the element ESYS coordinate system.

电磁型时间继电器信继电器中间继电器实验指导书

实验二、电磁型时间继电器、信号继电器、中间继电器实验 一、实验目的 1、熟悉时间继电器的实际结构、工作原理、基本特性、掌握时限的整定和试验调试方法 2、熟悉和掌握信号继电器的工作原理、实际结构、基本特性及其工作参数和释放参数的测定。 3、熟悉和掌握中间的工作原理、实际结构、基本特性及其中间几点起的测试和调整方法。 二、预习与思考 1、影响时间继电器起动电压、返回电压的因素是什么 2、DXM—2A型信号继电器具有那些特点 3、信号继电器实验时为什么要注意工作线圈的极性和释放线圈的极性如接反了会出现什么情况 4、根据你所学的知识说明时间继电器常用在哪些继电保护装置电路 5、发电厂、变电所的继电器保护及自动装置中常用哪几种中间继电器 三、原理说明 1、时间继电器 DS—20系列时间继电器用于各种继电保护和自动控制线路中,使被控制 元件按时限控制原则进行动作。 DS—20系列时间继电器是带有延时机构的吸入式电磁继电器,其中DS—21~DS—24 是内附热稳定限流电阻型时间继电器(线圈适于短时工作),DS—21/c~DS—24/c是外附热稳定限流电阻型时间继电器(线圈适于长时工作)。DS—25~28是交流时间继电器。 该继电器具有一付瞬时转换触点,一付滑动主触点和一付终止主触点。继电器内

部接线见图2-1。 图2-1 时间继电器内部接线图 当加电压于线圈两端时,衔铁克服塔形弹簧的反作用力被吸入,瞬时常开触点闭合, 常闭触点断开,同时延时机构开始启动,先闭合滑动常开主触点,再延时后闭合终止常开主触点,从而得到所需延时,当线圈断电时,在塔形弹簧作用下,使衔铁和延时机构立刻返回原位。 从电压加于线圈的瞬间起到延时闭合常开主触点止,这段时间就是继电器的延时时间,可通过整定螺钉来移动静接点位置进行调整,并由螺钉下的指针在刻度盘上指示要设定的时限。 2、信号继电器 DXM —2A 型信号继电器适用于直流操作的继电保护线路和自动控制线路中作远距离复归的动作指示。 继电器由密封干簧接点,工作绕组,释放绕组,自锁磁铁和指示灯等组 成。横截面结构示意图见图2-2。 1218 1716151413DS-21~22时间继电器正面内部接线图 DS-21/C~22/C时间继电器正面内部接线图 1256 18 1716151413V 56 V R 3434

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较.

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

电磁型时间继电器实验报告

实验三电磁型时间继电器实验 一、实验目的 熟悉DS—20系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法。 二、预习与思考 1、绝缘测试时发现绝缘电阻下降,且不符合要求,是什么原因引起的? 2、影响起动电压、返回电压的因素是什么? 额定电压和继电器内部结构。 3、在某一整定点的动作时间测定,所测得数值大于(或小于)该点的整定时间,并超出允许误差时,将用什么方法进行调整? 4、根据你所学的知识说明时间继电器常用在哪些继电保护装置及自动化电路中? 三、原理说明 DS—20系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制原则进行动作。 DS—20系列时间继电器是带有延时机构的吸入式电磁继电器,其中DS—21~DS—24 是内附热稳定限流电阻型时间继电器(线圈适于短时工作),DS—21/c~DS—24/c是外附热稳定限流电阻型时间继电器(线圈适于长时工作)。DS—25~28是交流时间继电器。 该继电器具有一付瞬时转换触点16、17、18,一付滑动主触点3、4(右)和一付终止主触点5、6(左)。 当加电压于线圈两端时,衔铁克服塔形弹簧的反作用力被吸入,瞬时常开触点闭合,常闭触点断开,同时延时机构开始启动,先闭合滑动常开主触点,再延时后闭合终止常开主触点,从而得到所需延时,当线圈断电时,在塔形弹簧作用下,使衔铁和延时机构立刻返回原位。 从电压加于线圈的瞬间起到延时闭合常开主触点止,这段就是继电器的延时时间,可通过整定螺钉来移动静接点位置进行调整,并由螺钉下的指针在刻度盘上指示要设定的时限。

四、实验设备 表2—1实验设备表 五、实习步骤和要求 1、内部结构检查(将继电器取出) (1)观察继电器内部结构,检查各零件是否完好,各螺丝固定是否牢固,焊接质量及线头压接应保持良好。 (2)衔铁部分检查 手按衔铁使其缓慢动作应无明显磨擦,放手后靠塔形弹簧返回应灵活自如,否则应检查 衔铁在黄铜套管内的活动情况,塔形弹簧在任何位置不许有重迭现象。 (3)时间机构检查 当衔铁压入时,时间机构开始走动,在到达刻度盘终止位置,即触点闭合为止的整个动作过程中应走动均匀,不得有忽快忽慢,跳动或中途卡住现象,如发现上述不正常现象,应先调整钟摆轴承螺丝,若无效可在老师指导下将钟表机构解体检查。 (4)接点检查 16应闭合。 17应断开,常开触点○17○ a、当用手压入衔铁时,瞬时转换触点中的常闭触点○18○ b、时间整定螺丝整定在刻度盘上的任一位置,用手压入衔铁后经过所整定的时间,动触点应在距离静触点首端的1/3处开始接触静触点,并在其上滑行到1/2处,即中心点停止。可靠地闭合静触点,释放衔铁时,应无卡涩现象,动触点也应返回原位。 c、动触点和静触点应清洁无变形或烧损,否则应打磨修理。 2、动作电压,返回电压测试

时间继电器

继电器 继电器广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。 继电器是具有隔离功能的自动开关元件,它实际上是用小电流去控制大电流运作的一种“自动开关”,是一种电控制器件。它具有输入回路和输出回路之间的互动关系。通常应用于自动化的控制电路中,故在电路中起着自动调节、安全保护、转换电路等作用。 继电器种类繁多,较常见的电磁继电器,固态继电器,热敏干簧继电器,磁簧继电器,光继电器,时间继电器等,本文着重介绍时间继电器。 继电器起自动开关的作用,在日常生活中, 我们的饮水机,电水壶,微波炉等电器的自动开关就是由继电器控制,其原理是当输入量(如电压、电流、温度等)达到规定值时,继电器使被控制的输出电路导通或断开。 时间继电器是一种利用电磁原理或机械原理实现延时控制的控制电器。 时间继电器的种类很多,有空气阻尼型、电动型和电子型等。在交流电路中常采用空气阻尼型时间继电器,它是利用空气通过小孔节流的原理来获得延时动作的。它由电磁系统、延时机构和触点三部分组成。 时间继电器可分为通电延时型和断电延时型两种类型。空气阻尼型时间继电器的延时范围大(有0.4~60s和0.4~180s两种) ,它结构简单,但准确度较低。当线圈通电(电压

规格有ac380v、ac220v或dc220v、dc24v等)时,衔铁及托板被铁心吸引而瞬时下移,使瞬时动作触点接通或断开。但是活塞杆和杠杆不能同时跟着衔铁一起下落,因为活塞杆的上端连着气室中的橡皮膜,当活塞杆在释放弹簧的作用下开始向下运动时,橡皮膜随之向下凹,上面空气室的空气变得稀薄而使活塞杆受到阻尼作用而缓慢下降。经过一定时间,活塞杆下降到一定位置,便通过杠杆推动延时触点动作,使动断触点断开,动合触点闭合。从线圈通电到延时触点完成动作,这段时间就是继电器的延时时间。延时时间的长短可以用螺钉调节空气室进气孔的大小来改变。吸引线圈断电后,继电器依靠恢复弹簧的作用而复原。空气经出气孔被迅速排出。 时间继电器图形符号及文字符号如图1所示。 图1 时间继电器图形符号及文字符号 1.直流电磁式时间继电器 在直流电磁式电压继电器的铁心上增加一个阻尼铜套,即可构成时间继电器,其结构示意图如图2所示。它是利用电磁阻尼原理产生延时的,由电磁感应定律可知,在继电器线圈

第1.2章习题解答

第一章习题解答 如何区分直流电磁系统和交流电磁系统如何区分电压线圈和电流线圈 答:直流电磁铁铁心由整块铸铁铸成,而交流电磁铁的铁心则用硅钢片叠成,以减小铁损。直流电磁铁仅有线圈发热,线圈匝数多、导线细,制成细长形,且不设线圈骨架,铁心与线圈直接接触,利于线圈的散热。交流电磁铁由于铁心和线圈均发热,所以线圈匝数少,导线粗,制成短粗形,吸引线圈设有骨架,且铁心与线圈隔离,利于铁心与线圈的散热。 交流电磁系统中短路环的作用是什么三相交流电磁铁有无短 路环为什么 答:交流接触器线圈通过的是交变电流,电流正负半波要经过零点,在电流过零点时线圈电磁吸力接近于零,如此动铁芯会与静铁芯发生振动和噪声。在铁心端面上开槽安放短路环后,交变的磁通使得短路环产生同频交变感应电流,该电流使短路环内产生与铁心磁通变化相反的逆磁通。如此在铁心端面上,短路环内的磁通与环外磁通在时间上错开,避免了吸力过零产生噪声和振动现象。 没有短路环,因为短路环是在电流过零时产生感应电流维持铁芯吸合,三相交流电磁铁一相电流过零时其余两相不为零,铁芯还是吸合的,因此不再需要短路环。 第一章习题解答 交流电磁线圈误接入直流电源、直流电磁线圈误接入交流电 源,将发什么问题为什么 答:交流电磁线圈误接入对应直流电源,时间长了有可能将线圈烧掉,因为交流线圈的电感一般很大,其电阻阻值较小,所以当通直流电源后,电流会很大,电磁阀不会动作。直流电磁线圈误接入对应交流电源,不会有什么影响,因为直流电磁线圈的阻值大,相应的电感也大,一般比交流电磁线圈的大。 电弧是如何产生的有哪些危害直流电弧与交流电弧各有什么特点低压电器中常用的灭弧方式有哪些 答:开关触头在大气中断开电路时,如果电路的电流超过~1A,电路断开后加在触头间的电压超过12~20V,则在触头间隙(又称弧隙)中便会产生一团温度极高、发出强光和能够导电的近似圆柱形的气体。电弧的危害: (1)延长了切断故障的时间;(2)高温引起电弧附近电气绝缘材料烧坏;(3)形成飞弧造成电源短路事故;(4)电弧是造成电器的寿命缩短的主要原因。 电弧是如何产生的有哪些危害直流电弧与交流电弧各有什么特点低压电器中常用的灭弧方式有哪些 交流是成正弦变化的,当触点断开时总会有某一时刻电流为零,此时电流熄灭。直流电弧由于其不过零点,导致开关不能断开电弧,与交流电相比,直流电弧不易熄灭。机械性拉弧、磁吹式灭弧、窄缝灭弧、栅片灭弧法、固体产气灭弧、石英砂灭弧、油吹灭弧、气吹灭弧等。接触器的主要结构有哪些交流接接触器和直流接触器如何区分 答:接触器的结构主要由电磁系统,触头系统,灭弧装置和其他部件等组成。直流接触器与交流接触器相比,直流接触器的铁心比较小,线圈也比较小,交 流电磁铁的铁心是用硅钢片叠柳而成的。线圈做成有支架式,形式较扁。因为直流电磁铁不存在电涡流的现象,区分方式如下:(1) 铭牌:AC是交流,DC是直流;(2) 灭弧罩:交流接触器设有灭弧装置,以便迅速切断电弧,免于烧坏主触头,大的有灭弧栅片。直流接触器由于直流电弧比交流电弧难以熄灭,直流接触器常采用磁吹式灭弧装置灭弧;(3) 极数:交流的主极为三、直流的主极为二;(4) 线圈的铁芯和衔铁:交流的为分片硅钢片、直流为整体式)。

最新ANSYS电磁场分析指南第一章磁场分析概述汇总

A N S Y S电磁场分析指南第一章磁场分析概 述

第一章磁场分析概述 1.1磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: ·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器 ·回旋加速器 在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。 1.2ANSYS如何完成电磁场分析计算 ANSYS以Maxwell方程组作为电磁场分析的出发点。有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。 1.3静态、谐波、瞬态磁场分析

利用ANSYS可以完成下列磁场分析: ·2-D静态磁场分析,分析直流电(DC)或永磁体所产生的磁场,用矢量位方程。参见本书“二维静态磁场分析” ·2-D谐波磁场分析,分析低频交流电流(AC)或交流电压所产生的磁场,用矢量位方程。参见本书“二维谐波磁场分析” ·2-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。参见本书“三维静态磁场分析(标量位方法)” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。参见本书“三维静态磁场分析(棱边元方法)” ·3-D谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法)” ·3-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场分析(棱边元方法)” ·基于节点方法的3-D静态磁场分析,用矢量位方法。参见“基于节点方法的3-D静态磁场分析” ·基于节点方法的3-D谐波磁场分析,用矢量位方法。参见“基于节点方法的3-D谐波磁场分析” ·基于节点方法的3-D瞬态磁场分析,用矢量位方法。参见“基于节点方法的3-D瞬态磁场分析” 1.4关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D模型,什么时候选择3-D模型?标量位方法和矢量位方法有何不同?棱边元方法和基于节点的方法求解3-D问题又有什么区别?在下面将进行详细比较。 1.4.12-D分析和3-D分析比较 3-D分析就是用3-D模型模拟被分析的结构。现实生活中大多数结构需要3-D模型来进行模拟。然而3-D模型对建模的复杂度和计算的时间都有较高要求。所以,若有可能,请尽量考虑用2-D模型来进行建模求解。

[VIP专享]实验二 电磁型时间继电器和中间继电器实验

实验二电磁型时间继电器和中间继电器实 验 【实验名称】 电磁型时间继电器和中间继电器实验 【实验目的】 1.熟悉时间继电器和中间继电器的实际结构、工作原理和基本特 性; 2.掌握时间继电器和中间继电器的的测试和调整方法。 【预习要点】 1.复习电磁型时间、中间继电器相关知识。 2.影响起动电压、返回电压的因素是什么? 【实验仪器设备】 序号设备名称使用仪器名称数量 1控制屏1 2EPL-05继电器(二)—DS-21C时间继电器1 3EPL-06继电器(四)—DZ-31B中间继电器1 4EPL-11直流电源及母线1 5EPL-11直流电压表1 6EPL-12电秒表及相位仪1 7EPL-13光示牌1 8EPL-14按钮及电阻盘1 【实验原理】 DS-20系列时间继电器为带有延时机构的吸入式电磁继电器。继电器具有 一付瞬时转换触点,一付滑动延时动合主触点和一付终止延时动合主触点。 当电压加在继电器线圈两端时,唧子(铁芯)被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。在延时机构拉力弹簧作用下,经

过整定时间后,滑动触点闭合。再经过一定时间后,终止触点闭合。从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静触点的位置以调整之,并由指针直接在继电器的标度盘上指明。当线圈断电时,唧子和延时机构在塔形反力弹簧的作用下,瞬时返回到原来的位置。 DS-20系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制进行动作。 中间继电器,用于继电保护与自动控制系统中传递中间信号,以增加触点的数量及容量。 【实验内容】 1.时间继电器的动作电流和返回电流测试 实验接线见图2-1,选用EPL-05挂箱的DS-21型继电器,整定范围(0.25-1.25s)。 Rp采用EPL-14的900 电阻盘(分压器接法),注意图2-1中Rp的引出端(A3、A2、A1)接线方式,不要接错,并把电阻盘调节旋钮逆时针调到底。 开关S采用EPL-14的按钮开关SB1,处于弹出位置,即断开状态。直流电压表位于EPL-19。 图2-1 时间继电器动作电压、返回电压实验 数字电秒表的使用方法:“启动”两接线柱接通,开始计时,“停止” 两接线柱接通,结束计时。 (1)动作电压U d的测试 合上220V直流电源船型开关和按钮开关SB1,顺时针调节可变电阻Rp使输出电压从最小位置慢慢升高,并观察直流电压表的读数。

ANSYS电磁场分析指南第十六章

ANSYS电磁场分析指南第十六章 发表时间:2007-9-20 作者: 安世亚太来源: e-works 关键字: ANSYS 电磁场分析 CAE教程 第十六章电路分析 16.1 什么是电路分析 电路分析可以计算源电压和源电流在电路中引起的电压和电流分布。分析方法由源的类型来决定:源的类型分析方法 交流(AC)谐波分析 直流(DC)静态分析 随时间变化瞬态分析 要在电磁学分析中用有限元来模拟全部电势,就必须提供足够的灵活性来模拟载流电磁设备。ANSYS 程序对于电路分析有如下性能: ·用经过改进的基于节点的分析方法来模拟电路分析 ·可以将电路与绕线圈和块状导体直接耦合 ·2-D和3-D模型都可以进行耦合分析 ·支持直流、交流和时间瞬态模拟 ANSYS程序中先进的电路耦合模拟功能精确地模拟多种电子设备,: ·螺线管线圈 ·变压器 ·交流机械 16.2 使用CIRCU124单元 ANSYS提供一种通用电路单元CIRCU124对线性电路进行模拟,该单元求解未知的节点电压(在有些情况下为电流)。电路由各种部件组成,如电阻、电感、互感、电容、独立电压源和电流源、受控电压源和电流源等,这些元件都可以用CIRCU124单元来模拟。 注:本章只描述CIRCU124单元的某些最重要的特性,对该单元的详细描述参见《ANSYS单元手册》。 16.2.1 可用CIRCU124单元模拟的电路元件 对CIRCU124单元通过设置KEYOPT(1)来确定该单元模拟的电路元件,如下表所示。例如,把KEYOPT(1)设置为2,就可用CIRCU124来模拟电容。对所有的电路元件,正向电流都是从节点I流向节点J。

电磁继电器基础知识

电磁继电器基础知识 2011年7月

提纲: 1、继电器概念; 2、继电器零部件用材; 3、继电器的分类及应用; 4、电磁继电器常用的技术参数; 5、继电器标识; 6、继电器装配问题点分析。

一、继电器概念 什么是继电器:输入:X 输出:Y Ya Xa Xb 继电器的定义:当它的控制系统中输入的某信号(输入量),如电、磁、光、热等物理量,达到某一规定值时,能使输出回路的被控制量(输出量)跳跃式的由零变化到一定值(或由一定位突跳到零)。我们把这种能自动使被控制量发生跳跃变化的控制元件称为继电器。

继电器, 英语写作Relay ,有接力的意思。通俗地说,继电器就是一种 接力自动开关。通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。 红外线接收红外信号AC 220V 空调机 空调机工作 按下遥控器 继电器吸合 便捷、安全性提高

继电器基本结构 磁路系统 由线圈与闭合磁路(铁芯、轭铁、衔铁)等构成的实现电磁能转换的组件。该系统是一种工作气隙和衔铁将电磁能转变为机械能的转换组件。 附属部件:起固定、传递、保护作用的零件。零件包括:外壳、推动卡、安装架等。 接触系统:输出电路的执行机构。 磁路系统 接触系统 附属部件 继电器

继电器动作原理 复原弹簧 衔铁动簧片动触点 灯 负载电源线圈电源开关S 外部电路 内部电路铁心轭铁线圈静触点 继电器的工作原理: 当继电器线圈通电后,在轭铁、铁心、衔铁及工作气隙所组成的磁路内就产生磁通,由此产生电磁吸力,吸引衔铁向铁心的极靴面靠近。当线圈中的电流达到一定值(吸合值),吸力足以克服复原弹簧和接触簧片产生的反力时,衔铁被吸引到极靴面贴紧处的位置。装在衔铁绝缘座的动簧上的动触点与静触点闭合,使被控电路接通。线圈断电后,电磁吸力消失,衔铁在复原弹簧作用下返回初始位置,触点也跟着恢复原来状态,完成继电器的一次工作过程。

相关文档
相关文档 最新文档