文档库 最新最全的文档下载
当前位置:文档库 › 桥塔风效应对大跨度悬索桥抖振响应的影响

桥塔风效应对大跨度悬索桥抖振响应的影响

桥塔风效应对大跨度悬索桥抖振响应的影响
桥塔风效应对大跨度悬索桥抖振响应的影响

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

风与结构的耦合作用及风振响应分析(精)

第17卷第5期工程力学Vol.17 No.52000年 10 月ENGINEERING MECHANICS Oct. 2000 收稿日期修订日期 国家自然科学基金资助项目(59578050 作者简介 女 浙江大学土木系副教授 主要从事结构工程研究 文章编号 孙炳楠 (浙江大学土木系 在目前的风振响应计算中 但对于超高层建筑 由于基频较低 本文基于准定常假定推论出 风与结构的耦合作用实质上就是气动阻尼效应就可建立考虑风与结构耦合作用的风振响应模态分析方法确定了风与 结构耦合作用所产生的气动阻尼比较了采用Davenport 谱和Kaimal 谱对计算结果的差异性

采用Kaimal 谱并考虑风与 结构的耦合作用所得计算结果能与风洞试验结果吻合较好 风振响应 气动阻尼 中图分类号 A 1前言 作用于高耸建筑物 地震荷载和风荷载 结构显得越来越柔性振动频率随之降低 建筑物越柔而地震能量集中在高频区 因此 当建筑物总高度超过某一值时 深入分析高耸结构的风振效应就显得十分重要 大部分的研究都集中在顺风向的抖振分析上 从原理上讲 只是在计算过程中针对具体的分析对象有不同的处理方式对结构的计算模式作不同的简化等等 频域分析法比较直接方便

并且所需机时较长 在目前的风振响应计算中这对于一阶频率高于 0.5Hz 的悬臂结构是可以接受的[5] ???ê?t?|?á11 óè ??ê?×è?á??D?μ????á11 ±????ùóú×??¨3£?ù?¨ 风与结构的耦合作用及风振响应分析17 虑风与结构耦合作用的风振响应模态分析方法确定了不同风速下风 与结构耦合作用所产生的气动阻尼采用三维离散的 桁架单元和梁单元模型并着重探讨了两个问题 (2 采用Davenport 谱和Kaimal 谱对结构风振响应的差 异性 2风振响应频域分析法 任一结构采用合适的有限单元离散后在风荷载作用下的运动平衡方程为大气湍流可以看成是一个平稳随机过程为了求得 风振响应的均方根值x σ?????↓? ≥?(1进行求解 并且对于小阻尼体系

悬索桥的风致振动及控制方法的探讨

悬索桥的风致振动及控制方法的探讨 刘琳娜,何杰,王志春 武汉理工大学,道路桥梁与结构工程湖北省重点实验室,湖北武汉(430070) 摘要:风对悬索桥的作用是十分复杂的现象,随着桥梁结构的大跨度发展,桥梁对风作用反应的敏感和复杂逐渐成为设计的控制因素。本文章就悬索桥的三个重要组成部分——梁体,主塔以及缆索各自的风致振动研究现状和控制方法进行了分析介绍,同时探讨了悬索桥应该进一步研究的风致振动方面的问题。 关键词:悬索桥,风致振动,振动形式,控制方法 1. 引言 悬索桥以其受力性能好、跨越能力大、轻型美观,抗震能力好,而成为跨越江河、海峡港湾等交通障碍的首选桥型。由于桥梁是裸露于地球表面大气边界层内的建筑物,不可避免的会受到风的作用。而且随着桥梁理论的不断完善和施工技术的不断提高,桥梁结构型式向轻型化、长大化发展[1],这就使风对桥梁的作用更加明显。风荷载逐渐成为悬索桥设计的主要控制荷载。然而,桥梁界对风对桥梁的作用的认识是在惨痛的历史教训中总结发展的。据不完全统计,18世纪以来,世界上至少有11座悬索桥由于风的作用而毁坏[2]。直到1940年秋,美国华盛顿州建成才4个月的Tacoma吊桥在不到20 m/s 的8级大风作用下发生破坏才引起了国际桥梁工程界和空气动力界的极大关切。 目前,世界上已修建的最大跨度的悬索桥为日本的明石海峡大桥,其主跨跨度已达到1990m,而一些跨度更大的特大跨悬索桥,如Messina海峡大桥、Gilbralter海峡大桥也己先后提上议事日程。随着我国经济的迅速发展,桥梁建设事业也得到了飞速发展,我国也己成功修建了汕头海湾大桥、广东虎门大桥、西陵长江大桥和江阴长江大桥等多座悬索桥,尤其江阴长江大桥跨度达到1385米,进入世界前列;目前还有多座大跨悬索桥在规划中,如珠江口伶仃洋跨海工程、杭州舟山大桥等。因此,二十一世纪中国的桥梁事业将有更崭新的发展。 随着悬索桥跨度的增加,结构刚度和阻尼显著下降,因此对风的作用更为敏感,从而抗风设计已逐渐成为大跨悬索桥设计中的控制因素。而对于悬索桥风致振动及其控制方法的研究也显的越来越重要了。悬索桥的风致振动在其结构上主要表现为梁体、主塔、缆索等三个构件的振动,因此本文从这三个构件的风致振动机理的研究入手,借以探讨对悬索桥各个构件的控制方法。 2. 梁体的风致振动和控制方法 由于悬索桥轻柔、大跨的性质,梁体的振动机理是最受关注的,一般来说,其主要风致振动形式有两种——对桥梁具有摧毁作用的颤振和最常见的抖振。 2.1 颤振 颤振是一种危险性的自激发散振动。对于近流线型的扁平断面可能发生类似机翼的弯扭耦合颤振。对于非流线型断面则容易发生分离流的扭转颤振[3]。上述两种颤振分析理论可以较好地解决悬索桥的颤振问题。 对桥梁结构进行颤振分析可首推Bleich,他于1948年首次将以Theodorson函数为基础

单层平面索网幕墙结构的风振响应分析及实用抗风设计方法

第24卷第5期2007年lO月 计算力学学报 ChineseJournalofComputationalMechanics 、bl_24.No.5 October2007 文章编号:1007—4708(2007)05—0633—05单层平面索网幕墙结构的风振响应分析 及实用抗风设计方法 武岳。,冯若强,沈世钊 (略尔滨工业大学空间结构研究中心,黑龙江哈尔滨150090) 摘要:单层平面索网玻璃幕墙结构是广泛应用于大型公共建筑中的一种新型结构形式,由于其具有秉性大’质量轻、阻尼小、自振频率低的特点.属风敏蓐结构.由于单索幕墙具有较高的几何非线性,丰文采用基于随机振葡理论的模态叠加频域方法进行了单索幕墙结构的风振响应分析.将模杰叠加频蛾方法的计算结果和非线性时程分析方法的精确计算结果进行了比较,证明了谈方法的准确性.并且丰文通过分析各阶模态对单索幕墙结构风振响应的重献,得到脉动风荷载下结构的振神以第一阶模态为主的结论.根据该结论本文采用频域方法推导了单索幕墙结构的位移均方差和索内力均方差的实用计算公式.同时考虑单索摹墙的结构特点提出了基于结构响应的单索幕墙结构实用抗风设计方法. 关键词:点支武玻璃幕墙;风振响应;索结构;频蛾方法;抗风设计方法 中图分类号:TU383文献标识码:A 1引言 近年来,随着玻璃工艺的提高和大量公共建筑的兴建,以预应力拉索作为支承结构的单层平面索网玻璃幕墙结构(以下简称单索幕墙)以其简洁、通透的特点在国内得到广泛应用.单层平面索网作为一种新型张力结构体系,具有柔性大、质量轻、阻尼小、自振频率低的特点,属风敏感结构,但由于其为新型结构体系,目前国内外对该类体系的动力性能研究较少,对其风激动力性能缺乏了解。同时现行荷载规范中提出的等效静风荷载法仅适用于高层、高耸等悬臂型结构,幕墙规范提出的阵风系数也仅适用于单块玻璃的抗风设计,不适用于支承结构设}卜“,因此需要提出一套考虑风荷载动力作用且在工程上简便易行的单索幕墙结构实用抗风设计方法。 对于单层平面索网结构,基于随机振动理论的颓域法是进行结构风振响应实用计算的主要方法之一.本文采用模态叠加频域方法进行了结构的风振响应分析,然后根据分析结果采用频域方法对于单索幕墙结构的风振响应简化计算公式进行了推导,并给出了实用化的计算表格。 收稿日期:2005—07—17}謦改稿收到日期:2005-09-03. 基金项目:国家自然科学基盒(50478028)资助项目. 作者筒舟:武岳。(1972-).男.副教授(E-mail?wuyuc_Z000 @153.corn)I 玛若强(1789-),男,博士生l 沈世钊(1933-),男.教授冲国工程院晓士. 需要指出的是,单层平面索网玻璃幕墙结构由于挠度较大(国内目前常用的设计挠度限值约为结构跨度的1/50左右),结构具有较高的几何非线性.频域方法只能对结构进行线性分析,因此采用频域方法计算此类结构时,可能会产生较大的误差,为此本文在对单索结构进行风振响应频域计算时认为:不是选用竖直平面位置——单索结构初始状态作为计算结构的初始位置,而是选用平均风压作用位置——单索结构平衡状态作为结构的初始位置,此时结构几何非线性的大部分已经完成;其次结构在脉动风作用下在此位置附近作微幅振动,几何非线性较弱,因此可以采用频域方法进行结构的风振计算。 虽然选取平均风压作用位置作为结构风振计算的初始位置,但结构还是具有一定的几何非线性,因此为检验频域计算结果的准确性,本文同时又采用非线性时程分析方法【23即人工生成具有特定频谱密度和空间相关性的风荷载时程,直接求解运动微分方程获得结构的精确响应,同采用频域方法得到的结构响应进行了比较。 2结构风振晌应频域计算方法 2.1频域方法 在脉动风荷载下单索幕墙结构的振动方程: [^幻{藐}+[c]{矗)+[K]{“)一{P(f))(1)式中[M],[K]和[c]分别为结构的质量,刚度矩  万方数据

台风下大跨度桥梁抖振响应分析的若干问题研究

目录 目录 摘要..................................................................................................................................... I ABSTRACT .................................................................................................................... III 第1章绪论. (1) 1.1 研究背景和意义 (1) 1.2 研究目标 (2) 1.3 论文构架 (3) 1.4 技术路线 (3) 第2章研究现状回顾 (5) 2.1 非平稳随机过程的研究 (5) 2.2 台风非平稳特性的研究 (6) 2.3 非平稳风场模型 (7) 2.3.1 时变平均风 (7) 2.3.2 时变风廓线模型 (8) 2.3.3 时变静风力模型 (8) 2.4 桥梁抖振分析 (9) 2.4.1 桥梁抖振频域分析 (9) 2.4.2 桥梁抖振时域分析 (15) 2.5 经验模态分解方法 (16) 2.5.1 经验模态分解的提出 (16) 2.5.2 经验模态分解的优势 (17) 2.5.3 经验模态分解的基本理论 (18) 2.5.4 经验模态分解的研究方向 (20) 2.6 小结 (26) 第3章台风特性分析 (27) 3.1 台风“黑格比”介绍 (27) 3.2 博贺海洋观测站介绍 (27) 3.3 紊流特性参数 (28) 3.3.1 紊流 (28) 3.3.2 紊流度 (28) 3.3.3 紊流积分尺度 (28) 3.4 风速的矢量分解 (29) 3.5 台风特性分析 (30)

高层建筑风致结构响应结果分析.docx

高层建筑风致结构响应结果分析1概况 某项目位于广州市新滘东路以西琶洲B2区,由塔楼1、塔楼2、塔楼3等3个塔楼和底部连接塔楼1和塔楼2的裙楼组成,3个塔楼呈“<”状排列,其中塔楼2屋面高度为148.10m、塔楼3屋面高度为149.65m。塔楼2、3相互间距较小,楼层质量及刚度存在较大偏心[1],结构平面原为矩形(方案1),后调整为切角三角形(方案2),平面形状变化较大,项目进行了两次建筑物不同平面形状的风洞试验研究和风致结构响应分析。项目效果图、总平面图和结构主要特征见图1、图2和表1。 2风洞风荷载与规范风荷载的结构风致响应对比 风洞风致结构响应分析报告[2,3]提供了用于主体结构设计的风荷载,每个塔楼包含6个不利风向对应的等效楼层风荷载,每个风向风荷载包含顺风向、横风向以及扭转等3个等效风荷载分量及其组合系数,采用YJK计算程序验算风洞风下的结构响应,并和规范[4]风下的结构响应进行比较。篇幅所限,以塔楼2方案1的对比研究成果为例。风洞不利风向和风荷载组合系数如表2所示。塔楼2在风洞风和规范风下的结构楼层等效风荷载包络值对比和位移角对比如图3、图4所示。对比可知,塔楼2风洞风的楼层顺风向风荷载明显小于规

范风,但横风向风力则大幅度大于规范风,且扭转等效风荷载力矩较大,相当于风荷载平面偏心16%引起的扭矩大小。结构扭转效应显著增大,导致结构楼层位移角增大较多。为了解风洞风横风向和扭转风振对结构构件内力的影响[5],选取核心筒一连梁的剪力作为比较对象,为便于比较不同风荷载的对连梁剪力的影响,比较时仅考虑风荷载工况下的连梁剪力标准值(见图5)。选取3种风荷载工况进行比较:①按文献[4]8.5.6条的组合系数进行风荷载组合的规范风荷载工况;②按文献[6]7.5.14条的组合系数进行风荷载组合的规范风荷载工况;③风洞风荷载工况。文献[4]和文献[6]关于风荷载分量的组合系数工况要求如表3所示,两者的要求有较大区别,文献[6]考虑风荷载各荷载间的相关性,且组合系数比文献[4]大。连梁剪力标准值对比如图6所示,横风向风振和扭转风振等效风荷载引起的连梁剪力比例分别如图7、图8所示。对比可知,虽然风洞顺风向风荷载最大值仅为规范风顺风向的68%,但横风向和扭转风振等效风荷载较大,风洞风作用下的连梁剪力较规范算法有较大增幅,剪力标准值最大值相对文献[4]算法和文献[6]算法分别增大40%和34%。在各不利风向风洞风等效风荷载作用下的连梁剪力,由横风向风振等效荷载引起的剪力与连梁总剪力的比值为4%~125%,比值的大小与风向和梁长方向的夹角存在高度相关性,当风向与梁长方向接

大跨悬挑屋盖风振响应参与模态分析

第29卷 第5期 2007年5月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol.29 No.5 M ay 2007 大跨悬挑屋盖风振响应参与模态分析 吴海洋1,梁枢果1,郭必武 2(1.武汉大学土木建筑工程学院,武汉430072;2.武汉建筑设计院,武汉430014) 摘 要: 根据援巴哈马体育场和援几内亚体育场主看台悬挑屋盖风洞试验数据结果,分析和探讨了采用频域分析法计算大跨度悬挑屋盖风振响应时应考虑的结构模态数和频率范围,得到强风作用下悬挑屋盖结构均方根位移与内力响应随参与计算的模态数和频率范围的变化规律,并从屋盖表面测点风压谱密度的角度解释了这种变化规律。 关键词: 大跨悬挑屋盖; 风洞试验; 风振响应; 参与模态 中图分类号: T U 312文献标志码: A 文章编号:1671 4431(2007)05 0089 05 Participant Mode Analysis of Wind induced Responses of Large Cantilevered Roof W U H ai yang 1,L IAN G Shu guo 1,G UO Bi w u 2 (1.School of Civ il and Building Eng ineering,Wuhan U niversit y,Wuhan 430072,China; 2.W uhan Architectural Design Institute,Wuhan 430014,China) Abstract: T he mode number and t he frequencies range,which were considered during calculating the wind induced respons es o f lar ge cantilevered roof by using the method of frequency do main,w ere analysed and di scussed,according to the results o f wind tunnel tests of Bahamas and Guinea stadium grandstand cantilevered roofs,and the rules that R M S displacement and RM S inter nal force responses under strong w ind for ce chang ing wit h part icipant modes number and frequencies r ange were obtained,and which could be explained fro m t he point of wind pressure pow er spectrum densities of the measured points on sur face of the roof. Key words: large cantilevered roo f; wind tunnel tests; w ind induced responses; participant modes 收稿日期:2006 12 12.作者简介:吴海洋(1981 ),男,博士生.E mail:wuocean1980@https://www.wendangku.net/doc/2815508749.html, 大跨度悬挑屋盖是大跨空间结构中最典型的风敏感结构,因其具有跨度大、结构柔、材料轻等特点,致使风荷载成为其结构设计的主要荷载之一。基于线性体系随机振动理论的频域分析方法是大跨度屋盖结构风振响应分析的首选方法。由于大跨度悬挑屋盖结构各阶固有频率分布密集、振动模态复杂,因此,运用频域法进行风振响应分析时,如何合理地选取参与计算的模态数或确定参与模态的频率范围成为必须首先解决的问题。针对这一问题,国内外许多学者都进行过深入的研究。模态加速度法的实质是对截断的模态位移响应叠加了荷载在剩余柔度上的响应[1],后者称为剩余位移[2] 。补偿模态法是基于模态对系统应变能的贡献作为选取振型的依据[3]。文献[4]基于Rize POD 法识别结构风振的主要贡献模态。然而,上述各种识别主要贡献模态的方法都需要进行大量繁琐的计算,而且得到的结果随结构形式的不同而异。如何定量地评价大跨度悬挑屋盖结构风致响应计算需要考虑的参与模态数或者频率范围是十分有价值的研究课题。另外,在采用频域法计算结构风致响应时,针对是否考虑振型交叉项,存在2种方法,即CQC [5]和SRSS [6]法。作者以2个实际工程为背景来分析大跨度悬挑屋盖风致响应与参与计算模态的关系,并且计算了当忽略振

风致动力效应

1.3.2风对高层建筑的作用 高层建筑,特别是超高层建筑大都具有柔性大、阻尼小的特点,这样使得风荷载成为其 结构设计时的主要控制荷载。风荷载作用于高层建筑,会产生明显的三维荷载效应,即顺风向风荷载、横风向风荷载和扭转风荷载。在三维动力风荷载的作用下,高层建筑在顺风向、横风向和扭转方向产生振动。 第1章绪论 1.3. 2.1顺风向风效应 我国荷载规范[80】中给出了高层建筑顺风向平均风荷载的计算公式: 矶=刀:户:拜,叽(l一10) 式中:哄为高层建筑:高度处的平均风压;叽为10米高度处的基本风压(我国规范Is0】中 给出的基本风压是基于B类地貌条件的,其它地貌条件下要进行相应的转化);户:和户,分 别为风压高度系数和体型系数;几为考虑脉动放大效应的风振系数。 一般认为顺风向脉动风荷载符合准定常假定,即顺风向风荷载的脉动主要由顺风向风速 脉动引起。Davenportl吕’l和几mural82]等提出利用脉动风速功率谱转化得到顺风向风荷载功率 谱的方法,许多学者还通过风洞试验的方法得到高层建筑顺风向风荷载谱的经验公式183.851。 高层建筑顺风向振动以一阶模态振动为主,一般假定高层建筑一阶振型为线性,但近年 来部分学者对线性假定提出异议,并给出了振型修正的计算方法186-87],顺风向风振的计算中 必须考虑风荷载的水平和竖向空间相关性188】。 1.3. 2.2横风向风效应 横风向风荷载由尾流激励、来流紊流和结构横向位移及其对时间的各阶导数引起的激励 等因素构成,但主要是由结构尾流中的漩涡脱落引起建筑物两侧气压交替变化所致189】。当 建筑物高度较低或高宽比不大时,结构的顺风向风致响应大于横风向响应;而近年来大量的风洞试验和现场实测证明,当高层建筑的高宽比大于4时,其横风向风振响应往往会超过顺风向响应,成为结构设计的控制性因素190]。 由于横风向风荷载机理复杂以及横风向振动的重要性,使得这方面的研究一直是风工程 界的热点问题。横风向风荷载不符合准定常假定,因此横风向风荷载谱不能根据脉动风速谱得到1841,风洞试验是研究高层建筑横风特性的主要手段。国外的ohkuma[01]、H.choil92)以及 国内的梁枢果[93]、顾明194]、徐安【84]等都相继提出了横风向风荷载功率谱的数学模型。横风向风振应通过随机振动理论计算,vicke夕95】、Kareem[9e]和Kwoklgv]等对高层建筑横 风向振动的计算方法进行了详细的阐述和探讨;梁枢果等给出了矩形高层建筑横风向风振响应的简化计算方法[98]。 1.3. 2.3扭转风效应 扭转风荷载则是顺风向紊流、横风向紊流和漩涡脱落共同作用的结果l”]。高层建筑的 浙江大学博士学位论文2008 风致扭转力矩与结构的平面形状有很大关系,往往平面形状不规则的高层建筑会引起较大的风致扭矩,从而导致较大的扭转响应。xIEJi而ng等199]在研究多幢高层建筑风扭矩的基础上, 提出了结构“等效偏心”的概念。

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

结构随机风振响应分析的复模态法_李暾

图1 单自由度模型 文章编号 1004-6410(2002)04-0014-04 结构随机风振响应分析的复模态法 李 暾 1,2 ,李创第2,章本照1,邹万杰2,黄天立 2 (1、浙江大学力学系,浙江杭州 310027;2广西工学院土木系,广西柳州 545006) 摘 要:对单自由度结构的随机风振响应问题进行了研究。首先建立运动方程,并用线性滤波过程生成脉动风谱,用复模态理论和扩阶法进行解耦,获得了等效风谱对应的结构风振响应的解析解,从而建立了结构风振响应分析的复模态法。该方法可用于带T M D 和T LD 结构的风振分析和优化设计。关 键 词:复模态;扩阶法;随机风振 中图分类号:T U311.3;O 313.2 文献标识码:A 收稿日期:2002-08-06 基金项目:广西青年科学基金(0007009)和同济大学防灾国家重点实验室访问学者基金联合资助。作者简介:李 暾(1973-),男,广西柳州人,广西工学院助教,硕士研究生。 0 前 言 在结构的随机风振响应计算中,通常采用的方法是实模态法,这要求结构具有经典阻尼。而实际的许多组合结构体系如:带TM D 、TLD 的高层建筑,都具有非经典阻尼和为非对称结构,故传统的实模态法已不再适用,只能用复模态法进行求解。本文对单自由度体系结构的随机风振复模态分析法进行了系统的研究,针 对脉动风谱为非有理分式风谱的情况,利用线性滤波生成脉动风谱,用复模态法和扩阶法进行解耦,得出了等效风谱对应的结构风振响应的解析解,从而建立了结构风振响应分析的复模态法,为将复模态分析法应用于带TM D 或T LD 、土与结构相互作用的体系等非经典阻尼,非对称结构的风振响应分析奠定了理论基础。 1 运动方程的建立和求解 考虑如图1所示的单自由度模型,在脉动风压P f (t )作用下,根据质点m 的力平衡,可得结构的运动方程为: m x ¨+cx +k x =P f (t )(1) 将方程(1)两边同除以m ,得 x ¨+2Y k n x +k 2 n x =P f (t )m (2) 其中: k 2 n =k m ;2Y k n =c m 令: y 1=x ;y 2=x (3) 将(3)代入方程(2),得 y 2-y 1=0y 1+2Y k n y 2+k 2n y 2= P f (t )m 即: [M ]{y }+[K ]{y }={f (t )}(4) 其中: [M ]= 0 11 2Y k n ; [K ]= -1 00 k 2 n 第13卷 第4期 广西工学院学报 V o l.13 No.4 2002年12月 JO U RN A L O F GU AN GX I U N IV ERSI T Y O F T ECHN O LO G Y Dec.2002

风荷载与结构的风致响应及解决方法

风荷载与结构的风致响应及解决方法摘要:风是一种为人们所熟知的自然现象,影响着生活的方方面面。而且,风能作为一种可再生的绿色能源也已越来越被重视。但是,对于结构而言,风对结构的影响可以说都是不利的。尤其是对于那些质量轻、柔度大、阻尼小、自振频率低的结构,如:大跨度桥梁、超高层建筑、大跨度悬挑屋盖等,风往往是设计的主要控制因素之一。根据风压随时间变化的特点,其被分解为平均风压和脉动风压两个分量。不同的风压分量往往会引起结构的不同类型的破坏。本文将结合若干工程实例,浅谈其破坏类型,并总结相关设计方法。 关键字:风荷载;风敏感结构;风致响应;抗风设计 1.自然风 1.1. 风的成因 空气是由各种气体分子等组成的混合物,是一种流体。其运动方向是气压的正梯度方向。只有存在气压差时,才会形成风。在自然条件下,气压差往往是由于太阳辐射的不均匀、地球上水陆分布的不均匀使空气产生不均匀的升温而造成的。太阳光照射在地球表面上,使地表温度升高,地表的空气受热膨胀变轻而往上升。热空气上升后,低温的冷空气横向流入,上升的空气因逐渐冷却变重而降落,由于地表温度较高又会加热空气使之上升,这种空气的流动就产生了风。 图1-1 全球大气循环 1.2. 风的类型 根据风的成因的不同,可分为多种类型的风。以下是一些典型的、对土木工程影响较大的风气候。

大气环流:大气环流是指在全球范围由太阳辐射和地球自传作用形成的大尺度的大气运动,它决定了各地区天气的行程与变化。其中季风就是由大气环流、海陆分布和大陆地形等多种因素造成的,是以年为周期的一种区域性的大气运动。这种类型的风作用区域最大、破坏性小,是平时最为常见的一类风。 热带气旋:热带气旋是指在热带或副热带海洋上产生的强烈空气漩涡。其直径通常为几百千米,厚度为几十千米。强烈的热带气旋不但形成狂风、巨浪,而且往往伴随发生暴雨、风暴潮,造成严重的灾害。这种类型的风作用区域较大,持续时间长,而且具有很强的破坏性,是主要的自然灾害之一。 龙卷风:龙卷风是一种出现在强对流云内的漏斗状漩涡。这种类型的风活动范围小、持续时间短但是具有极大破坏性的。 1.3. 风荷载性质与对结构的影响 平时,我们往往用风速来描述风的强度,那是因为风压与风速是有关系的,根据伯努利公式,风的动压可表示为: 2 2v ρω= (1) (1)式中,ω为风压、ρ为空气密度、v 为风速。 因此只要知道风速,就可以知道风压大小。根据观测,可以发现从地面开始,风速随着高度的升高而增大,当达到一定高度时,风速将趋近于某一值。这是由于当风吹过地球表面时,由于受到地面上各种粗糙元(如草地、庄稼、树林、建筑物等)的阻碍作用,会使近地面的风速减小。这种影响随离地高度的增加而逐渐减弱,直至达到某一高度后消失。通常可将地表摩阻影响的近地大气层称为“大气边界层”大气边界层顶部到地面的距离成为大气边界层厚度。在大气边界层内,风以不规则的、随机的湍流形式运动,平均风速随高度的增加而增加,至大气边界层以外,风以层流的形式运动。当然,由于地表状况的不同,大气边界层也会有不同。高楼林立的城市中,大气边界层会相对较厚;而表面平坦的海洋上,大气边界层则会较薄。图1-2即形象地反映了不同地面粗糙程度对大气边界层及风速的影响。

ABAQUS软件随机振动分析 final

ABAQUS软件随机振动分析 在工程中,结构一般需要对它进行随机振动分析。典型的例子是:通过机床的振动响应分析进行机床的结构设计,通过对结构的地震响应分析。在电子产品设计中,ABAQUS软件不仅仅能对电子产品进行冲击、热场、加工等过程进行数值模拟,还可以对电子产品在随机振动下产品的响应性能做出很好预测,以优化产品设计。 本例题就某电子产品在随机激励作用下的响应结构为例,采用如下图所示的简化模型,分析在特定随机激励(如图2)中,分析该结构的响应。 图 1 某电子产品结构简化图 图2 随机激励的谱分布 载荷边界条件为:四个底座固支,并在分析过程中,受到随机激励。需要分析整个结构在运动过程中的响应。 启动ABAQUS/CAE,在Start Session对话框中,选择Create Model Database按钮。

一导入模型 由于IGES文件给的是实体模型,我们在 计算中产用shell模型,所以我们需要通过 ABAQUS/CAE中对shell的编辑功能对模型进 行修改。 导入IGES文件成Shell格式。 1.在主菜单选择File ->Import->Part, 进入Import Part对话框。选择相应的 IGES文件,点击按钮。 2.在弹出的Create Part From IGES File 对话框中,如下图,对话框的Topology选择Shell选项,Name选项填写random。 二利用CAE编辑修改模型 在主菜单选择Shape ->Shell->Remove Face,用鼠标点击选择模型中的面,选上之后面会变红色,点击鼠标中键,就可以去掉该面。重复操作,得到下图模型。

某景观烟囱顺风向风振响应分析与风振系数确定

第40卷第2期建 筑 结 构2010年2月 某景观烟囱顺风向风振响应分析与风振系数确定 张文元1 , 郑朝荣1 , 张耀春1 , 武 岳1 , 孙雨宋 2 (1哈尔滨工业大学土木工程学院,哈尔滨150090;2东北电力设计院,长春130021) [摘要] 采用S AP2000软件建立了某景观烟囱的结构分析模型,输入风荷载时程进行风振响应分析。考虑了烟囱 复杂外形和不规则质量分布,利用频域方法计算了烟囱第1阶振型的风振位移响应,并与时域方法的结果进行对比,二者吻合较好。分别采用阵风荷载因子法和惯性风荷载法计算了烟囱结构不同高度处的风振系数,并将基于该两种风振系数的等效静力风荷载分别作用在烟囱结构上,计算其顺风向位移响应并与精确值进行比较,结果表明其位移分布均符合真实响应。因此虽然上述两种方法得到的风振系数沿高度分布差别较大,但均能实现烟囱的风振位移等效,均是合理的。为工程应用方便,采用基于阵风荷载因子法的风振系数供结构设计使用。 [关键词] 风振系数;烟囱;时域;频域;阵风荷载因子法;惯性风荷载法 Analysis on along 2wind 2induced responses and determination of gust response factor on a landscape chimney Zhang Wenyuan 1 ,Zheng Chaorong 1 ,Zhang Y aochun 1 ,Wu Y ue 1 ,Sun Y us ong 2 (1School of Civil Engineering ,Harbin Institute of T echnology ,Harbin 150090,China ; 2N ortheast E lectric P ower Design Institute ,Changchun 130021,China ) Abstract :Based on the finite element m odel of a landscape chimney by S AP2000and wind load history ,the dynamic responses of the chimney were analyzed using time domain method.Als o ,wind 2induced displacements of chimney ’s first m ode were calculated using the frequency domain method ,in which the uneven distribution of width and mass was taken into account ,and the results are close to the responses from time domain analysis.Both the gust loading factor method and the inertial wind load method were selected to calculate the gust response factors along the height of chimney ,and distribution of wind 2induced displacements by the equivalent static wind loads based on the above methods agrees well with the exact displacements.S o the tw o methods can both acquire reas onable gust response factors and realize the displacements equivalence of chimney ,though distributions of the gust response factors have great https://www.wendangku.net/doc/2815508749.html,stly ,the gust response factors calculated from the gust loading factor method are recommended for reference of practical design ,as for convenience of application. K eyw ords :gust response factor ;chimney ;time domain ;frequency domain ;gust loading factor ;inertial wind load 作者简介:张文元,博士,副教授,Email :hitzwy @1631com 。 0 前言 某发电厂景观烟囱是一高210m 的钢内筒烟囱。 钢筋混凝土外筒高205m ,筒顶外直径11m;高度195~185m 为一圆台,其下部直径为16m;185~165m 为一直径为16m 的圆柱体;165~155m 为一倒立的圆台,其下部直径为11m;155~60m 为圆柱体;高度60m 以下放坡8%至烟囱底部,底部外直径2016m 。由于外观装饰的要求,烟囱表面在高度60~195m 布置不同形状的装饰条(图1)。筒体壁厚由上至下从250mm 变化到700mm ,90m 以下采用C40混凝土,以上采用C30混凝 土。纵向配筋:0标高处外侧为⊥○28@150,内侧为⊥○ 22@150,以上逐级降低为⊥○12@150。 该烟囱为一具有独特外形且质量刚度分布不均匀的高耸结构,其风荷载的计算(包括风荷载体型系数和风振系数的确定)不能利用现有规范公式[1,2]直接得到。风荷载体型系数通过CFD (C om putational Fluid 图1 烟囱效果图  Dynam ic )方法获得[3],而风振 系数的确定则必须对其进行风振响应分析。 高耸结构的顺风向风振响应分析一般采用以振型分解法为基础的频域方法和以直接积分法为基础的时域方法[4,5]。时域方法根据风荷载的统计特性进行计算机随机模拟,人工生成具有特定频谱密度和空间相关函数的风速时程,并通过 准定常假定转化为风压时程作用在结构上,然后利用逐步积分法计算结构的动力响应。频域方法是将脉动风速谱密度转化为广义风荷载谱,利用传递函数建立

超高层建筑风致响应分析的时域方法比较研究

超高层建筑风致响应分析的时域方法比较研究Newmark-β方法以其其高效性和普适性广泛应用于各类结构动力学问题的 求解。自其提出之后,就吸引了许多研究者,许多文献关注该方法的应用及其精度和稳定性。Wilson-θ法采用了线性加速度假设,当θ足够大时Wilson-θ法是无条件稳定的。本文采用MATLAB语言作为计算机程序设计语言,分别用newmark方法和Wilson-θ方法等两种计算方法来计算结构动力响应,并从位移、速度、加速度和轨迹线方面对两种方法进行对比研究。 标签:Newmark-β方法;Wilson-θ法;结构动力响应;风致振动 1.概述 随着科学技术的发展,高层建筑不断涌现,其高度也越来越高,导致建筑物对风的敏感性也越来越明显,风荷载成为了高层建筑的控制荷载。目前,普遍采用的风振响应分析方法主要是时域法和频域法。时域法是直接运用风洞试验的风压时程或计算机模拟的风压时程,作用于屋面结构进行风振响应时程分析,然后通过动力计算得到结构的动力响应;频域法是用随机振动理论建立风荷载谱的特性与结构响应之间的直接关系。 时域法分析具有以下优点:时域法可以较精确地进行结构的非线性分析;时域法可直接处理和计算对象的系统结构和特性;时域法不必做结构的数学模型简化等大量工作,可以直接求出位移、速度以及加速度的响应值;;在缺乏实测或试验资料的情况下,各种简化计算方法可以和精确的时域方法进行比较验证。尽管时域分析方法原理比较复杂,计算量非常大,但随着计算机技术的不断发展,这个问题正在逐步得到解决。 本文将采用时域法对某超高层建筑进行风致响应分析。首先,通过风洞试验确定作用在结构上的风荷载,然后,通过时域动力响应计算得出结构的位移、速度和加速度响应;最后将Newmark-β方法计算的结果与Wilson-θ方法计算的结果进行分析比较。 2.风洞试验 2.1设备和流场 该项目风洞试验是在汕头大学风洞试验室的STDX-1风洞进行的,STDX-1是一座具有串置双试验段的全钢结构的闭口回流低速工业风洞,其中主试验段为20 m×3 m×2 m,采用刚性模型多点同步测压.该建筑模型用玻璃钢制作,几何缩尺比为1:500,试验模型如图1所示。风速连续可调,且流场性能良好。风洞试验时,气流是以稳定的风速吹响该建筑模型,并且在不同风向角试验工况下,其风向在测试过程中也是稳定的。根据该建筑所在位置以及周边环境,确定采用C类地貌进行试验。

钢管拱肋节段吊装最大悬臂状态的风致抖振控制

第4章钢管拱肋节段吊装最大悬臂状态的 风致抖振控制 4.1 引言 风对桥梁引起的振动,即使不导致结构的破坏,也使人们感到不适,像这类对生理上的效应是一般人体最易感受得到的[6]。 由于钢管混凝土在拱桥中的广泛应用,使得拱桥向大跨、轻柔方向发展。桥梁跨径的增大亟需解决桥梁的抗风问题。此外,钢管混凝土拱桥的面内、面外基频均比悬索桥和斜拉桥的基频大,而比刚性拱桥的基频小,说明钢管混凝土拱桥的面外刚度较小;同时,钢管混凝土拱桥的面外基频较面内基频低,反映出钢管混凝土拱桥横向稳定问题较为突出,尤其是大跨度钢管混凝土拱桥[4]。又由于钢管混凝土本身的特点,使其拱肋形式较为固定,不可能做到气动选型;同时,对于中、下承式拱桥的桥面与桥面以上拱肋的连接方式为吊杆支撑,桥面系截面形式的选取与全桥跨径无关,主要取决于吊杆的间距,而中、下承式拱桥的吊杆间距又较小,使得桥面系相对于全桥来说显得较柔,同时也未曾采用气动选型,这些均可能增大中、下承式钢管混凝土拱桥的风振反应。但该方面的研究内容却很少[8],因此有必要对钢管混凝土拱桥进行风振反映分析。 由于钢管混凝土拱桥大跨、轻型的特点,引发了工程界对于该类桥梁抗风研究的关注。罗雄等对大跨度钢管混凝土拱桥进行了时域抖振分析研究,指出抖振是大跨桥梁不可避免的一种随机振动[1];葛耀君等通过风洞实验和计算分析对卢浦大桥施工和成桥阶段的抗风稳定性进行专题研究,结果表明最大悬臂施工阶段风振造成的竖向和侧向振幅都很大,可能会影响正常的施工[2]。周述华等针对丫髻沙大桥成桥及施工阶段进行了抗风研究[3]。有关大跨度钢管混凝土拱桥的抗风研究大都处在定性分析评价的阶段。大跨桥梁抖振是结构在脉动风作用下产生的随机振动现象,它可引起构件的较大变形和应力以及构件的疲劳,尤其在施工阶段,过大的抖振响应会危及施工安全,影响施工进度和施工质量,但该方面的研究内容却很少[8]。所以开展大跨桥梁施工阶段抖振动力研究具有重要的理论意义和工程实用价值[4]。 可以在这里加入文献综述:已经有人研究连续刚构的施工振动控制了,还有斜拉桥施工过程中的振动控制,例如桥塔等。下载相关的文献并重新写综述。 而且本桥在钢管拱肋节段吊装时,遇到了相当于9至10台风的袭击,当时钢管拱肋节段安装了四段,据目测拱肋悬臂端的位移达到了20cm左右。所以说******* 文献[]丫髻沙大桥做过这方面的工作, 综述总结,但是目前的所有对钢管混凝土拱桥的风致抖振工作都是针对成桥

相关文档