文档库 最新最全的文档下载
当前位置:文档库 › 复变函数第四讲初等函数解读

复变函数第四讲初等函数解读

复变函数第四讲初等函数解读
复变函数第四讲初等函数解读

复变函数第2章

第二章 解析函数 1. 复变函数: ()w f z = w =f (z )又常写成w =u (x ,y )+iv (x ,y ),从而对复变函数f (z )的讨论可相应地 转化为对两个实函数u (x ,y )和v (x ,y )的讨论. 2.复变函数的极限与连续: 定义2.2 设函数w =f (z )定义在z 0的去心邻域0<|z -z 0|,都存在一正数(0)r δδ<≤,使得当0<|z -z 0|<δ时,有 ()f z A ε<-, 则称函数f (z )当0z z →时的极限存在,常数A 为其极限值.记作 0lim ()z z f z A →= 或 0()()f z A z z →→. 定理2.1 设f (z )=u (x ,y )+iv (x ,y ),z 0=x 0+iy 0,A =a +ib ,则 000(,)(,)lim ()lim (,),z z x y x y f z A u x y a →→=? = (2.1) 00(,)(,)lim (,).x y x y v x y b →= (2.2) 定义 2.3 若0 0lim ()()z z f z f z →=,则我们就说函数 f (z ) 在点 z 0 处连续. 如果函数f (z )在区域D 内每一点都连续,那么称函数f (z )在区域D 内连续. 定理2.5 设函数000()(,)(,),f z u x y iv x y z x iy =+=+,则f (z )在点z 0连续的充分必要条件是u (x ,y )、v (x ,y ) 均在点(x 0,y 0)连续. 3.复变函数的导数 定义2.4 (导数的定义)设函数w =f (z )定义在z 平面上区域D 内,点z 0、z 0+Δz D ∈, 00Δ(Δ)()w f z z f z ∈=+-,若极限 00Δ0Δ0(Δ)()Δlim lim ΔΔz z f z z f z w z z →→+- 存在,则称函数f (z ) 在 z 0可导,这个极限值称为f (z )在z 0的导数,记作 00000Δ0(Δ)()d () d lim ().d d Δz z z z z f z z f z f z w f z z z z ==→+-='== (2.3) 由于复变函数导数的定义在形式上和一元实函数的导数定义一致,并且复变函数中的极限运

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数与积分变换复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1)模:22 z x y =+; 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数(第四版)课后习题答案

习题一解答 1.求下列复数的实部与虚部、共轭复数、模与辐角。 (3)(3+ 4i )(2 5i ) ; (4)i 8 4i 21 + i 1 3+ 2i 1 3i 1 i (1) ; (2) ; i 2i 3+ 2i = (3+ 2i )(3 2i ) = 1 (3 2i ) 1 3 2i 13 解 (1) 所以 ? 1 ?3+ 2i ↑ 13 ? = ← 3, Im ?? ←= 2 1 ? Re ? , 13 ?3+ 2i ↑ 2 2 1 3+ 2i = 1 1 3+ 2i = ?? 3 ? +?? 3 ? 13 (3+ 2i ), , 13 13 ? 13 ? = 13 Arg ? 1 3+ 2i ? ? = arg ? 1 3+ 2i ? ? + 2k π 2 = arctan + 2k ,k = 0,±1,±2," 3 1 3i i 3i (1+ i ) = i 1 ( 3+ 3i )= 3 5 (2) 1 i = i ( i ) (1 i )(1+ i) i, i 2 2 2 所以 ?1 3i ? 3 , Re ? ?i 1 i ↑←= 2 ?1 3i ? ←= 5 Im ? ?i 1 i ↑ 2 2 2 1 3i = + i 5, 3 1 3i 1 i = ? ? +? ? = 34, 3 5 i 1 i ? 1 3i 2 2 i 2 2 2 1 3i ? + 2k π Arg = arg i 1 i ? i 1 i ? = arctan 5 + 2k π, k = 0,±1,±2,". 3 (3) (3+ 4i )(2 5i ) = (3+ 4i )(2 5i )( 2i ) = (26 7i )( 2i ) 2i (2i )( 2i ) 4 = 7 26i = 7 13i 2 2 所以 ?(3+ 4i )(2 5i )? Re ? ←= 7 , ? 2i ↑ 2 ?(3+ 4i )(2 5i )? Im ? ←↑= 13, ? 2i

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

关于复变函数的书pdf

聪哥制作版权所有复变函数 QQ285807093 签署者:ycpan2922 签署日期: 4:32 pm, 3/29/08 https://www.wendangku.net/doc/2815540977.html,

引言 复数是16世纪人们在解代数方程时引入的。在17世纪和18世纪随着微积分的发明与发展,人们研究复变函数,特别是把实变函数初等函数推广到复变数情形,得到一些重要结果。 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为

这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函

《复变函数论》第四章-22页文档资料

第四章 解析函数的幂级数表示方法 第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是: 111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数, ,Im ,Re n n n n b z a z ==一般简单记为}{n z 。按照|}{|n z 是有界或无界序列, 我们也称}{n z 为有界或无界序列。 设0z 是一个复常数。如果任给0ε>,可以找到一个正数N ,使得当 n>N 时 ε<-||0z z n , 那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作 0lim z z n n =+∞ →。 如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。 令0z a ib =+,其中a 和b 是实数。由不等式 0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及 容易看出,0lim z z n n =+∞ →等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞ →+∞ → 因此,有下面的注解: 注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。 注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于 0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个

邻域,相应地可以找到一个正整数N ,使得当n N >时,n z 在这个邻域内。 注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。 定义4.1复数项级数就是 12......n z z z ++++ 或记为1 n n z +∞ =∑,或n z ∑,其中n z 是复数。定义其部分和序列为: 12...n n z z z σ=+++ 如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是 σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作 1 n n z σ+∞ ==∑, 如果序列{}n σ发散,那么我们说级数n z ∑发散。 注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下 121321()()...()...n n z z z z z z z -+-+-++-+ 则序列{}n z 的敛散性和此级数的敛散性相同。 注2级数 n z ∑收敛于σ的N ε-定义可以叙述为: 0,0,,N n N ε?>?>>使得当时有 1 ||n k k z σε=-<∑, 注3如果级数n z ∑收敛,那么

复变函数与解析函数

复变函数与解析函数 专业:工程力学姓名:李小龙学号:10110756在此仅对基础知识加以总结归纳。 1、基本概念 1、复数 指数表示: 宗量:一个函数的自变量是一个复杂的对象,这是通常称为宗量。 若是z的辐角,则也是其辐角,其中是整数集合,若限制,所得的单值分支称为主值分支,记作argz。 做球面与复平面相切于原点O,过O点作直线OZ垂直于复平面,与球面交于N,即球的北极。 设z是任意复数,连接Nz,与复球面交于P,z与P一一对应,故复数也可用球面上的点P表示,该球面称为复球面。 当,作为N的对应点,我们把复平面上无穷远点当做一点,记作,包括的复平面称为扩充复平面。 2、复变函数 领域:由等式所确定的点集,称为的领域,记作,即以为中心,为半径的开圆(不包括圆周)。 区域:非空点集D若满足:一、D是开集,二、D是连通的,即D中任意两点均可以用全属于D的折线连接。则我们称D为区域。 单通与复通区域:在区域D内画任意简单闭曲线,若其内部全含于D,则D称为单通区域,否则称为复通区域。 复变函数:以复数为自变量的函数。记 则: 所以一个复变函数等价于两个二元实变函数。它给出了z平面到w平面的映射或变换。 复变函数的连续性: 如果 则称在处连续。 3、解析函数

复变函数的导数: 复变函数定义在区域D上,,如果极限 存在且有限,则称在处可导或可微(differentiable),且该极限称为在处的导数或微商(derivative),记作: 解析函数: 若函数f(z)在区域D内可导,则称为区域D内的解析函数,也称全纯函数。 奇点:若函数f(z)在某点不解析,但在的任意领域内都有它的解析点,则称为f(z)的奇点(singular point)。 Cauchy-Riemann条件(CR条件) 此为f(z)在z点可微的必要条件。 充要条件: (1)二元函数u(x,y),v(x,y)在点(x,y)可微。 (2)u(x,y),v(x,y)在点(x,y)满足CR条件。 另外我们有推论: 若f(z)在D内解析,则f(z)在D内具有任意阶导数。 4、初等单值函数 初等函数(elementary function)是由基本初等函数(通常认为包括常数,幂函数,指数函数,对数函数,三角函数,反三角函数)经过有限次的加减乘除和复合所构成的函数。 令 称为有理分式,也称有理函数。除去满足的点外,f(z)在复平面上处处解析,是f(z)的奇点。 复变量的三角函数(trigonometric function)是通过指数函数来定义的:显然都是周期函数,周期为,且他们的绝对值都能大于1. 如:,显然可以大于任意数。 双曲函数: 复变量的双曲函数也是通过指数函数来定义的。 称为双曲余弦函数和双曲正弦函数。他们在整个复平面上解析。 5、解析函数的物理意义 调和函数:如果二元实变函数在区域D内具有连续的二阶偏导数,且满足二维Laplace方程 则称为区域D内的调和函数。 若是区域D内的解析函数,则、均为D内的调和函数。

《复变函数与积分变换》习题册

第一章 复数与复变函数 本章知识点和基本要求 掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念; 熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。 一、填空题 1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______. 2、设(12)(35)13i x i y i ++-=-,则x = ,y = 3、若1231i z i i +=--,则z = 4、若(3)(25) 2i i z i +-= ,则Re z = 5、若4 21i z i i +=- +,则z = 6、设(2)(2)z i i =+-+,则arg z = 7复数1z i =-的三角表示式为 ,指数表示式为 。 8、复数i z 212--=的三角表示式为 _________________,指数表示式为 _________________. 9、设i z 21=,i z -=12 ,则)(21z z Arg = _ _____. 10、设4 i e 2z π=,则Rez=____________. Im()z = 。z = 11、.方程0273=+z 的根为_________________________________. 12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。 13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数1 2 +-= z z w 的实部=),(y x u _________,虚部=),(y x v _________.

复变函数习题答案习题详解

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231 + 解: ()()()13 2349232323231231i i i i i i -=+-=-+-=+ 实部:13 3 231= ??? ??+i Re 虚部:132231-=?? ? ??+i Im 共轭复数:1323231i i += ?? ? ??+ 模:131 1323231 2 22=+= +i 辐角:πππk arctg k arctg k i i Arg 232213 3132 2231231+? ?? ??-=+-=+??? ??+=??? ??+arg 2) i i i -- 131 解: ()()()2 532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=-- 实部:2 3131=??? ??--i i i Re 虚部:25131-=?? ? ??--i i i Im 共轭复数:253131 i i i i +=?? ? ??-- 模:2 34 4342531312 22= =+= --i i i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+??? ??-=+???? ? ??-=+??? ??--=??? ??--arg

3) ()()i i i 25243-+ 解: ()()()2 26722672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=?? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292522627252432 2 =?? ? ??-+??? ??-=-+i i i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+??? ??=+????? ? ?--=??? ??-+ 4) i i i +-21 8 4 解:i i i i i i 3141421 8-=+-=+- 实部:( )1421 8=+-i i i Re 虚部:( )3421 8-=+-i i i Im 共轭复数:() i i i i 314218+=+- 模:103142221 8 =+=+-i i i 辐角:( )()πππk arctg k arctg k i i i i i i Arg 2321324421821 8 +-=+?? ? ??-=++-=+-arg 2. 当x 、y 等于什么实数时,等式 ()i i y i x +=+-++13531成立? 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ?? ?=-=+8321y x ? ??==?111 y x 即1=x 、11=y 时,等式成立。

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+=11; 2) n n i a -?? ? ??+=21; 3) ()11++-=n i a n n ; 4) 2 i n n e a π-=; 5) 2 1i n n e n a π-=。 2. 证明:????? ? ?≠==>∞<=∞→1 11 11 1 0a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞ =+0856n n n i ; 4) ∑∞ =02 n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞ =12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞ =1n n n i z e π; 5) ()∑∞ =-??? ??11n n z n i ch ; 6) ∑∞=??? ??1n n in z ln 。 7. 如果∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

复变函数习题答案第4章习题详解

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+=11 ; 2) n n i a -??? ??+=21; 3) ()11++-=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-=。 2. 证明:??????? ≠==>∞<=∞→1 11 111 0a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞=1n n n i ;

2) ∑∞=2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞ =02n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛; 2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0 z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞=-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞=1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !;

3) () ∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-?? ? ??11n n z n i ch ; 6) ∑∞=??? ??1n n in z ln 。 7. 如果∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

《复变函数论》第四章

第四章 解析函数的幂级数表示方法 第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是: 111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数, ,Im ,Re n n n n b z a z ==一般简单记为}{n z 。按照|}{|n z 是有界或无界序列, 我们也称}{n z 为有界或无界序列。 设0z 是一个复常数。如果任给0ε>,可以找到一个正数N ,使得当 n>N 时 ε<-||0z z n , 那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作 0lim z z n n =+∞ →。 如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。 令0z a ib =+,其中a 和b 是实数。由不等式 0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及 容易看出,0lim z z n n =+∞ →等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞ →+∞ → 因此,有下面的注解: 注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。 注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于

0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个 邻域,相应地可以找到一个正整数N ,使得当n N >时,n z 在这个邻域内。 注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。 定义4.1复数项级数就是 12......n z z z ++++ 或记为1 n n z +∞ =∑,或n z ∑,其中n z 是复数。定义其部分和序列为: 12...n n z z z σ=+++ 如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是 σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作 1 n n z σ+∞ ==∑, 如果序列{}n σ发散,那么我们说级数n z ∑发散。 注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下 121321()()...()...n n z z z z z z z -+-+-++-+ 则序列{}n z 的敛散性和此级数的敛散性相同。 注2级数 n z ∑收敛于σ的N ε-定义可以叙述为: 0,0,,N n N ε?>?>>使得当时有 1||n k k z σε=-<∑, 注3如果级数n z ∑收敛,那么

复变函数第四章学习指导

复变函数第四章学习指导 一、 知识结构 ?????? ??? ?? ???? ???? ? ?????? ????????? ?????????? ????? ?? ?? 收敛 复数项级数绝对收敛一般的级数概念内闭一致收敛复变函数项级数一致收敛级数的性质收敛圆一般概念收敛半径的求法 幂级数和函数 泰勒定理零点定义及充分必要条件 零点的孤立性解析函数的性质零点的性质 解析函数的唯一性 二、 学习要求 ⒈了解复级数的基本概念; ⒉理解解析函数的幂级数表示; ⒊理解收敛圆及收敛半径的概念; ⒋熟练掌握收敛圆及收敛半径的求法; ⒌了解解析函数的零点并掌握其判别方法; ⒍熟练掌握将函数在一点展成幂级数的方法; ⒎了解解析函数的唯一性定理,掌握其证明方法。 三、 内容提要 幂级数 定义 称形如 +++++=∑∞ =n n n n n z c z c z c c z c 22100 (4.3) 或 +-++-+-+=-∑∞ =n n n n n z z c z z c z z c c z z c )()()()(02020100 0 (4.3) 的级数为幂级数,其中 ,,,,,,2100n c c c c z 均为复常数。 收敛圆 收敛半径 对于级数(4.3),总存在圆周R z c R =:,使得级数(4.3)在R c 的内部绝对收敛,在R c

的外部发散.我们称圆R z R N <:),0(为级数(4.3)的收敛圆,称R 为级数(4.3)的收敛半径。 求收敛半径的方法与数学分析中的方法一样。 定理4.12 对于级数(4.3),若极限 n n n c c 1lim +∞ → 存在(有限或无限),则极限 n n n c ∞ →lim 存在,并且有 n n n n n n c c c 1lim lim +∞ →∞ →= = R 1= 其中的R 为级数(4.3)的收敛半径.当0= 时,规定+∞=R ,当+∞= 时,规定0=R 。 解析函数的幂级数表示 定理4.13 设G 为区域,点G a ∈,圆R a z K <-:含于G ,若函数)(z f 在G 内解析,则在K 内有 ∑∞ =-=0 )()(n n n a z c z f (4.5) 其中 ,2,1,0,! ) 0() (==n n f c n n (4.7) 且上述展式是唯一的。 解析函数的零点 定义4.7 设函数)(z f 在点a 解析,若0)(=a f ,则称点a 为)(z f 的零点,若)(z f 的零点a 满足 0)()()() 1(==='=-a f a f a f m ,但0)() (≠a f m 则称点a 为函数)(z f 的m 级(阶)零点。 计算)(z f 的零点的级别的方法 定理4.17 点a 是不恒为零的解析函数)(z f 的m 级零点的充分必要条件是 )() ()(z a z z f m ??-=

复变函数第四章学习方法导学

第四章级数 复级数也是研究解析函数的一种重要的工具,实际上,解析函数的许多重要性质,还需要借助适当的级数才能得到比较好的解决。例如,解析函数零点的孤立性、解析函数的惟一性、解析函数在其孤立奇点去心邻域内的取值特点等等。 根据所研究的解析函数所涉及的问题的需要,在本章中,我们重点介绍两类特殊的复函数项级数,一类是幂级数,通常考虑函数在其解析的区域内的整体性质或函数在其解析点邻域内的性质时,用这类级数;另一类是洛朗级数,通常考虑函数在其孤立奇点附近的有关性质时,用这类级数. 本章,我们主要介绍以下内容: 首先,平行介绍复数项级数和复函数项级数一般理论. 其次,作为函数项级数的特例,我们平行介绍形式简单且在实际中的应用广泛的幂级数,并建立如何将圆形区域内解析的函数表示成幂级数的方法,以及如何利用这种方法来研究解析函数的有关良好的性质(比如:解析函数零点的孤立性、解析函数的惟一性以及作为解析函数基本理论之一的最大模原理等).第三,进一步介绍由正、负整数次幂项构成的形式幂级数(也称为洛朗级数或双 <-<(0r≤,边幂级数)的概念及其性质,并建立(挖去奇点a的)圆环形区域r z a R R≤+∞)内解析函数的级数表示(即解析函数在圆环形区域内的洛朗展式),然后再用洛朗展式作为工具研究解析函数在其孤立奇点附近的性质.作为解析函数孤立奇点性质的应用,再简要介绍复变函数的进一步研究中经常涉及到的两类重要的函数,即整函数与亚纯函数及其简单分类. 一、学习的基本要求 1.能正确理解复级数收敛和发散以及绝对收敛等概念.掌握复级数收敛的必要条件

和充要条件,特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题(比如:利用复级数的和求实级数的和的问题等). 2.了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质(比如收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;二次求和的可交换性,即在 ,11()n m n m A ∞∞==∑∑,,11()n m m n A ∞∞==∑∑以及,,1n m n m A ∞=∑ 都收敛的条件下,有 成立). 3.了解复函数项级数收敛、一致收敛和内闭(紧)一致收敛的含义,掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛,掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性. 4.熟练掌握幂级数收敛半径的两种计算方法: 记00()()n n n f z a z z ∞==-∑,l =1z 是()f z 的不解析点中距0z 最近的点, 利用系数计算的公式:1 R l =. 利用和函数的计算公式:10R z z =-. 熟练掌握同类幂级数的运算性质.比如:设有两个同类幂级数 00()()n n n f z a z z ∞==-∑,00()()n n n g z b z z ∞ ==-∑ 其收敛半径分别为1R ,2R ,不妨设12R R ≤,则在它们收敛的公共范围01z z R -<内

相关文档
相关文档 最新文档