文档库 最新最全的文档下载
当前位置:文档库 › 电阻炉炉温控制系统设计

电阻炉炉温控制系统设计

电阻炉炉温控制系统设计
电阻炉炉温控制系统设计

1 绪论

1.1 研究的目的及意义

自从发现电流的热效应(即楞次-焦耳定律)以后,电热法首先用于家用电器,后来又用于实验室小电炉[1]。随着镍铬合金的发明,到20世纪20年代,电阻炉已在工业上得到广泛应用。工业上用的电阻炉一般由电热元件、砌体、金属壳体、炉门、炉用机械和电气控制系统等组成。加热功率从不足一千瓦到数千千瓦。工作温度在650℃以下的为低温炉;650℃~1000℃为中温炉;1000℃以上为高温炉。在高温和中温炉内主要以辐射方式加热。在低温炉内则以对流传热方式加热,电热元件装在风道内,通过风机强迫炉内气体循环流动,以加强对流传热。电阻炉有室式、井式、台车式、推杆式、步进式、马弗式和隧道式等类型。可控气氛炉、真空炉、流动粒子炉等也都是电阻炉[2]。

电阻炉与火焰炉相比,具有结构简单、炉温均匀、便于控制、加热质量好、无烟尘、无噪声等优点,但使用费较高[3]。

电热元件具有很高的耐热性和高温强度,很低的电阻温度系数和良好的化学稳定性。常用的材料有金属和非金属两大类。金属电热元件材料有镍铬合金、铬铝合金、钨、钼、钽等,一般制成螺旋线、波形线、波形带和波形板。非金属电热元件材料有碳化硅、二硅化钼、石墨和碳等,一般制成棒、管、板、带等形状。电热元件的分布和线路接法,依炉子功率大小和炉温要求而定[4]。

在工农业生产或科学实验中,温度是极为普遍的又极为重要的热工参数之一。为了保证生产过程正常安全地进行,提高产品的质量和数量以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,也有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化等。因此,在工农业生产或科学实验中常常要求不断地测量温度,同时还进行控制[5]。

电阻炉是热处理生产中应用最广的加热设备,通过布置在炉内的电热元件将电能转化为热能并借助辐射与对流的传热方式加热工件。热处理是提高金属材料及其制品性能的工艺[6]。根据不同的目的,将材料及其制件加热到适宜的温度,保温,随后用不同的方法冷却,改变其内部组织,以获得所要求的力学性能,通过热处理

可以提高制件的使用效能或寿命[7]。

1.2 温度控制研究

目前,我国电阻热处理是提高金属材料及其制品质量的重要手段。近年来随着工业的发展,对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展[8]。电阻炉是热处理生产中应用最广的加热设备,这样加热时均温过程的测量与控制就成为关键性的技术,促使人们更加积极地研究控制热加工工艺过程的方法[9]。炉控制设备的现状是一小部分比较先进的设备和大部分比较落后的设备并存。

整体上,我国的电阻炉控制系统与国外发达国家相比还比较落后。占主导地位的是仪表控制,这种系统的控制参数由人工选择,需要配置专门的仪表调试人员,费时、费力且不准确。控制精度依赖于试验者的调节,控制精度不高,一旦生产环境发生变化就需要重新设置。操作不方便,控制数据无法保存。因而,对生产工艺的研究很困难,因此造成产品质量低、废品率高、工作人员的劳动强度大、劳动效率低,这些都影响了企业的效益。近年来,虽然引进了国外的一些控制器,如日本岛电的R四3型40段(步)可编程PID调节器,全部操作窗口按功能分为6个窗口群,共95个子窗口,其设置仍然繁杂[10]。

电阻炉是一种具有纯滞后的大惯性系统,开关炉门、加热材料、环境温度以及电网电压等都影响控制过程,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求[11]。

电阻炉在国民经济中有着广泛的应用,而大功率的电阻炉则应用在各种工业生产过程中。然而,大多数电阻炉存在着各种干扰因素,将会给工业生产带来极大的不便。因此,在电阻炉温度控制系统的设计中,应尽量考虑到如何有效地避免各种干扰因素而采用一个较好的控制方案,选择合适的芯片及控制算法是非常有必要的[12]。

一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。起先由于电阻炉的发热体为电阻丝,传统方法大多采用仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率。由于模拟仪表本身的测量精度差,加上交流接触器的寿命短,通断比例低,故温度控制精度低,且无法实现按程序设定的升温曲线升温和故障自诊断功能,因此要对传统的温度控制方法进行改造[13]。如

今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化,而且微型计算机在智能温度测量和控制电器中的控制作用是一种智能行为,所以,它在能量消耗上是比较少的,和普通仪表温度测量相比,智能温度测量与控制电器是一种节能电器。这不但对用户来说具有很大的意义,而且对整个社会来说都是有重大意义的[14]。

1.3 工作内容

系统要求电阻炉炉内的温度按图1.1的规律变化。从室温

T开始到a点为自由

O

升温段,温度一旦达到

T,就进入系统调节;从b点到c点为保温段,要始终在系

a

统的控制之下,以保证所需的炉内温度的精度,保温的时间为75min;加工结束后,由c点到d点为自然降温段。

图1.1 炉温控制要求

炉温变化曲线要求参数:

过渡时间

t≤100min;超调量p ≤10℅;静态误差v e≤2℃。

温度的变化范围为20~220℃,保温值为200℃。

本次设计主要做的是硬件电路的设计及软件的编程,用计算机进行温度的控制,同时采用PID算法使系统获得较好的性能指标。系统分为四个部分:A/D转换、PID控制、外部中断、单片机控制。

2 系统方案设计

2.1 控制方法

常见电阻炉的温度控制方法:串级控制;前馈-反馈控制;比值控制;Smith预估控制。

2.2 工作原理

一个反馈系统,在干扰的作用下,被控量偏离给定值,即出现系统偏差时,通过控制器的控制作用来抵消干扰的影响。大多被控制对象有纯滞后现象,因此采用反馈控制提高精度,提高系统的性能指标。

2.3 炉温控制系统工作原理

电阻炉温度自动控制体统采用了AT89S52单片机作为控制器,扩展了数码管显示、键盘、报警及A/D转换电路等,其系统框图如图2.1所示。

控制系统采用铂电阻测量加热电阻的入口温度和出口温度,经A/D转换后送入单片机与给定温度比较,其偏差经PID运算后输出,控制晶闸管三相调功模块导通和断开时间的不同来控制电热元件的通断时间,并由此来控制加热电阻的加热温度。

控制系统控制固态继电器(SSR)的通断控制循环泵的运转,循环泵不运转,加热炉不能通电加热。

图2.1 电阻炉温度控制系统

3 硬件设计及器件选择

3.1 单片机的选择

选择AT89S52单片机作为控制系统的核心,AT89S52内部有8KB的程序储存器,256B的数据储存器,因而无需再扩展储存器,使系统大大简化。AT89S52主要完成温度的采集、控制、显示和报警等功能。

AT89S52引脚说明

AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89S52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

表3.1 AT89S52的管脚功能特性

3.2 数据储存器扩展

设定的温度曲线需要长期保存,扩展一片串行EEPROM AT24C256来保存设定的温度曲线。

3.2.1 AT24C56引脚说明

其引脚排列如图3.1所示,管脚配置如表3.2所示。

表3.2 AT24C256管脚配置

图3.1 AT24C256引脚图

A0、A1:地址选择输入端。在串行总线结构中,可以连接4个AT24C256。用A0、A1来区分各IC。A0、A1悬空时为0。

SCL:串行时钟输入。上升沿将SDA上的数据写入存储器,下降沿从存储器读出数据送SDA上。

SDA:双向串行数据输入输出口。用于存储器与单片机之间的数据交换。

WP:写保护输入。此引脚与地相连时,允许写操作;与VCC相连时,所有的写存储器操作被禁止。如果不连,芯片内部下拉到地。

VCC:电源。

GND:地。

NC:空。

3.2.2 AT24C256的工作原理

AT24C256内部有512页,每一页为64字节,任一单元的地址为15位。地址

范围0000H~7FFFH。

3.2.3 芯片工作状态

1)时钟和数据传送

一般情况下,SDA被外部的设备拉到高,只有当SCL为低电平时,SDA上的数据变化,表示要传送数据。SCL为高时SDA变化表示状态变化。

2)开始状态(START)

当SCL为高时,SDA由高到低表示数据传送开始,这一状态必须在所有命令之前。

3)结束状态(STOP)

当SCL为高时,SDA由低到高表示数据传送结束状态。

4)应答状态(ACK)

所有的地址和数据都是以8位的形式串行传送给存储器或从存储器读出的。存储器在第9个时钟周期SDA发零信号表示已经收到8位数据。

3.3 传感器的选择及设计

目前在温度测量领域内除了广泛使用热电偶外,电阻温度计也得到了广泛的应用,尤其工业生产中-120~+500℃范围内的温度测量常常使用电阻温度计。本设计中采用铂电阻来测量温度,由于铂电阻有精度高、稳定性好、性能可靠,且在氧化性气氛中,甚至在高温下的物理、化学性质都非常稳定,在1000℃的范围内,铂电阻值与温度变化曲线基本是线性的,因此选择其作为电阻温度计,其分度号为BA,电阻的初值为0t R=100.00Ω,温度每升高1℃,铂电阻的阻值约增加0.39Ω.

2

其测量放大线路如图3.2所示。

图3.2的测量部分是一个不平衡电桥,铂电阻

R与固定电阻组成不平衡电桥的

t

4个桥臂。为了保证测温的精度,采用两次温压。在0℃时,铂电阻的阻值为

R=100.00Ω,电桥平衡,对角线没有电压差;当温度变化时,铂电阻的阻值变为0t

R,其变化值与温度成正比,电桥不平衡,使对角线两点有电压差,此电压差送到t

运算放大器的输入端,经过放大后送到A/D转换芯片。

图3.2 铂电阻及其信号放大电路

本放大器的整定值如表3.3所示。

表3.3 放大器整定值

由此可知,2

(1)

o i n U U n =

+,30

n =,10F u

R A

R

=

=

3.4 A/D 转换器的选择及设计

模拟输入量采用TLC0834串行A/D 转换芯片完成,串行芯片占用单片机口线较少,由于温度变化缓慢,所以转换速度完全可以满足要求。 TLC0834简介

TLC0834是TI 公司生产的八位逐次逼近模数转换器,具有输入可配置的多通道多路器和串行输入方式。TLC0834是TI 公司生产的8位逐次逼近模数转换器,具有输入可配置的多通道多路器和串形输入输出方式。其多路器可由软件配置为单端或差分输入,也可以配置为伪差分输入。另外,其输入基准电压大小可以调整。在全8位分辨率下,它允许任意小的模拟电压编码间隔。由于TLC0834采用的是串行输入结构,因此封装体积小,可节省51系列单片机I/0资源,价格也较适中。主要特点如下:

● 8

位分辨率;

● 易于和微处理器接口或独立使用; ● 可满量程工作; ● 可用地址逻辑多路器选通4输入通道;

● 单

5V 供电,输入范围为0~5V ;

● 输入和输出与TTL 、CMOS 电平兼容;

● 时钟频率为

250KHZ 时,其转换时间为32μs;

●可以和美国国家半导体公司的ADC0834和ADC0838进行替换,但它内部不带齐纳稳压器网络;

●总调整误差为26%。

工作特点:TLC0834可通过和控制处理器相连的串行数据链路来传送控制命令,因而可用软件对通道进行选择和输入端进行配置。

图3.3 TLC0834引脚图

引脚功能:TLC0834的引脚排列如图3.3所示,其中CH0~CH3为模拟输入端; CS为片选端;DI为串行数据输入,该端仅在多路器寻址时(MUX Settling Time)才被检测;DO为A/D转换结果的三态串行输出端;CLK为时钟;SART为转换状态输出端,该端为高电平时,表示转换正在进行,为低电平则表示转换完成;REF为参考电压输入端;VCC为电源;DGTL GND为数字地,ANGL GND为模拟地。

由图3.4可知,差模运算放大器的输出信号经TLC0834的CH0通道送入TLC0834进行A/D转换,转换后的数字信号通过CLK,SART,DO(DI)三个引脚送入单片机的P1.1~P1.3口,使其与设定的温度进行比较,其偏差经PID运算后输出,控制晶闸管三相调功模块导通和断开时间的不同来控制电热元件的通断时间,并由此来控制加热电阻的加热温度。

控制系统控制固态继电器(SSR)的通断控制循环泵的运转,循环泵不运转,加热炉不能通电加热。

P2.5~P2.7接报警电路,温度超限时有声音、灯光两种报警功能。

P2.3~P2.4接晶闸管三相调功模块和SSR。

P0.0~P0.3接键盘显示电路。

X1、X2接外部晶体和微调电容的一端。

P1.1~P1.3接数据储存器的TEST、SCL、SDA的三个引脚,用于保存电阻炉的出口温度曲线。

P3.2接ZLG7289A的KEY引脚,低电平有效,有键按下产生中断。

图3.4 炉温模拟量采样电路原理图

3.5 显示器、键盘接口设计

温度的设定与测量结果通过键盘和数码管显示电路完成。键盘显示电路由ZLG7289A芯片完成。

3.5.1 ZLG7289A的简介

ZLG7289A是广州周立功单片机发展有限公司自行设计的,具有SPI串行接口

功能的可同时驱动8位共阴式数码管(或64只独立LED)的智能显示驱动芯片,该芯片同时还可连接多达64键的键盘矩阵,单片即可完成LED显示﹑键盘接口的全部功能,不需要的按键可以不接。

ZLG7289A内部含有译码器,可直接接受BCD码或16进制码,并同时具有2种译码方式.此外还具有多种控制指令,如消隐﹑闪烁﹑左移﹑右移﹑段寻址等。

ZLG7289A具有片选信号,可方便地实现多于8位的显示或多于64键的键盘接口。系统中扩展了二片ZLG7289A驱动12位数码管,用来显示导热油出口温度的给定值,出口温度和入口温度的测量值。键盘由16个键组成,其中10个数字键S1~S10用于各种参数的设定;6个功能键S11~S16分别是设定键、循环泵启动键、加热启动键、加热停止键、循环泵停止键、修改键。键盘显示电路如图3.5所示。

图3.5 键盘显示电路

3.5.2 ZLG7289A的特点

●带有串行接口,无需外围元件即可直接驱动LED;

●各位可独立控制译码/不译码及消隐和闪烁属性;

●具有(循环)左移/(循环)右移指令;

●具有段寻址指令,可方便地控制独立的LED显示器;

●内含64键键盘控制器以及去抖动电路;

●可完全替代其它公司的8279、8155、8255等系列显示器件。

3.5.3 ZLG7289A的引脚说明

ZLG7289A芯片具有标准的DIP28和SOIC28两种封装形式。其引脚排列如图3.5所示,各引脚的功能说明见表3.4所列。

图3.5 ZLG7289A引脚排列图

表3.4 引脚功能

3.5.4 控制指令说明

ZLG7289A 的控制指令分为二大类:纯指令和带有数据的指令。

1)纯指令

纯指令包括复位(清除)指令(0A4H)、测试指令(0BFH)、左移指令(0A1H)、右移指令(0A0H)、循环左移指令(0A3HH)、循环右移指令(0A2)等。

2)带有数据的指令

①下载数据且按方式0译码指令

该指令的格式如下:

D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 a

2 a1 a0

D7 D6 D5 D4 D3 D2 D1 D0

DP X X X d3 d2 d0 d1

该命令由二个字节组成。前半部分为指令,其中a2 a1 a0 为位地址d0~d3数据。

当系统接收到此指令时(ZLG7289A将按译码方式0进行译码),小数点的显示可由DP位控制,DP为1时,小数点显示,DP为0时,小数点不显示。在该指令格式中,x表示没有影响。

②下载数据且按方式1译码指令

这种指令与上一个指令基本相同。所不同的是,该指令的d0~d3对应的数据位0AH~0FH分别为七段显示中的A、B、C、D、E、F。该指令的具体格式如下:D7 D6 D5 D4 D3 D2 D1 D0

1 1 0 0 1 a

2 a1 a0

D7 D6 D5 D4 D3 D2 D1 D0

DP X X X d3 d2 d0 d1

③读键盘数据指令

该指令从ZLG7289A读出当前的按键代码,格式如下:

D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 1 0 1 0

D7 D6 D5 D4 D3 D2 D1 D0

d7 d6 d5 d4 d3 d2 d0 d1

与其它指令不同的是,此命令的前一个字节00010101B 为单片机传送到ZLG7289A的指令,而后一个字节d0~d7则为ZLG7289A返回的按键代码。其范围为0~3FH(无键按下时为0FFH)。在此指令的前半段,ZLG7289A 的DATA 引脚处于高阻输入状态,可以用来接收来自微处理器的指令;在指令的后半段,DATA 引脚从输入状态转为输出状态,此时将输出键盘代码的值。故微处理器连接到DATA 引脚的I/O口应当有一个从输出态到输入态的转换过程。

当ZLG7289A检测到有效的按键时,KEY 脚将从高电平变为低电平,并一直保持到按键结束。在此期间,如果ZLG7289A接收到“读键盘数据指令”,则输出当前按键的键盘代码;如果在接收到“读键盘数据指令”时没有有效按键,ZLG7289A 将输出FFH(11111111B)。

④其它指令

除以上几个指令外,ZLG7289A还具有下载数据但不译码、闪烁控制、消隐控制、段点亮指令、段关闭等指令。

3.6 执行器件的选择

选择交流接触器控制循环泵,晶闸管三相调功模块控制加热元件。三相调功模块内部含有晶闸管主电路、过零触发及控制电路和强弱电隔离电路,并有1个5引脚的控制插口,由单片机控制其导通和关断的时间完成对电热元件的加热,达到温度控制的目的。

固态继电器是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输人端加上直流或脉冲信号到一定电流值后,输出端1,2就能从断态转变成通态,从而接通交流或直流电路。

图3.8 固态继电器内部结构框图

固态继电器就相当于一个无触点的开关,如图3.9所示,通过对输入控制端信号的给定,对电源(交流或直流)的通断进行控制。

图3.9 固态继电器外部框图

3.7报警电路与状态显示电路

报警电路由蜂鸣器和发光二极管组成,当系统中温度超限时,灯光报警。

4 数学模型与控制算法

4.1 数学模型建立

为了使系统获得较好的性能指标,首先要了解被控对象的的特性,并用以作为设计自动控制系统的依据。电阻炉温度控制采用数字PID 调节规律,为了确定PID 上的参数,采用飞升曲线法来确定电阻炉温度控制的传递参数。电阻炉出口温度 飞升曲线如图4.1所示:

图4.1 电阻炉出口温度的飞升曲线

由图可知,系统是带纯滞后的一阶对象,其传递函数为:()1

s

K e

W s Ts τ-=

+,式中K

为放大倍数;T 为对象时间常数;τ为对象滞后时间。一阶对象参数的求取:对于一阶对象的放大倍数K ,可由输出稳态值和输入阶跃信号幅值的比值球得。输出从起始值达到0.632倍稳态值的时间为对象时间常数T ,而滞后时间τ可直接从图中测量。

根据温度变化曲线的要求,可将其分为三段来进行控制:自由升温段,保温段和自然降温段。而真正需要电气控制的是前面两个阶段,即自由升温段和保温段。为避免过冲,从室温到80%额定温度为自由升温段,在±20%额定温度时为保温段。在自由升温段中,希望升温越快越好,总是将加热功率全开,因此得到自由升温段控制方程:当温度800≥%T T 时,已较接近需要保温的值0T ,为此采用保温段控制方程。保温控制方法有多种,如果采用比例控制,由于电热元件所加功率的变化和油温变化

之间存在一段时间延迟,因此当以温差来控制输出时,系统只有在温度与给定值相等时才停止输出。这时由于电阻炉变化的延迟性质,炉温并不因输入停止而马上停止上升,从而超过给定值。滞后时间越大,超过给定值也越大。炉温上升到一定程度后,才开始下降,并下降到小于给定值时系统才重新输出。同样,由于炉温变化滞后于输出,它将继续下降,从而造成温度的上下波动,即所谓的振荡。考虑到滞后的影响,调节规律必须加入微分因数,即PD 调节。有了PD 调节,系统输出不仅取决于温差的大小,还取决于温差的变化速率。当炉温从自由升温段进入保温段时, 炉温还小于给定值,但温度变化较大,因而系统可以提前减少或停止输出,使炉温不至于出现过大的超调。同样,在降温过程中也是如此。这样就改善了炉温调节的动态品质。积分作用可以提高温度控制的静态精度,适当选择积分作用,则可以在不影响动态性能情况下提高温度控制的精度。所以保温段控制最好采用PID 控制方法。 4.2 PID 算法和参数选定

连续系统PID 校正的控制量可以表示为:

()1

()()t

P D I

de t P K e t T e t dt dt T ??=++

???

?

? (式4-1) ()()()e t y t r t =- (式4-2)

采用离散算法可以表示为(增量式):

[][]()(1)()(1)()()2(1)(2)D P I T T P k P k K e k e k e k e k e k e k T T ???

=-+--++--+-?????

(式4-3)

式中,T 为采样周期,D T 微分时间,P K 比例系数,I T 积分时间。

本系统中将用到的实际算法为:

??

?-+--+-=-=)

2()1()()1()()

()()(k Ce k Be k Ae k P k P k r k y k e (式4-4)

4.3 数字控制器的实现

根据上述连续系统原理设计出来的模拟调节器,经离散化后变成适合于计算机计算的差分方程。根据差分方程就可以设计程序流程图,进行程序设计。

5 程序流程图

6 软件设计

软件设计采用C51语言,模块化结构设计,包括初始化程序、主程序、A/D转换和数据采集程序、PID控制算法程序、键盘显示程序等。主程序:

CS1 BIT P0.0

CS2 BIT P0.1

CLKZ BIT P0.2

DIOZ BIT P0.3

CLK BIT P1.4

DI BIT P1,6

CS BIT P1.7

KEY BIT P3.2

KEY-ZT BIT 00H

BIY-CNT DATA 30H

DELAY1 DATA 31H

DECIMAL DATA 32H

REC-BUF DATA 33H

SEND-BUF DATA 34H

ORG 0000H

JMP MAIN

ORG 0003H

AJMP READ-KEY

0RG 0030H

MAIN:

SETB CS

SETB DIO ;延时25ms

CALL DELAY

MOV SEND-BUF,#10100100B

CALL SEND-7289

SETB CS ;初始化7289

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

电炉除尘系统的自动化控制备课讲稿

电炉除尘自动控制系统 赵玉波王萍 (东北特钢集团大连金牛股份第二炼钢厂)(东北特殊钢集团计控处) 摘要本文主要介绍了电炉除尘控制系统的组成和调试过程。系统投运至今,运行稳定,收到很好的经济效益和社会效益。 关键词自动控制PLC 调试 1 引言 大连金牛股份有限公司环保治理工程——电炉除尘项目,由日本新日铁株式会社和无锡东方环境研究所合作完成。该项目采用炉盖四孔直排和屋顶罩相结合的除尘工艺,电炉产生的烟尘,绝大部分通过直排系统,即经过电炉第四孔,水冷滑套,燃烧沉降室,水冷管道,再经增压风机排出;另一小部分通过屋顶罩排出,两股烟尘在除尘器前汇合,经除尘器净化后由主风机排出。整个工艺过程根据电炉工况采用自动控制,大大降低了工人的劳动强度,彻底改变了冶炼时厂房内的烟尘污染状况,除尘效果十分明显。 2 自动控制系统的组成 除尘自动控制系统共分三大部分,分别由现场级(检测仪表、传感器和执行装置),基础自动化(PLC)和上位机组成。系统组态如图1所示。 图1 控制系统组态图 现场仪表主要检测工艺过程参数和设备运行状态参数,PLC及分布式I/O通过数据扫描采集信号并进行数据处理,然后根据控制要求向现场执行装置发出控制信号,完成控制功能。上位机一方面接收PLC的输入信号,另一方面根据控制要求向PLC发出控制指令,对工艺过程

实现监控,同时实现过程数据管理功能。 2.1 现场级 该系统中需要检测的工艺参数较多,包括温度、压力、流量、转速、振动等等,其中参与控制的主要参数有风门阀入口温度,野风阀前烟气温度,除尘器差压等,另外还有一些设备运行状态参数,主要是监视和报警作用。系统工艺控制流程图如图2所示。系统根据检测到的工艺状态参数以及电炉工况模式,通过PLC或现场操作箱对现场的执行机构进行自动或手动控制,如控制滑套、风门阀、二次阀、野风阀等的开度,控制主风机和增压风机组的转速以及除尘器清灰等动作. 屋顶罩 电炉燃 烧 室尘 排 气 筒增压风机 液力偶合 器 电机 主风机 液力偶合 器 电机 野风阀 气源处理二次阀 除器 图2 除尘系统工艺控制流程图 2.2 基础自动化 该系统共有数字量信号180多个,模拟量信号30多个,采用西门子SIMATIC S7-300可编程控制器(CPU315—2DP),由于现场信号比较分散,并且有些信号距离主站PLC 柜较远,故现场另设一个分布式I/O站,通过Profibus—DP总线与主站进行通讯,系统PLC硬件配置如图3所示。 0#中央机架1#中央机架分布式I/O站

电炉自动化控制组态软件

电炉自动化控制组态软件 电炉自动化控制组态软件常用的有以下几种: 1.组态王开发监控系统软件,是新型的工业自动控制系统,它以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统。 组态王kingview6.55是亚控科技根据当前的自动化技术的发展趋势,面向低端自动化市场及应用,以实现企业一体化为目标开发的一套产品。该产品以搭建战略性工业应用服务平台为目标,集成了对亚控科技自主研发的工业实时数据库(KingHistorian)的支持,可以为企业提供一个对整个生产流程进行数据汇总、分析及管理的有效平台,使企业能够及时有效地获取信息,及时地做出反应,以获得最优化的结果。 它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。尤其考虑三方面问题:画面、数据、动画。通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。 2. MCGS(Monitor and Control Generated System,监视与控制通用系统)是北京昆仑通态自动化软件科技有限公司研发的一套基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,主要完成现场数据的采集与监测、前端数据的处理与控制,可运行于Microsoft Windows 95/98/Me/NT/2000/xp等操作系统。 MCGS组态软件包括三个版本,分别是网络版、通用版、嵌入版。 具有功能完善、操作简便、可视性好、可维护性强的突出特点。通过与其他相关的硬件设备结合,可以快速、方便的开发各种用于现场采集、数据处理和控制的设备。用户只需要通过简单的模块化组态就可构造自己的应用系统,如可以灵活组态各种智能仪表、数据采集模块,无纸记录仪、无人值守的现场采集站、人机界面等专用设备。 功能特点 ·全中文可视化组态软件,简洁、大方,使用方便灵活 ·完善的中文在线帮助系统和多媒体教程 ·真正的32位程序,支持多任务、多线程,运行于Win95/98/NT/2000平台 ·提供近百种绘图工具和基本图符,快速构造图形界面 ·支持数据采集板卡、智能模块、智能仪表、PLC、变频器、网络设备等700多种国内外众多常用设备 ·支持温控曲线、计划曲线、实时曲线、历史曲线、XY曲线等多种工控曲线 ·支持ODBC接口,可与SQL Server、Oracle、Access等关系型数据库互联 ·支持OPC接口、DDE接口和OLE技术,可方便的与其他各种程序和设备互联 ·提供渐进色、旋转动画、透明位图、流动块等多种动画方式,可以达到良好的动画效果

炉温控制系统软硬件设计

毕业设计(论文) 摘要 随着电子技术的飞速发展,单片机在国民经济生产各行业发挥了重要的作用。它因为集成度高、体积小、运行可靠、应用灵活、价格低、面向控制等特点得到了广大工程技术人员和客户的好评。在温度控制方面,单片机能够代替常规的模拟调节器。本文主要设计了单片机炉温控制系统硬件电路和软件程序。系统具工作可靠、实时性强等特点,满足控制精度的要求。本着在满足系统性能要求的前提下,尽可能的减少硬件成本。本文主要涉及到控制系统的硬件设计和单片机的控制软件编程。本系统选用AD590对炉温进行检测,并且选用 OP07低漂移高精度前置放大器,对信号进行放大。在PCF8951完成数模转换之后,8051单片机对数据进行处理。采用分段方法控制三台电阻炉温度。人机接口电路部分能实现温度设定、温度显示、超温报警等功能。本设计对温度的调节时间不做说明。本文重点介绍硬件的选取与接口电路的设计、模拟量输入通道和开关量输出通道的设计以及相应算法的软件程序编程。 关键词:单片机;炉温控制;接口电路; 30

毕业设计(论文) Abstract With the rapid development of electronic technology,Single-chip production of various sectors in the national economy played an important role. It is because of the high integration, small volume, reliable operation, flexible, low price and application for control of the engineering characteristics of technical staff and customers. In temperature control, SCM can replace conventional analog regulator.This paper designs the temperature control system of microcontroller hardware circuit and software program. With reliable work, real-time system as the control accuracy requirements. Based on system performance requirements in the premise, reduce cost of hardware. This paper involves controlling system of hardware design and the SCM control software programming. This system choose AD590 thermocouple to test temperature and choose OP07 low drift of preamplifier to a mplifiy signal. In PCF8591 complete digital-to-analog 8051 single chip microcomputer, after processing of data. Segmentation control algorithm of three resistance furnace temperature. Can realize human-machine interface circuit of the temperature setting, temperature display, and overtemperature alarm etc. The design of temperature regulation time to do that. This paper introduces the hardware design of interface circuit and analog input channel, and channel of switching output corresponding algorithm and the design of software programming. Key words: SCM, Temperature control, Interface circuit, 30

基于单片机的电阻炉炉温控制系统

目录 第1章引言 (3) 1.1 课题背景及研究意义 (3) 1.2 计算机在热处理炉炉温控制中的应用 (3) 第2章系统硬件设计 (8) 2.1温度检测及变送器 (8) 2.2控制机构 (9) 2.3 A/D转换电路 (10) 2.4 温度控制电路 (14) 2.5 部分接口电路 (16) 第3章温度控制的算法和程序 (18) 3.1 温度控制的算法 (18) 3.2 温度控制的程序 (20) 第4章对于抗干扰的探究 (34) 4.1 抗干扰的措施 (34) 结束语 (35) 致谢 (36) 参考文献 (37) 附录1 电路图 (38) 附录2 英文专业文摘及翻译 (39)

基于单片机的电阻炉温度控制系统设计 摘要:主要以51系列单片机为核心对电阻炉炉温进行控制,使其温度稳定在某一个值上。最高温度为1000℃,并且有键盘输入给定温度值,由LED数码管显示温度值的功能. 关键词:单片机;电阻炉;温度控制 The design of temperature control system of the resistance furnace based on single chip microcomputer Abstract: Mainly with 51 series single chip microcomputer for the unit of nucleus heats to the control of The resistance furnace, the tallest temperature is 1000℃. And the temperature of keyboard input is constant, LED digitron displays the function of temperature point. Key words: single chip microcomputer;the resistance furnace; temperature control system

基于单片机的炉温控制系统设计毕业设计

基于单片机的炉温自动控制系统设计 摘要:在工农业生产中,温度是工业生产对象中主要的被控参数之一。电阻炉是通过电流流过电阻体产生热量来加热或熔化物料的一种电炉。电阻炉广泛地应用在化工、冶金等行业。它对温度控制的要求较高,温度控制的好坏直接影响着产品质量及生产效率,因此电阻炉的温度控制在科学研究、工业生产中具有重要的意义。 本设计采用单片机作为数据处理与控制单元,以电阻炉作为控制对象,用热电偶作为测量元件,用晶闸管作为输出控制元件来实现对电阻炉温度自动控制。该系统利用K型热电偶温度传感器,把检测到的电阻炉温度的信号送入MAX6675芯片,经过信号放大等一系列转换后,再将信号送到单片机STC89C52内进行PID运算,同时可以通过键盘调节PID参数。经PID运算后,比例调节输出量改变晶闸管控制量,变晶闸管的导通角,从而控制电阻炉的加热强度。从而控制电阻炉的炉温。 关键词:电阻炉;MAX6675;单片机STC89C52;PID控制 Abstract:SummaryIn the industrial and agricultural production , the temperature is accused of one of the main objects of industrial production parameters . Furnace current flowing through the resistor generates heat to a furnace for heating or melting the material . Resistance furnace is widely used in chemical, metallurgical and other industries. It requires a higher temperature control , temperature control has a direct impact on product quality and production efficiency , and therefore resistance furnace temperature control is of great significance in scientific research , industrial production. The design uses a single chip for data processing and control unit to resistance furnace as a control object , as the measuring element with thermocouple with thyristor as a control element to achieve the output resistance furnace temperature control . The system uses K -type thermocouple temperature sensor , to detect resistance furnace temperature signal into the MAX6675 chip , after a series of converted signal is amplified and then signal to the microcontroller STC89C52 PID operation , and can adjust the keyboard PID parameters. After the PID operation , adjust the output volume ratio of the amount of change in thyristor controlled , variable thyristor conduction angle, so as to control the intensity of the resistance heating furnace . To control the furnace temperature resistance furnace . Key words:The resistance furnace; MAX6675; SCM STC89C52; PID contro 目录

电阻炉炉温控制系统的研制

摘要 电阻炉作为工业炉窑中的一种常用的加热设备被广泛的应用于工业生产中。对电阻炉温度控制精确与否将直接影像到产品的质量和生产效率。电阻炉是一种具有纯滞后的大惯性系统,开关炉门,加热材料,环境温度以及电网电压等都影像控制过程,传统的电阻炉控制系统大多建立在一定的模型基础上,难以保证加热要求。本文将PID控制算法引入到传统的电阻炉控制系统中,借此提高其控制效果。设计一个控制精度高,运行稳定的电阻炉温度控制系统是很有必要的。 本设计是以电阻炉温度为被控对象,单片机为核心的一种控制系统。其中以K型热电偶作为温度传感器。AT89c51单片机为控制核心,PID运算规律作为控制算法。文化中详细介绍了该控制系统的硬件电路设计。软件电路设计及PID控制算法。 在对电阻炉温度控制系统的研究之后,本设计主要完成温度控制系统的总体方案设计,硬件原理图的绘制,信号调理电路的设计,固态继电器的应用及温度控制电路的设计同时也完成了系统程序设计,并通过软件完成了对温度的控制功能。 关键词:电阻炉温度控制PID算法单片机

The Design of Temperature Control System of Resistance Furnace Abstract Resistance furnace was widely used in industrial production,the effect of the temperature control of Resistance furnace has a direct impact on product quality and productivity. Therefore, the design of high-precision control and stable operation of the resistance furnace temperature control system has a high application value. In this design, the resistance furnace as a controlled object,singlechip as the design of a control unit. Which type of thermocouple temperature sensor as K,AT89c51 microcontroller as control core and PID control algorithm for operation rule, This paper introduces the control system of the hardware circuit, software design and the PID control algorithm. On the resistance furnace temperature control system, the design of the main completed the overall scheme of the temperature control system design, hardware circuit principle diagram, the signal of the temperature contral circuit design of the system ,meanwhile finish the program design, through the software control to complete the function of temperature control. Key words:The resistance furnace Temperature control PID control Single-chip microcomp

电阻炉温度控制系统设计

0121011360504 学号: 题目电阻炉温度控制系统设计 学院自动化学院 专业自动化专业 班级自动化1005班 姓名柳元辉 指导教师刘小珠 2014 年 1 月10 日

课程设计任务书 学生姓名:柳元辉专业班级:自动化1005指导教师:刘小珠工作单位:自动化学院 题目: 电阻炉温度控制系统设计 初始条件: 1.课程设计辅导资料:“过程控制系统和应用”、“过程控制系统与仪表”、“过程 控制仪表及控制系统”、“过程控制系统”等; 2.先修课程:仪表与过程控制系统等。 3.主要涉及的知识点: 过程控制仪表、控制系统、被控过程等 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具 体要求) 1.课程设计时间:1.5周; 2.课程设计内容:根据指导老师给定的题目,按规定选择其中1套完成; 本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、 被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。3.课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写, 具体包括: ①目录; ②摘要; ③生产工艺和控制原理介绍; ④控制参数和被控参数选择; ⑤控制仪表及技术参数; ⑥控制流程图及控制系统方框图; ⑦总结与展望;(设计过程的总结,还有没有改进和完善的地方); ⑧课程设计的心得体会(至少500字); ⑨参考文献(不少于5篇); ⑩其它必要内容等。

时间安排: 指导教师签名: 2013 年 12 月 27 日系主任(或责任教师)签名:年月日

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

电炉温度控制系统

引言 前言:电阻炉在国民经济中有着广泛的应用,而大功率的电阻炉则应用在各种工业生产过程中。然而,大多数电阻炉存在着各种干扰因素。一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。起先由于电阻炉的发热体为电阻丝,传统方法大多采用仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率。电阻炉微机自动程序温度控制系统就是通过单片机对加热炉的升、降温速率和保温时间进行严格控制的装置,它将温度变送、显示和数字控制集于一体,以微机控制为基础,以A/D转换器为核心,并配以适当的外围接口电路,实现对电阻炉温度自动控制。 摘要:自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。 1.电加热炉温度控制系统的特性 温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1.1所示。 图1.1 被控制对象是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性,在工程上往往近似为包含有纯滞后的二阶容积迟后;由于被控对象电容量大,通常采用可控硅作调节器的执行器,其具体的电路图如图1.2所示。如图1.3

所示,设周期T c 内导通的周期的波数为n,每个周波的周期为T,则调功器的输 出功率为P=n×T×P n /T c ,P n 为设定周期T c 内电压全通过时候装置的输出功率。 图1.2 图1.3 执行器的特性:电炉的温度调节是通过调节剂(供电能源)的断续作用,改变 电炉丝闭合时间T b 与断开时间T k 的比值α,α=T b /T k 。 调节加热炉的温度,在工业上是通过在设定周期范围内,将电路接通几个周波,然后断开几个周波,改变晶闸管在设定周期内通断时间的比例,来调节负载两端交流平均电压即负载功率,这就是通常所说的调功器或周波控制器;调功器是在电源电压过零时触发晶闸管是导通的,所以负载上得到的是完整的正弦波,调节的只是设定周期T c 内导通的电压周波。 2.电炉的电加热原理及方式 当电流在导体中流过时,因为任何导体均存在电阻,电能即在导体中形成损耗,转换为热能,按焦耳楞次定律:Q=0.2412Rt,Q代表热能,单位卡;I代表电流,单位安9;R代表电阻,单位欧姆;t代表时间,单位秒。 按上式推算,当1千瓦小时的电能,全部转换为热能时Q=(0.24×1000×36000)/1000=864千卡。 在电热技术上按l千瓦小时=860千卡计算。电炉在结构上是使电能转换为热能的设备,它能有效地用来加热指定的工件,并保持高的效率。 电阻炉按热量产生的方法不同,可分为间接加热式和直接加热式二大类。间接加热式电阻炉、就是在炉子内部有专用的电阻材料做的发热元件。电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

KSY-6D-16电炉温度控制器

KSY-6D-16电炉温度控制器

目录 一、用途 (2) 二、主要技术指标和参数 (2) 三、仪器结构 (2) 四、仪器使用及注意事项 (3) 五、仪器成套及技术文件 (3) 本仪器为精密、低温制冷仪器, 使用前请详阅说明书,谨慎操作!

一、产品简介 KSY-6D-16电炉温度控制器适用于以硅碳棒(管)加热型电炉,与镍铬——镍硅热电偶配套使用,可对电炉内的温度进行测量、显示、控制,并可使炉内的温度自动保持恒温。 设计新颖,控温精度高,性能稳定易操作。 控温仪表分为指针式A:数显式AS:智能式ASP:智能多段 二、技术指标 ★输入电压(V):220 ★输出电压(V):50-210 ★最高温度(℃):1600 ★最大控制功率(KW):6

One, product introduction KSY-6D-16furnace temperature controller applied to silicon carbon rod ( tube ) heating furnace, and Ni-Cr -- nickel-silicon thermocouple supporting the use of electric furnace, temperature measurement, display, control, and can make the temperature inside the oven to keep constant temperature automatically. Novel design, high precision of temperature control, stable performance and easy to operate. Temperature control instrument for pointer type A: digital display type AS: intelligent ASP: intelligent multi segment Two, technical indicators Of the input voltage ( V ):220 Of the output voltage ( V ):50-210 Of the maximum temperature ( c ):1600 Control of maximum power ( KW ):6

计算机控制技术课程设计-电阻炉温度控制系统设计

工业大学 《计算机控制技术》课程设计 ——电阻炉温度控制系统设计 学院专业 姓名 学号_______ ________ _ 完成时间

摘要:电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛。 关键词:炉温控制;高效率;加热 一、总体方案设计 本次课程设计主要就是使用计算机以及相应的部件组成电阻炉炉温的自动控制系统,从而使系统达到工艺要求的性能指标。 1、设计容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间将炉温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。 2、工艺要求及要现的基本功能 本系统中所选用的加热炉为间接加热式电阻炉,控制要求为采用一台主机控制8个同样规格的电阻炉温度;电炉额定功率为20 kW;)恒温正常工作温度为1000℃,控温精度为±1%;电阻炉温度按预定的规律变化,超调量应尽可能小,

且具有良好的稳定性;具有温度、曲线自动显示和打印功能,显示精度为±1℃;具有报警、参数设定、温度曲线修改设置等功能。 3、控制系统整体设计 电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成。系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。控制系统组成框图如图11-1所示。采用热电偶作为测温元件,经变送器及A/D转换电路对测得的温度信号进行处理,送入主机与给定值比较,按控制算法计算后输出控制量,通过固态继电器实现对电阻炉加热功率的调节,使炉温按设定温度曲线变化。各部分方案如下: (1)控制系统主机 考虑到MCS-51系列单片机已经过长期的应用,性能比较稳定,其功能完全可以满足本系统控制要求,人们对它又比较熟悉,因此主机采用AT89C51单片机。 (2)检测装置 系统选用镍铬-镍硅热电偶作为测温元件检测炉膛中的温度。镍铬-镍硅热电偶测温围为-200~+1200℃(分度号为k)。它线性度较好,价格便宜,输出热电动势较大(40μA/℃),便于测量放大器的选配。热电偶冷端温度补偿采用集成温度传感器AD590。变送器采用两级放大,第一级选用高稳定性运放ICL7650,第二级由通用型集成运算放大器μA741构成。 (3)执行机构 采用交流过零触发型固态继电器控制电路。这种控制方式与传统的采用移相

相关文档
相关文档 最新文档