文档库 最新最全的文档下载
当前位置:文档库 › 难点之三----圆周运动

难点之三----圆周运动

难点之三----圆周运动
难点之三----圆周运动

难点之三:圆周运动的实例分析

一、难点形成的原因

1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。

2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;

3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。

4、圆周运动的周期性把握不准。

5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。

二、难点突破

(1)匀速圆周运动与非匀速圆周运动

a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?

【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。

【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:

mg T =?30cos 1 ① 30sin L ωm =30sin T A B

211②

代入数据得:s rad /4.21=ω,

要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设

此时角速度为ω2,BC 绳拉力为T 2,则有

mg T =?45cos 2 ③ T 2sin45°=m 22

ωL AC sin30°④

代入数据得:ω2=3.16rad/s 。要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>

ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有:mg T =θcos 2 T 2cos θ=m ω2

L BC sin θ ⑤

而L AC sin30°=L BC sin45° L BC =2m ⑥ 由⑤、⑥可解得N T 3.22=;01=T

【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必然为零。 (2)同轴装置与皮带传动装置

在考查皮带转动现象的问题中,要注意以下两点:

a

、同一转动轴上的各点角速度相等;

图3-1

图3-3

b 、和同一皮带接触的各点线速度大小相等,这两点往往是我们解决皮带传动的基本方法。

例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 A .a 点与b 点线速度大小相等 B .a 点与c 点角速度大小相等 C .a 点与d 点向心加速度大小相等

D .a 、b 、c 、d 四点,加速度最小的是b 点

【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度

相同;其二是皮带不打滑时,与皮带接触的各点线速度大小相同。这两

点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。

【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即v a =v c ,又v =ωR , 所以ωa r =ωc ·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =

2

1

ωa ,所以选项B错.又v b =ωb ·r = 21ωa r =2v a ,所以选项A 也错.向

心加速度:a a =ωa

2

r ;a b =ωb 2

·r =(2ωa )2r =41ωa 2r =41a a ;a c =ωc 2·2r =(21ωa )2

·2r = 2

1ωa 2r

21a a ;a d =ωd 2·4r =(2

1ωa )2·4r =ωa 2

r =a a .所以选项C 、D 均正确。 【总结】该题除了同轴角速度相等和同皮带线速度大小相等的关系外,在皮带传动装置中,从动轮的转动是静摩擦力作用的结果.从动轮受到的摩擦力带动轮子转动,故轮子受到的摩擦力方向沿从动轮的切线与轮的转动方向相同;主动轮靠摩擦力带动皮带,故主动轮所受摩擦力方向沿轮的切线与轮的转动方向相反。是不是所有

的题目都要是例1这种类型的呢?当然不是,当轮与轮之间不是依靠皮带相连转动,而是依靠摩擦力的作用或者是齿轮的啮合,如图3-3所示,同样符合例1的条件。 (3)向心力的来源 a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再添加一个向心力。

b .对于匀速圆周运动的问题,一般可按如下步骤进行分析: ①确定做匀速圆周运动的物体作为研究对象。

②明确运动情况,包括搞清运动速率v ,轨迹半径R 及轨迹圆心O 的位置等。只有明确了上述几点后,才

能知道运动物体在运动过程中所需的向心力大小( mv 2

/R )和向心力方向(指向圆心)。

③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F (即提供向心力)。

④选用公式F=m R v 2=mR ω2=mR 2

2??

? ??T π解得结果。

c .圆周运动中向心力的特点:

①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。

②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。求物体在某一点受到的向心力

图3-2

时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。

③当物体所受的合外力F 小于所需要提供的向心力mv 2

/R 时,物体做离心运动。

例3:如图3-4所示,半径为R 的半球形碗内,有一个具有一定质量的物体A ,A 与碗壁

间的动摩擦因数为μ,当碗绕竖直轴OO /

匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.

【审题】物体A 随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。物体A 做匀速圆周运动所需的向心力方向指向球心O ,故

此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平

衡。

【解析】物体A 做匀速圆周运动,向心力: R m F n 2ω= 而摩擦力与重力平衡,则有: mg F n =μ 即: μ

mg

F n =

由以上两式可得: μ

ωmg

R m =

2

即碗匀速转动的角速度为: R

g

μω=

【总结】分析受力时一定要明确向心力的来源,即搞清楚什么力充当向心力.本题还考查了摩擦力的有关知识:水平方向的弹力为提供摩擦力的正压力,若在刚好紧贴碗口的基础上,角速度再大,此后摩擦力为静摩擦力,摩擦力大小不变,正压力变大。

例4:如图3-5所示,在电机距轴O 为r 处固定一质量为m 的铁块.电机启动后,铁块以角速度ω绕轴O 匀速转动.则电机对地面的最大压力和最小压力之差为__________。

【审题】铁块在竖直面内做匀速圆周运动,其向心力是重力mg 与轮对它的力F 的合力.由圆周运动的规律可知:当m 转到最低点时F 最大,当m 转到最高点时F 最小。

【解析】设铁块在最高点和最低点时,电机对其作用力分别为F 1和F 2,且都指向轴心,根据牛顿第二定律有:

在最高点:mg +F 1=m ω2

r ① 在最低点:F 2-mg =m ω2

r ②

电机对地面的最大压力和最小压力分别出现在铁块m 位于最低点和最高点时,且压力差的大小为:ΔF N =F 2+F 1 ③

由①②③式可解得:ΔF N =2m ω2

r

【总结】

(1)若m 在最高点时突然与电机脱离,它将如何运动?

(2)当角速度ω为何值时,铁块在最高点与电机恰无作用力?

(3)本题也可认为是一电动打夯机的原理示意图。若电机的质量为M ,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?

解:(1)做初速度沿圆周切线方向,只受重力的平抛运动。

(2)电机对铁块无作用力时,重力提供铁块的向心力,则 mg =m ω12

r 即 ω1=

r

g (3)铁块在最高点时,铁块与电动机的相互做用力大小为F 1,则 F 1+mg =m ω22

r F 1=Mg

3-4 图3-5

即当ω2≥

mr

g

m M )(+时,电动机可以跳起来,当ω2=mr g m M )(+时,铁块在最低点时电机对地面压

力最大,则 F 2-mg =m ω22

r F N =F 2+Mg

解得电机对地面的最大压力为F N =2(M +m )g (4)圆周运动的周期性

利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。

在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。

例5:如图3-6所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v =_________,圆盘转动的角速度ω=_________。

【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。

【解析】①小球做平抛运动,在竖直方向上:h =2

1gt 2

则运动时间t =

g

h 2 又因为水平位移为R 所以球的速度v =

t R =R ·h

g 2 ②在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt 则转盘角速度:ω=

t n π

2?=2n πh

2g

(n =1,2,3…) 【总结】上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。

例6:如图3-7所示,小球Q 在竖直平面内做匀速圆周运动,当Q 球转到图示位置时,有另一小球P 在距圆周最高点为h 处开始自由下落.要使两球在圆周最高点相碰,则Q 球的角速度ω应满足什么条件?

【审题】下落的小球P 做的是自由落体运动,小球Q 做的是圆周运动,若要想碰,必须满足时间相等这个条件。

【解析】设P 球自由落体到圆周最高点的时间为t ,由自由落体可得

2

1gt 2

=h 求得t=

g

h 2 Q 球由图示位置转至最高点的时间也是t ,但做匀速圆周运动,周期为T ,有t=(4n+1)

4

T

(n=0,1,2,3……) 两式联立再由T=

ω

π

2得 (4n+1)

ω

π

2=

g

h

2

图图3-7

所以ω=2

π

(4n+1)

h

2g

(n=0,1,2,3……) 【总结】由于圆周运动每个周期会重复经过同一个位置,故具有重复性。在做这类题目时,应该考虑圆周运动的周期性。

(5)竖直平面内圆周运动的临界问题 圆周运动的临界问题:

(1)如上图3-8所示,没有物体支撑的小球,在绳和轨道的约束下,在竖直平面做圆周运动过最高点的情况:

①临界条件:绳子或轨道对小球没有力的做用:mg =m R

v 2?

v 临界=Rg 。

②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。 ③不能过最高点的条件:v <v 临界(实际上球还没到最高点时就脱离了轨道) (2)如图3-9球过最高点时,轻质杆对球产生的弹力情况: ①当v =0时,F N =mg (F N 为支持力)。

②当0<v <Rg 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力。 ③当v =Rg 时,F N =0。

④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大。

如图所示3-10的小球在轨道的最高点时,如果v ≥Rg 此时将脱离轨道做平

抛运动,因为轨道对小球不能产生拉力。

例7:半径为R 的光滑半圆球固定在水平面上,如图3-11所示。顶部有一小物体甲,今给它一个水平初速度

gR v =0,则物体甲将( )

A .沿球面下滑至M 点

B .先沿球面下滑至某点N ,然后便离开球面作斜下抛运动

C .按半径大于R 的新的圆弧轨道作圆周运动

D .立即离开半圆球作平抛运动

【审题】物体在初始位置受竖直向下的重力,因为v 0=gR ,所以,球面支持力为零,又因为物体在竖直方向向下运动,所以运动速率将逐渐增大,若假设物体能够沿球面或某一大于R 的新的圆弧做圆周运动,则所需的向心力应不断增大。而重力沿半径方向的分力逐渐减少,对以上两种情况又不能提供其他相应的指向圆心的力的作用,故不能提供不断增大的向心力,所以不能维持圆周运动。

【解析】物体应该立即离开半圆球做平抛运动,故选D 。

【总结】当物体到达最高点,速度等于gR 时,半圆对物体的支持力等于零,所以接下来物体的运

动不会沿着半圆面,而是做平抛运动。

3-10

(6)圆周运动的应用

a.定量分析火车转弯的最佳情况。

①受力分析:如图所示3-12火车受到的支持力和重力的合力水平指向圆心,成为使火车拐弯的向心力。

②动力学方程:根据牛顿第二定律得 mgtan θ=m r

v 20

其中r 是转弯处轨道的半径,0v 是使内外轨均不受侧向力的最佳速度。

③分析结论:解上述方程可知 2

0v =rgtan θ

可见,最佳情况是由0v 、r 、θ共同决定的。 当火车实际速度为v 时,可有三种可能, 当v =0v 时,内外轨均不受侧向挤压的力;

当v >0v 时,外轨受到侧向挤压的力(这时向心力增大,外轨提供一部分力); 当v <0v 时,内轨受到侧向挤压的力(这时向心力减少,内轨抵消一部分力)。

还有一些实例和这一模型相同,如自行车转弯,高速公路上汽车转弯等等

我们讨论的火车转弯问题,实质是物体在水平面的匀速圆周运动,从力的角度看其特点是:合外力的方向一定在水平方向上,由于重力方向在竖直方向,因此物体除了重力外,至少再受到一个力,才有可能使物体产生在水平面做匀速圆周运动的向心力.

实际在修筑铁路时,要根据转弯处的半径r 和规定的行驶速度v 0,适当选择内外轨的高度差,使转弯时所需的向心力完全由重力G 和支持力F N 的合力来提供,如上图3-12所示.必须注意,虽然内外轨有一定的高度差,但火车仍在水平面内做圆周运动,因此向心力是沿水平方向的,而不是沿“斜面”向上,F=Gtg θ

=mgtg θ,故mgtg θ=m r

v 20

b.汽车过拱桥

汽车静止在桥顶与通过桥顶是否同种状态?不是的,汽车静止在桥顶、或通过桥顶,虽然都受到重力和支持力。但前者这两个力的合力为零,后者合力不为零。

汽车过拱桥桥顶的向心力如何产生?方向如何?汽车在桥顶受到重力和支持力,如图3-13所示,向心力由二者的合力提供,方向竖直向下。

运动有什么特点?①动力学方程:

由牛顿第二定律 G -1F =m r

v 2

解得1F =G -m mg =r v 2-r v m 2

②汽车处于失重状态

汽车具有竖直向下的加速度,1F <mg ,对桥的压力小于重力.这也是为什么桥一般做成拱形的原因.

③汽车在桥顶运动的最大速度为

rg

图3-12

图3-13

根据动力学方程可知,当汽车行驶速度越大,汽车和桥面的压力越小,当汽车的速度为rg 时,压力为零,这是汽车保持在桥顶运动的最大速度,超过这个速度,汽车将飞出桥顶,做平抛运动。 另:

c .人骑自行车转弯

由于速度较大,人、车要向圆心处倾斜,与竖直方向成φ角,如图3-14所示,人、车的重力mg 与地面的作用力F 的合力作为向心力.地面的作用力是地面对人、车的支持力F N 与地面的摩擦力的合力,实际上仍是地面的摩擦力作为向心力。 由图知,F 向=mgtan φ=m

r

v 2

2.圆锥摆

摆线张力与摆球重力的合力提供摆球做匀速圆周运动的向心力.如图3-15所示,质量为m 的小球用长为L 的细线连接着,使小球在水平面内做匀速圆周运动.细线与竖直方向夹角为α,试分析其角速度ω的大小。

对小球而言,只受两个力:重力mg 和线的拉力T .这两个力的合力mgtan α提供向

心力,半径r =Lsin α,所以由F =mr ω2得,mgtan α=mLsin α·ω2

整理得ω=αcos ?L g

可见,角速度越大,角α也越大。 3.杂技节目“水流星”

表演时,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面内做圆周运动,在最高点杯口朝下,但水不会流下,如图所示,这是为什么?

分析:以杯中之水为研究对象进行受力分析,根据牛顿第二定律可知:F 向=m r

v 2

,此

时重力G 与F N 的合力充当了向心力即F 向=G +F N

故:G +F N =m r

v 2

由上式可知v 减小,F 减小,当F N =0时,v 有最小值为gr 。

讨论:

①当mg =m r v 2,即v =

gr 时,水恰能过最高点不洒出,这就是水能过最高点的临界条件;

②当mg >m r

v 2,即v <

gr 时,水不能过最高点而不洒出;

③当mg <m r

v 2,即v >

gr 时,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力。

例8:绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m =0.5 kg ,绳长L =60 cm ,求: ①最高点水不流出的最小速率。

3-14

图3-16

②水在最高点速率v =3 m/s 时,水对桶底的压力。

【审题】当v 0=gR 时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这个速度v 比较,v>v 0时,有压力;v=v 0时,恰好无压力;v ≤v 0时,不能到达最高点。

【解析】①水在最高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg <L mv 2

则最小速度v 0=gR =

gL =2.42 m/s 。

②当水在最高点的速率大于v 0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F ,

由牛顿第二定律F +mg =m L

v 2

得:F =2.6 N 。

由牛顿第三定律知,水对水桶的作用力F ′=-F =-2.6 N ,即方向竖直向上。

【总结】当速度大于临界速率时,重力已不足以提供向心力,所缺部分由桶底提供,因此桶底对水产生向下的压力。

例2:汽车质量m 为1.5×104

kg ,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m ,如图3-17所示.如果路面

承受的最大压力不得超过2×105

N ,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少? 【审题】首先要确定汽车在何位置时对路面的压力最大,汽车

经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最低点时,汽车对路面的压力最大。

【解析】当汽车经过凹形路面最低点时,设路面支持力为F N1,受力情况如图3-18所示,由牛顿第二定律,

有F N1-mg =m R

v 2

要求F N1≤2×105

N

解得允许的最大速率v m =7.07 m/s

由上面分析知,汽车经过凸形路面顶点时对路面压力最小,设为F N2,如图3-19所示,由牛顿第二定律有

mg -F N2=

R

mv 2m

解得F N2=1×105

N 。

【总结】汽车过拱桥时,一定要按照实际情况受力分析,沿加速度方向列式。 (7)离心运动 离心现象条件分析

①做圆周运动的物体,由于本身具有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动,如图3-20中B 所示。

②当产生向心力的合外力消失,F =0,物体便沿所在位置的切线方向飞出去,如图3-20中A 所示。 ③当提供向心力的合外力不完全消失,而只是小于应当具有的向心力,,即合外力不足以提供所需的向心力的情况下,物体沿切线与圆周之间的一条曲线运动,如图3-20所示。

图3-17

图3-18 图

3-19

在实际中,有一些利用离心运动的机械,这些机械叫做离心机械。离心机械的种类很多,应用也很广。例如,离心干燥(脱水)器,离心分离器,离心水泵。

例9:一把雨伞边缘的半径为r ,且高出水平地面h .当雨伞以角速度ω旋转时,雨滴自边缘甩出落在地面上成一个大圆周.这个大圆的半径为_______。

【审题】想象着实际情况,当以一定速度旋转雨伞时,雨滴甩出做离心运动,落在地上,形成一个大圆。

【解析】雨滴离开雨伞的速度为 v 0=ωr 雨滴做平抛运动的时间为 t =

g h 2 雨滴的水平位移为 s =v 0t =ωr

g

h 2 雨滴落在地上形成的大圆的半径为

R =g

ωh 2+

1r =g h 2r ω+r =s +r 2

2

22

2

2

【总结】通过题目的分析,雨滴从伞边缘沿切线方向,以一定的初速度飞出,竖直方向上是自由落体

运动,雨滴做的是平抛运动,把示意图画出来,通过示意图就可以求出大圆半径。 (8)难点突破⑧——圆周运动的功和能

应用圆周运动的规律解决实际生活中的问题,由于较多知识交织在一起,所以分析问题时利用能量守恒定律和机械能守恒定律的特点作为解题的切入点,可能大大降低难度。

例9:使一小球沿半径为R 的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?

【审题】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道。要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足

Mg+N A =m R

v 2A ,式中,N A 为圆形轨道对小球的弹力。上式表示小球在A 点作圆周运动所需要的向心力由轨道

对它的弹力和它本身的重力共同提供。当N A =0时,v A 最小,v A =gR 。这就是说,要使小球到达A 点,则应该使小球在A 点具有的速度v A ≥gR 。

【解析】以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。

小球在圆形轨道最高点A 时满足方程

根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程

2B 2

A mv 2

1=R 2mg +mv 21 (2) 解(1),(2)方程组得

当N A =0时,V B =为最小,V B =gR 5

图3-20

图3-21

所以在B 点应使小球至少具有V B =gR 5的速度,才能使它到达圆形轨道的最高点A 。

【总结】在杆和管子的约束下做圆周运动时,可以有拉力和支持力,所以在最高点的速度可以等于零;在圆轨道和绳子的约束下做圆周运动时,只能有拉力,所以在最高点的速度必须大于gR 。

(9)实验中常见的圆周运动

综合题往往以圆周运动和其他物理知识为背景,这类题代表了理科综合命题方向,要在平日的做题中理解题目的原理,灵活的把握题目。

例10: 图3-22甲所示为测量电动机转动角速度的实验装置,半径不大的圆形卡纸固定在电动机转轴上,在电动机的带动下匀速转动.在圆形卡纸的旁边垂直安装一个改装了的电火花计时器。 ①请将下列实验步骤按先后排序: . A .使电火花计时器与圆形卡纸保持良好接触 B .接通电火花计时器的电源,使它工作起来 C .启动电动机,使圆形卡纸转动起来

D .关闭电动机,拆除电火花计时器;研究卡纸上留下的一段痕迹(如图3-22乙所示),写出角速度ω的表达式,代入数据,得出ω的测量值

②要得到ω的测量值,还缺少一种必要的测量工具,它是 . A .秒表 B .毫米刻度尺 C .圆规 D .量角器 ③写出角速度ω的表达式,并指出表达式中各个物理量的意义: . ④为了避免在卡纸连续转动的过程中出现打点重叠,在电火花计时器与盘面保持良好接触的同时,可以缓慢地将电火花计时器沿圆形卡纸半径方向向卡纸中心移动.则卡纸上打下的点的分布曲线不是一个圆,而是类似一种螺旋线,如图3-22丙所示.这对测量结果有影响吗?

【审题】因为这个题目用的是打点计时器,所以两点之间的时间是0.02s ,通过量角器量出圆心到两点之间的角度,利用ω=θ/t 。

【解析】具体的实验步骤应该是A 、C 、B 、D ,量出角度应该用量角器D ,t

n )1(-=

θ

ω,θ为n个点

对应的圆心角,t为时间间隔;应该注意的一个问题是不能转动一圈以上,因为点迹重合,当半径减小时,因为单位时间内转过的角度不变,所以没有影响。

【总结】本题考查的是圆周运动中角速度的定义,ω=θ/t ,实验中θ是用量角器测量出来的,时间t 的测量用的是打点计时器,应该充分发挥想象,不是打点计时器只能测量直线运动。

巩固检测题

1、为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两薄圆盘A 、B ,A 、B 平行且相距2 m ,轴杆的转速为3600 r/min ,子弹穿过两盘留下两弹孔a 、b ,测得两弹孔半径夹角是30°,如图3-23所示,则该子弹的速度是 A .360 m/s B .720 m/s

C .1440 m/s

D .108 m/s

2、早在19世纪,匈牙利物理学家厄缶就明确指出:“沿水平地面向东运动的物体,其重量(即:列车的视重或列车对水平轨道的压力)一定要减轻。”后来,人们常把这类物理现象称为“厄缶效应”。如图3-24所示:我们设想,在地球赤道附近的地平线上,有一列质量是M 的列车,正在以速率v ,沿水平轨道匀速向东行驶。已知:(1)地球的半径R ;(2)地球的自转周期T 。今天我们象厄缶一样,如果仅考虑地球自转的影响(火车随地球做线速度为π2R/T 的圆周运动)时,火车对轨道的压力为N ;在此基础上,又考虑到这列火车相对地面又附加了一个线速度v 做更快的圆周运动,并设此时火车对轨道的压力为N ′,那么单纯地由于该火车向东行驶而引起火车对轨道压力减轻的数量(N -N ′)为( )

A .R /mv 2

B .

)v]T /2(2R /v [M 2π+ C .M(π2/T)v

D .

)v]T /2(R /v [M 2π+ 3、一探照灯照射在云层底面上,这底面是与地面平行的平面,云层底面高h ,探照灯

以匀角速度ω在竖直平面内转动,当光束转过与竖直线夹角为θ时,此时云层底面上光点的移动速度等于________。

4、如图3-25所示,一个质量为M 的人,站在台秤上,手拿一个质量为m ,悬线长为R 的小球,在竖直平面内做圆周运动,且摆球正好通过圆轨道最高点,求台秤示数的变化范围。

5、如图3-26所示,长为l 的细绳的一端系一小球,另一端悬于光滑的平面上方

h 高处(h <l),球在水平面上以n 转/秒做匀速圆周运动时,水平面上受到的压力多大?为使球离开平面,n 的最大值多大?

6、质量均为m 的三个小球A 、B 、C 分别固定在长为3L 的轻质细杆上,OA =OB =BC =L ,杆绕O 点以角速度ω旋转,求杆上每段张力的大小。

7、一辆质量为m 的摩托车在倾角为θ的斜面上以半径R 在水平面内转弯如下图3-27所示

(1)若速度为υ0时,向心力正好由重力与支持力的合力提供,求支持力与υ0. (2)若速度为υ,且υ>υ0,斜面的支持力又为多大?

8、地球半径R =6400 km ,站在赤道上的人和站在北纬60°上的人随地球转动

的角速度多大?他们的线速度各是多少?

3-27

图3-25

9、铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还取决于火车在弯道上的行驶速率.下图表格中是铁路设计人员技术手册中弯道半径r 及与之对应的轨道的高度差h 。

弯道半径r/m 660 330 220 165 132 110 内外轨高度差h/mm

50

100

150

200

250

300

(1)根据表中数据,试导出h 和r 关系的表达式,并求出当r=440m 时,h 的设计值;

(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L=1435mm ,结合表中数据,算出我国火车的转弯速率v (以km/h 为单位,结果取整数;路轨倾角很小时,正弦值按正切值处理)。

(3)随着人们生活节奏加快,对交通运输的快捷提出了更高的要求.为了提高运输力,国家对铁路不断进行提速,这就要求铁路转弯速率也需要提高.请根据上述计算原理和上述表格分析提速时应采取怎样的有效措施?

难点之三:圆周运动的实例分析

1、解析:子弹从A 盘至B 盘,盘转过的角度θ=2n π+6

π

(n 为整数)

由于轴杆转速为3600 r/min ,所以盘转动的角速度为 ω=

60

3600

×π2rad/s =120π rad/s

子弹在A 、B 间运动的时间等于圆盘转过θ角所用的时间t

t =120

61

+

n 2=

π1206

π+

πn 2=ωθs 所以,子弹的速度为v =61+

n 2240

=

s /

m 120

61+n 22

=

t

AB

m/s 当n =0时,v =1440 m/s ; 当n =1时,v =110.

8 m/s ; 所以,符合题意的选项是C 。 2、B

3、解析:云层底面上光点的移动速度为合速度,它可分解为一个沿着光束方向

的分速度v 2和一个垂直光束方向的分速度v 1,如图3-1示,v 1=ω·R =ω·θ

cos h

v =v 1/cos θ=θ

cos h

ω2

4、解:小球运动到最低点时,悬线对人的拉力最大,且方向竖直向下,故台秤示数最大,由机械能守恒定律得:

所以台秤的最大示数为F =(M +6m )g 。

5、解析:小球受三力作用:重力mg ,绳的拉力F ,水平面的支持力F N ,它们在竖直方向上的合力平衡,即Fcos θ+F N =mg

在水平方向的合力为小球做圆周运动的向心力,即Fsin θ=4π2n 2

mR R =l ·sin θ, 所以F N =mg -Fcos θ=mg -4π2n 2

ml ·l

h =mg -m4π2n 2

h 小球不离开平面的条件是 F N ≥0 即mg -4π2n 2

mh ≥0,故n ≤

h

g π21 最大转速为n max =

h

g π

21

答案:mg -4π2n 2

mh ;n max =

h

g π

21 6、解析:设OA 、AB 、BC 杆上的张力分别为F 1、F 2、F 3,对A 、B 、C 小球进行受力分析,且由向心力公式,列出方程:

对A :F 1-F 2=m ω2L 对B :F 2-F 3=m ω2·2L 对C :F 3=m ω2

·3L

所以解联立方程得:F 1=6m ω2L F 2=5m ω2L F 3=3m ω2

L

7、(1)F N =θcos mg

;∵mgtan θ=m R

v 20 ∴υ0=θtan gR

(2)将重力G ,浮力F N ,摩擦力f 沿水平方向和竖直方向分解

F N cos θ-mg-fsin θ=0 ①F N sin θ+fcos θ=m R v 2 ②联解①②得:F N =mgcos θ+m R

θ

sin v 2

8、地球不停地由西向东绕南北轴自转,自转周期T =24 h ,设赤道上的人在A 点,北纬60°上的人在B

点,如图3-2所示.

地球自转角速度固定不变,A 、B 两点的角速度相同,有: ωA =ωB =

T π2=3600

2414.32??rsd/s =7.3×10-5

rad/s 由v =ωr 知,A 、B 两点的线速度不同,

故v A =ωA R =7.3×10-5×6400×103

m/s =467.2 m/s v B =ωB R cos60°=

2

1

v A =233.6 m/s 9、(1)分析表中数据可得,每组的h 与r 之乘积均等于常数C =660m×50×10-3

m=33m 2

因此 h ·r=33(或h=33r

1)

当r=440m 时,有: h=440

33m=0.075m=75mm

(2)转弯中,当内外轨对车轮没有侧向压力时,火车的受力如图3-3所示.由牛顿第二定律得:r

v m mg 2

tan =θ

因为θ很小,有:L

h =≈θθsin tan ,得:L

ghr v =

代入数据得:v=15m/s=54km/h

(3)有效措施有:a .适当增大内外轨的高度差h ;b .适当增大铁路弯道的轨道半径r .

3-3

圆周运动的问题难点突破

高中物理必修2复习--圆周运动的问题难点突破 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图1所示,当BC刚好被拉直,但其拉力T2 恰为零, 图1

圆周运动 向心加速度

第二单元 圆周运动 向心加速度 向心力 生活中的圆周运动 (90分钟 100分) 一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个是正确的,每小题全部选对的得4分,选对但不全的得2分,不选和有选错的均得零分。 1.对如图所示的皮带传动装置,其可能出现的情形,下列说法中正确的是( ) A .A 轮带动B 轮沿逆时针方向旋转 B .B 轮带动A 轮沿逆时针方向旋转 C .C 轮带动D 轮沿顺时针方向旋转 D .D 轮带动C 轮沿顺时针方向旋转 2.做匀速圆周运动的物体与做平抛运动的物体相比,有( ) A .两者均受恒力作用 B .两者运动的加速度大小均保持不变 C .两者均做匀速曲线运动 D .上述三种说法都正确 3. 如图所示,小物体A 与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A 物体的受力情况是( ) A .受重力、支持力 B .受重力、支持力和指向圆心的摩擦力 C .受重力、支持力、向心力和指向圆心的摩擦力 D .以上说法都不正确 4.关于向心力的说法正确的是( ) A .物体由于做圆周运动而产生一个向心力 B .向心力改变圆周运动物体速度的大小和方向 C .做匀速圆周运动的物体其向心力即为其所受的合外力 D .做匀速圆周运动的物体其向心力是不变的 5. 细绳的一端捆着一块小石头作匀速圆周运动,当小石头绕转至图(一)中的P 点时,细绳突然断裂,则图(二)中表示细线断裂瞬间小石头的运动路径的是( ) A .A 路径 B.B 路径 C.C 路径 D. D 路径 6.如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动,当圆筒的角速度ω增大以后,下列说法正确的是( ) A .物体所受弹力增大,摩擦力也增大

物理生活中的圆周运动练习题含答案

物理生活中的圆周运动练习题含答案 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -?-?=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.有一水平放置的圆盘,上面放一劲度系数为k 的弹簧,如图所示,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l .设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A 开始滑动? (2)当转速缓慢增大到2ω0时,A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少? 【答案】(1) g l μ(2) 34mgl kl mg μμ- 【解析】 【分析】 (1)物体A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x . 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.

圆周运动中的临界问题和周期性问题

圆周运动中的临界问题和周期性问题 一、圆周运动问题的解题步骤: 1、确定研究对象 2、画出运动轨迹、找出圆心、求半径 3、分析研究对象的受力情况,画受力图 4、确定向心力的来源 5、由牛顿第二定律r T m r m r v m ma F n n 222)2(π ω====……列方程求解 二、临界问题常见类型: 1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有 绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、竖直面内的圆周运动的临界问题 1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用: mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力 ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2) A 、最高点水不留出的最小速度? B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N

变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少? 2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题: 汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度 gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力. 例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。今给小物体一个水平初速度0v = ) A.沿球面下滑至 M 点 B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动 3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题 物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态. (一)轻杆模型 如图所示,轻杆一端连一小球,在竖直面内作圆周运动. (1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =. (2) 当0v << mg N <<0,N 仍为支持力,且N 随v 的增大而减小,

圆周运动和向心加速度

目标认知 学习目标 1、理解匀速圆周运动的特点,掌握描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速的定义,理解它们的物理意义并能灵活的运用它们解决问题。 2、理解并掌握描写圆周运动的各个物理量之间的关系。 3、理解匀速圆周运动的周期性的确切含义。 4、理解向心加速度产生的原因和计算方法。 学习重点 描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速、向心加速度的定义以及它们的相互关系,是学习的重点。 学习难点 弄清描写匀速圆周运动的各个物理量之间的关系,理解匀速圆周运动是变速运动且是变加速运动是学习的难点。 知识要点梳理 知识点一:圆周运动的线速度 要点诠释: 1、线速度的定义: 圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。 公式:(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、说明 1)线速度是指物体做圆周运动时的瞬时速度。 2)线速度的方向就是圆周上某点的切线方向。 线速度的大小是的比值。所以是矢量。 3)匀速圆周运动是一个线速度大小不变的圆周运动。 4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。

注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。 知识点二:描写圆周运动的角速度 要点诠释: 1、角速度的定义: 圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。 公式: 单位:(弧度每秒) 2、说明: 1)这里的必须是弧度制的角。 2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。 3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。 4)关于的方向:中学阶段不研究。 5)同一个转动的物体上,各点的角速度相等。 例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。 即: 3、关于弧度制的介绍 (1)角有两种度量单位:角度制和弧度制 (2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是360°,平角和直角分别是180°和90°。 (3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。一段长为的圆弧对应的圆

(物理)生活中的圆周运动练习题含答案

(物理)生活中的圆周运动练习题含答案 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为 0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为 10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦 力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转 盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取2 10m/s .求: (1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度; (3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象. 【答案】(1)12/rad s ω= (2)222/rad s ω= (3)22 52/m rad s ω= 【解析】 对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有: 2212B B m g m L μω=

代入数据计算得出:12/rad s ω= (2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为 T ,有: 212A A m g T m L μω-= 2222B B T m g m L μω+= 代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F = ②当2228/rad s ω≥,且AB 细线未拉断时,有: 21A A F m g T m L μω+-= 222B B T m g m L μω+= 8T N ≤ 所以:2 364 F ω= -;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有: 21A A m g m w L μ≥ 所以:2222218/20/rad s rad s ω<≤时,0F = 当22220/rad s ω>时,有2 1A A F m g m L μω+= 8F N ≤ 所以:2 154 F ω= -;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:222 52/m rad s ω= 做出2F ω-的图象如图所示; 点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.

圆周运动的实例及临界问题

圆周运动的实例及临界问题 一、汽车过拱形桥 1.汽车在拱形桥最高点时,向心力:F 合= mg -N =m v 2 R . 支持力:N =mg -mv 2 R <mg ,汽车处于失重状 态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小. 例1 一辆质量m =2 t 的轿车,驶过半径R =90 m 的一段凸形桥面,g =10 m/s 2 ,求: (1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大? (2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少? 解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示: 合力F =mg -N ,由向心力公式得mg -N =m v 2 R ,故 桥面的支持力大小N =mg -m v 2R =(2 000×10-2 000×102 90) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104 N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿 车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104 N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图1 2.运动分析:将“旋转秋千”简化为圆锥 摆模型(如图1所示) (1)向心力:F 合=mg tan_α (2)运动分析:F 合=mω2r =mω2 l sin α (3)缆绳与中心轴的夹角α满足cos α= g ω2l . 图6 例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( ) A .速度v A >v B B .角速度ωA >ωB C .向心力F A >F B D .向心加速度a A >a B 解析 设漏斗的顶角为2θ,则小球的合力为F 合 =mg tan θ,由F =F 合=mg tan θ=mω2 r =m v 2 r =ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D 错误;因r A >r B ,又由v = gr tan θ 和ω= g r tan θ 知v A >v B 、ωA <ωB ,故A 对,B 错. 答案 A 三、火车转弯 1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支 持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力. 例3 铁路在弯道处的内、外轨道高度是不 同的,已知内、外轨道平面与水平面的夹角为θ, 如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mg cos θ D .这时铁轨对火车的支持力大于mg cos θ

物理(教科版必修2)第二章第2节匀速圆周运动的向心力和向心加速度

第2节 匀速圆周运动的向心力和向心 加速度 1.物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的力叫做向心力, 向心力的方向________________,和质点的运动方向______,向心力不改变速度的 ________,只改变速度的________. 2.向心力的表达式F =________=________. 3.做匀速圆周运动的物体,在向心力的作用下,必然要产生______________,其方向指 向________,向心加速度只改变速度的________,不改变速度的________,它用来描述 线速度方向改变的________. 4.向心加速度的表达式a =________=________=4π2 T 2r =4π2f 2r . 5.匀速圆周运动中加速度的大小不变而方向时刻在改变,匀速圆周运动是加速度方向不 断改变的________运动. 6.关于向心力,下列说法中正确的是( ) A .物体由于做圆周运动而产生一个向心力 B .向心力不改变做匀速圆周运动物体的速度大小 C .做匀速圆周运动的物体的向心力是恒力 D .做一般曲线运动的物体的合力即为向心力 7.如图1所示,

图1 用细绳拴一小球在光滑桌面上绕一铁钉(系一绳套)做匀速圆周运动,关于小球的受力,下列说法正确的是() A.重力、支持力 B.重力、支持力、绳子拉力 C.重力、支持力、绳子拉力和向心力 D.重力、支持力、向心力 8.关于匀速圆周运动及向心加速度,下列说法中正确的是() A.匀速圆周运动是一种匀速运动 B.匀速圆周运动是一种匀速曲线运动 C.向心加速度描述线速度大小变化的快慢 D.匀速圆周运动是加速度方向不断改变的变速运动 【概念规律练】 知识点一向心力的概念 1.下列关于向心力的说法中正确的是() A.物体受到向心力的作用才能做圆周运动 B.向心力是指向弧形轨道圆心方向的力,是根据力的作用效果命名的 C.向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是某一种力或某一种力的分力

生活中的圆周运动练习题

(第1题) 生活中的圆周运动 1.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是( ) A .a 处 B .b 处 C .c 处 D .d 处 2.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的 43,如果要使汽车在桥顶对桥面没有压力,车速至少为( ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s 3.在水平铁路转弯处,往往使外轨略高于内轨,这是为了( ) A .减轻火车轮子挤压外轨 B .减轻火车轮子挤压内轨 C .使火车车身倾斜,利用重力和支持力的合力提供转弯所需向心力 D .限制火车向外脱轨 4.铁路转弯处的圆弧半径为R ,内侧和外侧的高度差为h ,L 为两轨间的距离,且L >h ,如果列车转弯速率大于L Rgh /,则( ) A .外侧铁轨与轮缘间产生挤压 B .铁轨与轮缘间无挤压 C .内侧铁轨与轮缘间产生挤压 D .内外铁轨与轮缘间均有挤压 5.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须( ) A .减为原来的1/2倍 B .减为原来的1/4倍 C .增为原来的2倍 D .增为原来的4倍 6.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为 ( ) A .水处于失重状态,不受重力的作用了 B .水受平衡力作用,合力为0 C .水受的合力提供向心力,使水做圆周运动 D .杯子特殊,杯底对水有吸力 7.下列说法中,正确的是 ( ) A .物体做离心运动时,将离圆心越来越远 B .物体做离心运动时,其运动轨迹一定是直线 C .做离心运动的物体,一定不受到外力的作用 D .做匀速圆周运动的物体,因受合力大小改变而不做圆周运动时,将做离心运动 8.乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( ) A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来

高中物理复习-常见的圆周运动问题

第十八课时常见的圆周运动问题 [知识梳理] 一.水平面内的匀速圆周运动 1.物体在水平面内作匀速圆周运动,其所受的合外力提供向心力,故物体所受的水平合力即为__________。竖直方向的合力为__________。 2.处理匀速圆周运动问题时,一要进行正确的受力分析,还要设法确定圆周运动的圆心和半径,这一点在磁场中尤其重要。 二.竖直平面内的圆周运动 1.运动物体在竖直平面内作圆周运动,如果物体带电,且处在电磁场中,此时物体有可能作匀速圆周运动。 2.对没有物体支撑的小球(如小球系在细绳的一端、小球在圆轨道的内侧运动等)在竖直平面内作圆周运动过最高点的临界条件:绳子和轨道对小球无力作用,则若小球作圆周运动的半径为 R,它在最高点的临界速度为:V=__________。 3.对有物体支撑的小球(如球固定在杆的一端、小球套在圆环上或小求在空心管内的运动)在竖宜平面内作圆周运动过最高点的,临界速度为:V=__________。 [能力提高] 火车转弯处的铁轨一般是外轨略高于内轨,试结合作图分析这样铺轨的原因,并说出火车转弯时要求按规定速度行驶的道理。 [典型例题] [例1]长为L的轻绳一端系一质量为M的小球,以另一端为圆心,使小球恰好能在竖直平面内做圆周运动,则小球通过最高点时,下列说法正确的是 A.绳中张力恰好为mg B.小球加速度恰好为g C.小球速度恰好为零 D.小球所受重力恰好为零 [例2]长L=0.5m、质量可忽略的杆,其下端固 定在O点,上端连接着一个零件A,A的质量为 m=2kg,它绕O点做圆周运动,如图所示,在A点通 过最高点时,求在下列两种情况下杆受的力:(1)A 的速率为1m/s;(2)A的速率为4m/s。 [例3]如图所示,一种电动夯的结构为:在固定于夯上的电动机的转轴上固定一杆,杆的另一端固定一铁块。工作时电动机 带动杆与铁块在竖直平面内匀速转动,则当铁块转至 最低点时,夯对地面将产生很大的压力而夯实地面。

圆周运动和向心加速度知识点总结

圆周运动和向心加速度知识点总结 知识点一:圆周运动的线速度 要点诠释: 1、线速度的定义: 圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。 公式:(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、说明 1)线速度是指物体做圆周运动时的瞬时速度。 2)线速度的方向就是圆周上某点的切线方向。 线速度的大小是的比值。所以是矢量。 3)匀速圆周运动是一个线速度大小不变的圆周运动。 4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。 注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。 知识点二:描写圆周运动的角速度

要点诠释: 1、角速度的定义: 圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。 公式: 单位:(弧度每秒) 2、说明: 1)这里的必须是弧度制的角。 2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。 3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。 4)关于的方向:中学阶段不研究。 5)同一个转动的物体上,各点的角速度相等。 例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。 即: 3、关于弧度制的介绍

(1)角有两种度量单位:角度制和弧度制 (2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是360°,平角和直角分别是180°和90°。 (3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。一段长为的圆弧对应的圆心角是 rad, (4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是: ;平角和直角分别是(rad)。 (5)同一个角的角度和用弧度制度量的之间的关系是: rad , 说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而“给”的。 知识点三:匀速圆周运动的周期与转速 要点诠释: 1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s。 它描写了圆周运动的重复性。 2、周期T的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。 观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如

火车转弯(圆周运动)问题_带解析带答案

火车转弯(圆周运动)问题 圆周运动专题二 题号一二总分 得分 一、单选题(本大题共9小题,共36.0分) 1.高速公路的拐弯处,通常路面是外高低,如图所示,在某路段车向左转弯,司机左侧的 路面比右侧路面低一些车的运动可看作是做半径为R的圆周运动外路面高度差为h,路基的水平宽度为已知重力加速为g,要使车轮与路面之间的横向摩擦力即垂直于前进方向的摩擦力等于零,则汽车转弯时的车速应等于() A. B. C. D. 【答案】D 【解析】解:路面的斜角为,作出车的受力图 由数学知识得: 如图,支持力与重力的合力提供向心力,由牛顿第二定律得: 联立得 故选:D 由题意知汽车转弯时所需的心力完全由重力和支持力的合力提供,根据受分析计算即可得出结论. 类似于火车拐弯问题,知道按条件转弯时,向心力由重力和支持力的合力提供. 2.如图所示的圆周运动,下列说法不正确的是()

A. 如图a,汽车通过拱桥的最高点处于失重状态置 B. 如图b,火车转弯超过规定速度行驶时,外轨对外侧车轮的轮缘会有挤压作用 C. 如图c,钢球在水平面做圆周运动,钢球距悬点的距离为则圆锥摆的周期 D. 如图d,在水平公路上行驶的汽车,车轮与路面之间的静摩擦力提供转弯所需的 向心力 【答案】C 【解析】【分析】 根据加速度的方向确定汽车在最高点处于超重还是失重;根据合力提供向心力得出角速度的表达式,从而进行判断;抓住重力不变,结合平行四边形定则比较支持力和向心力,结合半径不同分析角速度的关系;当火车转弯的速度超过规定速度,支持力和重力的合力不够提供向心力,会挤压外轨。 此题考查圆周运动常见的模型,每一种模型都要注意受力分析找到向心力,从而根据公式判定运动情况,如果能记住相应的规律,做选择题可以直接应用,从而大大的提高做题的速度,所以要求同学们要加强相关知识的记忆。 【解答】 A.汽车在最高点知,故处于失重状态,故A正确; B.火车转弯超过规定速度行驶时,外轨对轮缘会有挤压作用,故B正确; C .圆锥摆,重力和拉力的合力,,则圆锥摆的周期,故C错误; D.在水平公路上行驶的汽车,车轮与路面之间的静摩擦力提供转弯所需的向心力,故D 正确。 本题要求选不正确的,故选C。 3.火车转弯可近似看成是做匀速圆周运动,当火车速度提高时会使轨道的外轨受损为 解决火车高速转弯时外轨受损这一难题,你认为以下措施可行的是() A. 减小外轨的高度差 B. 增加外轨的高度差 C. 减小弯道半径 D. 增大火车质量 【答案】B 【解析】【分析】 火车转弯时需要向心力,若重力和轨道的弹力的合力充当向心力,则外轨道均不受侧压力;根据向心力公式可得出解决方案。 本题考查了牛顿第二定律在圆周运动中的应用,火车转弯是向心力的实际应用之一,应掌握火车向心力的来源,以及如何减小外轨道的压力。 【解答】 火车转弯时为减小外轨所受压力,可使外轨略离于轨,使轨道形成斜面,若火车速度合适,外轨均不受挤压此时,重力与支持力的合力提供向心力,如图:

物理生活中的圆周运动练习题含答案及解析

物理生活中的圆周运动练习题含答案及解析 一、高中物理精讲专题测试生活中的圆周运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

圆周运动专题《圆周运动中的临界问题》

圆周运动专题 (一)圆周运动中的临界问题 教学目的:理解圆周运动中的动力学特征;掌握圆周运动中临界问题的分析方法和解题;培 养学生正确分析物理过程、建立正确的物理模型的能力。 教学重点:有关圆周运动中临界问题的分析 教学过程: 一.描述圆周运动的物理量 1. 线速度 2. 角速度 3. 周期和频率 4. 向心加速度, 5. 线速度、角速度、周期和频率、向心加速度的关系 r f T r v ωππ===22 v r T r f r r v a ωππω=====22222244 解圆周运动的运动学问题关键在于熟练掌握各物理量间的关系 二.圆周运动中的向心力 1. 作用效果:产生向心加速度,以不断改变物体的速度方向,维持物体做圆周运动。 2. 大小:222 24T mr v m mr r v m ma F πωω===== 3. 产生:向心力是按效果来命名的,不是某种性质的力,因此,向心力可以由某一力提供, 也可以由几个力的合力提供或是某一个力的分力提供,要根据物体受力的实际情况判定。 4. 特点: (1) 匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存 在向心加速度,物体受到外力的合力就是向心力。可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。 (2) 变速圆周运动:速度大小发生变化,向心加速度和向心力大小都会发生变化, 求物体在某一点受到的向心力时,应使用该点的瞬时速度。在变速圆周运动中,

合外力不仅大小随时改变,其方向也不沿半径指向圆心。合外力沿半径方向的分力提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。 (3) 物体做圆周运动的条件,是提供的向心力(沿半径方向的合力)等于需要的向 心力(F 供=F 需)。当F 供>F 需时物体做近心运动,当F 供

知识讲解+圆周运动和向心加速度

圆周运动和向心加速度 【要点梳理】 要点一、圆周运动的线速度 1、线速度的定义: 圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。 公式:t l v ??= (比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、 说明 1)线速度是指物体做圆周运动时的瞬时速度。 2)线速度的方向就是圆周上某点的切线方向 线速度的大小是 t l ??的比值。所以v 是矢量。 3)匀速圆周运动是一个线速度大小不变的圆周运动。 4)线速度的定义式t l v ??= ,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ?取得足够小,公式计算的结果就是瞬时线速度 注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。 要点二、描写圆周运动的角速度 1、角速度的定义: 圆周运动物体与圆心的连线扫过的角度θ?与所用时间t ?的比值叫做角速度。 公式:t ??= θω 单位:rad s /(弧度每秒) 2、说明: 1)这里的θ?必须是弧度制的角。 2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。 3)角速度的定义式t ??= θ ω,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ?取得足够小,公式计算的结果就是瞬时角速度。 4)关于ω的方向:中学阶段不研究。 5)同一个转动的物体上,各点的角速度相等 例如:木棒以它上面的一点为轴匀速转动时,它上面的各点与圆心的连线在相等时间内扫过 的角度相等。 即:

3、关于弧度制的介绍 (1)角有两种度量单位:角度制和弧度制 (2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是3600 ,平角 和直角分别是1800和900 。 (3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad 。一段长为l ?的圆弧对应的圆心角是 r l ?= ?θ rad, θ?=?r l (4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是:()rad r r ππθ22== ;平角和直角分别是2 π π和 (rad ) 。 (5)同一个角的角度α和用弧度制度量的θ之间的关系是:πα θ180 = rad , 0180?= π θ α 要点三、匀速圆周运动的周期与转速 1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s 。 它描写了圆周运动的重复性。 2、周期T 的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。 观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如何?(秒针的周期最小,其针尖的线v 最大,ω也最大。) 3、匀速圆周运动的转速 转速n :指转动物体单位时间内转过的圈数。 单位: r/s (转每秒),常用的单位还有r /min (转每分) 关系式:n T 1 = s(n 单位为r/s)或T n =60s(n 单位为r/min) 注意:转速与角速度单位的区别:角速度转速():/():/ωrad s n r s ??? 要点四、描述圆周运动快慢的几个物理量的相互关系 因为这几个都是描述圆周运动快慢,所以它们之间必然有内在联系 1、线速度、角速度和周期的关系 匀速圆周运动的线速度和周期的关系2r v T π= 匀速圆周运动的角速度和周期的关系T π ω2= 匀速圆周运动的角速度和周期有确定的对应关系:角速度与周期成反比。 2、线速度、角速度与转速的关系: 匀速圆周运动的线速度与转速的关系:2v rn π=(n 的单位是r/s ) 匀速圆周运动的角速度与转速的关系:n πω2=(n 的单位是r/s ) 3、线速度和角速度的关系: (1)线速度和角速度关系的推导: 特例推导: 设物体沿半径为r 的圆周做匀速圆周运动,在一个T时间内转过2πr 的弧长及2π角度,则:

高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力

(三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向 心加速度,由,,所以,故,D 正确。本题正确答案C、D。 点评:处理皮带问题的要点为:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等,同一轮上各点的角速度相同。

圆周运动问题分析

圆周运动问题分析 【专题分析】 圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合<衰变后在磁场中做圆周运动)。可见,圆周运动一直受到命题人员的厚爱是有一定原因的。b5E2RGbCAP 不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。同时,也可以把常用的解题方法归结为两条。p1EanqFDPw 1、匀速圆周运动 匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。只要受力分析找到合外力,再写出向心力的表达式就可解决问题。DXDiTa9E3d 2、竖直面内的非匀速圆周运动 物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。 特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。

注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。 另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。RTCrpUDGiT 基本解题方法: 1、涉及受力,使用向心力方程; 2、涉及速度,使用机械能守恒定律或动能定理。 【题型讲解】 题型一 匀速圆周运动问题 例题1:如图所示,两小球A 、B 在一漏斗形的光滑 容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为rA>rB ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?<只比较大小)5PCzVD7HxA 解读:题目中两个小球都在做匀速圆周运动,其向 心力由合外力提供,由受力分析可知,重力与支持力的 合力提供向心力,如图3-2-2所示,由几何关系,两小 球运动的向心力相等,所受支持力相等。jLBHrnAILg 两小球圆周运动的向心力相等,半径关系为rA>rB , 由公式 ,可得vA>vB ; 由公式,可得ωA<ωB ; 图3-2-1 图3-2-2

相关文档
相关文档 最新文档