文档库 最新最全的文档下载
当前位置:文档库 › 量子力学总结

量子力学总结

量子力学总结
量子力学总结

量子力学总结

第一部分 量子力学基础(概念)

量子概念

所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。

描述对象:微观粒子 微观特征量

以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数),

1371~

10297.73

2-?==c e α

2原子的电子能级 eV

a e me c e mc E 27~~02242

2

2==???

? ?? 即:数10eV 数量级 ○

3原子尺寸:玻尔半径: 53.0~2

2

0me

a =?,一般原子的半径1?

○4速率:26

~~ 2.210/137

e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期

160

0105.1~2~-?v a t π

角频率16

102.4~~?a v c ω, 即每秒绕轨道转1016圈

(电影胶片21张/S ,日光灯频率50次/S )

○6角动量: =??2

2

20~~e

m me mv a J

基本概念: 1、光电效应 2、康普顿效应

3、原子结构的波尔理论

波尔2个假设: 定态轨道 定态跃迁

4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。

P

h

=λ,h 为普朗克常数

同时满足关系ω ==hv E

因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。

称P

h

h E

v ==λ 德布罗意波关系

例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ=

波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ

晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。

5、波粒二象性 (1)电子衍射实验

1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

0.167nm

h h

p

λ===

汤姆逊(G·P·Thomson)用高速电子穿过金属衍进行实验,也获得了电子衍射的图样。如错误!未找到引用源。是电子在Au多晶的衍射图样。

(2)电子干涉实验

干涉实验说明:

◆大量电子的一次性行为与单个电子的多次性行

为表现出同样的波动性。

◆干涉图像的出现体现了微观粒子的共同特性,它

并不是由微观粒子相互之间作用产生的,而是微

观粒子其个性的集体表现。

结论:

◆干涉、衍射现象是波动本质的体现,波动是无条

件的,干涉、衍射现象的观测是有条件的。

◆干涉图像的出现体现了微观粒子的共同特性,它

并不是由微观粒子相互之间作用产生的,而是微

观粒子其个性的集体表现。

◆粒子的波粒二象性,从量子观点看,所谓粒子性

是它具有质量、能量、动量等粒子属性。所谓波

动性是指其具有频率、波长,在一定条件下,可

观察出干涉和衍射,波和粒子性是物质同时具有

的两个属性(但是不能同时观测),如同硬币的

两面。

备注:宏观粒子(如子弹)仍然具有波动的属性(“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P的动量

运动时,则伴随有波长为λ的波动),但是,观察不到干涉现象。

6、波函数及波函数的统计诠释

(1)波函数:表示一个体系的粒子状态,即用粒子坐标和时间为变量的波函数作为体系粒子状态全面的数学描述。

(2)几率密度|ψ|2:解释为给定时间,在一定空间间隔内发生一个粒子的几率

(或在一定空间间隔内的几率密度) (3)几率|ψ|2d τ:空间d τ体积内的几率

备注:波函数的统计诠释:

|E|2解释为“光子密度的几率量度”

首先考察光的双缝干涉图样。由波动图像,屏幕上某点的强度I 由下式给出

20||I c ε=E (2-13)

式中:E 为该点的电场强度;ε0为真空介电常数;c 为光速。另一方面,由光子图像,屏幕上一点的强度为

I hvN =

式中:hv 是一个光子的能量;N 为打在屏幕上该点的光子通量(单位时间通过单位面积的光子数),虽然单个光子到达屏幕什么地方无法预测,但亮带光子到达的几率大,暗带光子到达的几率小,在屏幕上一点的光子通量N ,便是该点附近发现光子几率的一个量度。因为

20||I c hvN ε==E ,所以2

||N ∝E

上式说明,在某处发现一个光子的几率与光波的电场强度的平方成正比。这就是爱因斯坦早在1907年对光辐射的量子统计解释。 |ψ|2解释为给定时间,在一定空间间隔内发生一个粒子的几率

由于电子也产生类似的干涉条纹,几率大的地方,出现的电子多,形成明条波;在几率小的地方,出现的电子少,形成暗条纹。与爱因斯坦把|E|2解释为“光子密度的几率量度”相似,玻恩把|ψ|2解释为给定时间,在一定空间间隔内发生一个粒子的几率。玻恩指出“对应空间的一个状态,就有一个由伴随这状态的德布罗意波确定的几率”。玻恩由此获得了1954年诺贝尔物理奖。

(4)微观物体任意运动状态(任意态)的描述(非定态波函数)及普遍物理诠释

按照态迭加原理,非征态ψ可以表示成本征态的迭加:

n n

C ψψ=∑

2

||n

C ∑代表总的几率,可见2

||n C 就是ψ态中本

征态ψn 的相对强度(成分),也就是ψ态部分地处于ψn 的相对几率。

2

||n C =在态ψ中力学量F 的取值λn 的几率,这就

是对波函数ψ的普遍物理诠释。

备注:

可以认为ψ是部分地处于ψ1,部分地处于ψ2,因此F 的取值可以是λ1,也可以是λ2……总之,只要n n C ψψ=∑中存在ψn 项,相对应的本征值λn 就是F 的一个取值。 由(4-22)式C n 的公式知

*

n n C d ψψτ=?

对(4-21)取共轭后:***

n n C ψψ=∑

(4-23)(4-21)与(4-23)相乘,再积分

*****2

||n n m m n m nm n n n n

m

n

m

n

n

d d C C C C C C C ψψττψψδ====∑∑∑∑∑∑??

(本征态的正交归一性*

n

m nm d ψψτδ=?) 如果ψ是归一化的,即*1d ψψτ=?,则

2||1n

C

=∑ (4-24)

如果ψ没有归一化,则

2

*

||1n n

C d ψψτ

=∑

? (4-25)

由(4-24)式和(4-25)式得出2||n C ∑代表总的几率,可见2

||n C 就是ψ态中本征态ψn 的相对强度(成分),也就是ψ态部分地处于ψn 的相对几率。

2||n C =在态ψ中力学量F 的取值λn 的几率,这就是对波函数ψ的

普遍物理诠释。

7、波函数的性质

波函数及其一次微商在全部分布空间中都必须有限,单值、连续的,平方可积。

◆ “有限”的要求是从波函数的几率诠释产生出来的,因为,ψ*ψ代表几率,而几率总是有限的。 ◆ “单值”是从波函数作为状态的全面 数学描述提出的要求,如果波函数“连续”的要求是多值函数,状态性质就无法确定了。

◆ “连续”可以从定态一维薛定谔方式:

ψψψE x V dx

d m =+-)(2222 中直接得出,则上式变为:

ψψ])([2222E x V m

dx d -= ,积分一次?

-=dx E V m

dx d ψψ)(22

不管被积函数(V-E )ψ是否连续,(有时V(x)不连续,在个别点有跃变),只要它是有限的,则其积分

总是连续的,因此dx d ψ

是连续的。

◆ “平方可积”:为了计算方便,常引入一些不是平方可积的波函数(相当于粒子运动范围实际上没有限制,粒子可以达无限远处),这时只要作合理数学处理,仍可用

?

=有限值

τψd 2||,归一化几率。

8、波函数的叠加原理

从经典物理中波的概念知,波具有干涉、衍射现象,满足叠加原理,微观粒子具有波粒二象性,即具有波动的特性,因此,微观粒子的波函数也同样具有叠加性,称之为态叠加原理。叠迭加性表现在:

任何一个态(波函数ψ)总可以看成是由其他某些态(ψ1,ψ2……)线性叠加而成:

ψ=C 1ψ1+C 2ψ2+…… C 1,C 2……为复数

如果波函数ψ1,ψ2,…是可以实现的态时,则它们的线性叠加式∑=

n

n

n C ψ

ψ总是一个可以实现的态。

当粒子处于叠加态ψ时,可以认为它是部分地处于ψ1态,部分地处于ψ2态,……部分地处于ψn 态.

9、几率密度与几率流密度 几率密度w :

2

),(),(t r t r w ψ= (2-17)

几率流密度)(2**ψψψψ?-?-

=m

i j

0=??+??

j w t

(2-22)

几率连续性方程,其积分形式为

???

?-=??

S

V

dS

j wd t s

τ (2-23)

j 的物理意义:(几率流密度)

(2-23)式中:

左边代表在封闭区域V s 中找到粒子的总几率(或

粒子数)在单位时间内的增量,

右边(注意符号!)内通过则应代表单位时间V s

的封闭表面S 而流入V s 的内的几率(粒子数),所以j 具有几率流(粒子流)密度的意义,是一个矢量。 这个表达式的物理意义是十分清楚的,即单位时间内空间某一区域V s 中增加的几率等于该区域边界流入的几率。

9、定态(几率)、束缚态(波函数为零)、本征态 10、本征方程、本征函数、本征值 11、算符的对易性

12、常用力学量算符(能量 E

i t

?=? 、哈密顿算符

22()2H V r m =-?+ 、动量 P i →-? 、动能 222T m →? 、势能 ()()V

r V r →、坐标r r → 、角动量、角动量z 轴分量),,,

13、力学量算符的性质(线性、厄米) 14、线性算符的性质 15、厄米算符的性质

(1)、厄米量算符的本征值为实数

(2)、厄米量算符不同本征值对应的本征函数正交,归一。

(3)、厄米算符在一定条件下,厄米算符的本征函数组成完备系。

13、14、15结论:

(1)、力学量算符的本征值为实数

(2)、力学量算符不同本征值对应的本征函数正交,归一。

(3)、在一定条件下,力学量算符的本征函数组成完备系。

16、隧道效益、塞曼效益、史塔克效益

17、微扰的含义

18、全同粒子、费米子、波色子、洪特法则、泡利不相容原理

19、海森堡测不准关系

(两个物理量同时测量测不准) 20、两个物理量同时测准的条件

第二部 基本公式

1、 薛定谔方程

量子波动方程,称薛定谔方程。

三维情况:222

2

222x y z ????=++??? 称拉普拉斯算符

定义: 22?()2h H V r m

=-?+ 称为哈密顿算符 三维薛定谔方程:22

[(,)]2h ih V r t t m ψψ?=-?+?

?ih H t ψψ?=? 2、定态薛定谔方程

在势能项V 中不含时间t 时,哈密顿算符?H

也不显含时间。将ψ(r,t)中与时间有关的因子分离出来,令

(,)()()r t r f t ψψ=

分离变量后得:/()iEt f t ce -=

c 为常数。

因此,薛定谔方程的解可以表示为

/(,)()iEt r t r e

ψψ-=

(2-14)

波函数的空间部分ψ(r)满足方程:

22?()[()]2h H r V r E m

ψψψ=-?+= (2-15) 粒子处于该状态时能量为E ,E 与r 、t 无关是个常量,取确定值,所以由式(2-14)表示的状态叫(能量)定态,这种形式的波函数叫定态波函数。方程(2-15)又叫定态薛定谔方程。

定态波函数/(,)()iEt r t r e ψψ-=

特点(判断依据):几率密度*22

|||()|W r ψψψψ===与

时间无关(驻波)。

而含时间的薛定谔方程(2-12)的一般解,可以表示为这些定态波函数的线性叠加:

/(,)()x

iE t n n n

r t c r e ψψ-=∑

(2-16a )

式中cn 为常数。

3、一维无限深势阱势的解(能量本征方程、能量定态)

4、谐振子的能量本征方程及其解(能量定态)

5、动量本征方程及其解(动量定态)

6、角动量本征方程及其解(角动量定态)

7、中心力场问题的解(三维)

8、算符的对易性

一般来说,若算符 A 和 B 满足 AB BA =,则称为“可对易”,类似乘法的互易性;如果 AB BA ≠,则称为 A 和 B

“不可对易”, 定义

[]A B AB BA ?≡-对易关系式 当

[]0A B ?=时,称对易式 当

[]0A B ?≠时,称不对易式 9、动量与坐标、能量与时间的测不准关系 10、任意态的波函数、其所含本征态系数及几率表达公式

设力学量?F

的正交归一本征函数系为{ψn },由于其完备性,任意一个波函数ψ(r)都可以展开为

()()n n r c r ψψ=∑

(4-21)

展开式系数c n 与位置矢r 无关,以*

m ψ乘(4-21)式两端,并对全空间积分两端,并对全空间积分,考虑到正交归一条件即得

***

()()()()()()m m n n n m n n mn m n

n

n

r r d r c r d c r r d c c ψψτψψτψψτδ====∑∑∑???

将m n c c →

可得展开式系数C n 的公式

*()()n n c r r d ψψτ= (4-22)

对(4-21)取共轭后:*

*

*n

n

C ψψ

=

∑ (4-23)

(4-21)与(4-23)相乘,再积分

*****2

||n n m m n m nm n n n n

m

n

m

n

n

d d C C C C C C C ψψττψψδ====∑∑∑∑∑∑??

(本征态的正交归一性*

n m nm d ψψτδ=?

如果ψ是归一化的,即*

1d ψψτ=?

,则

2||1n

C =∑

(4-24)

如果ψ没有归一化,则

2

*

||1n n

C d ψψτ

=∑

?

(4-25)

11、任意态物理量值的平均值公式

2*

*****||n n n n n n n n n n n n n

n

n n

n

F C C C C d d C d C F d F C d F

λλλψψτ

τψλψτψψτψψτψψ=======∑∑∑?∑?∑?∑??

上式为平均值公式,即

2*||n n F C F

d λψψτ== (4-29)

据此公式知,只要知道波函数ψ,就可以直接计算任何力学量F 的平均值,而不需要预先求出F 的全部本征值(进而求加权平均)和本征函数。

若ψ没有归一化,则

2

2||||

n

n n

n

C F C λ=

∑∑ (4-30)

**

F d F d ψψτ

ψψτ

=

?? (4-31)

第三部分 习题

1、求最大几率半径

3-8 第一激发态谐振子

[解]

由22

/2

1()x xe α

ψγ-=

几率密度22

2221()||x

w x x e α

ψ-==

令x ξα=,则

2

2()()w x x e ξξ-→=

'''

2

0dw

d ξ=得

}2

2

2

220(1)e e ξξ

ξξξ----=-

21ξ=,即221x α=

1/(x α

∴=±=

6-3

0/r a ψ-

○1**2

r r d r r drd ψψτψψΩ==???

02/30234000

14!3

42()r a r e dr a a a a ππ∞

-=?=?=? ○2022222/33200000

441!2()

r a s s s s e e e e re dr r a a a a ππ∞--?-==-?=-? ○

3r r dr →+球索内出现电子的概率 0

2/*2230

4()4r a w r dr r r e dr a πψψ-==

几率密度

2/23

4()r a w r r e a -∴=

02/2/2

/

2330

4

28(2)(1)0r a r a r a dw r

re r e re dr a a a a --

-

=-

=

-

= 12300,,r r r a ∴==∞=

进一步讨论可知,只有r =a 0才是最大值处,所以最可几半径r =a 。

2、定态方程(能量本征态方程)求解

3-7 一维势阱

解:,()0,||x a x a

V x x a ∞<->?=??

或…

定态方程为

2222d E dx

ψ

ψμ-= ()a x a -剟 (1)

0ψ=

()x a x a <->或 (2)

令222E

μα=

,E>0,所以α为实数,方程(1)化为 22

2

0d dx ψαψ+=

(3) 其通解为:()sin cos x A x B x ψαα=+

(4) 由连续条件

:0sin cos x a A a B a αα=-=-+ (5) :0sin cos x a A a B a αα==+ (6)

(5)+(6) 2cos 0B a α=

若B =0,则A ≠0,sin αa =0 2a n π=

22

222

222

2

22n E n n E a

a μππαμ==?=

(7)

sin

n n A x a

π

ψ=

(8)

(6)-(5)得2sin 0A x α= 若A =0,则B ≠0,cos αa =0

所以 1

(21)()

22a n n παπ=+?=+ 2222

22

1()222n n n E a παμμ+==? (9)

1

()2()cos n n x

x B a

πψ+= (10)

(7)、(9)两式可改写为

222

2(2)8n n E a πμ=

(7')

222

2

(21)8n n E a πμ+=

(9')

(8)、(10)也可改写为

2sin

2n n A x a π

ψ=

(8') (21)

cos 2n n B x a

ψ+=

(9') 将(9')~(10')四式合之有

2222

sin ,||()

20,||cos ,||()20,||(1,2,3,)

8n n n n x A x a n a x a n x B x a n a x a

n E n a πψπψπμ??

??=?

??>???

????

=????>???=

=????

为偶数为奇数……

归一化常数A B ==

[注]两个ψn

可合为:()(||)2n n x a x a a

πψ=

+…

3-10

解由E 满足0

()x

I Ae x a βψ=<-

sin()II B x ψαδ=+

()x

III Ce x a βψ-=>

当ψ及ψ'的连续性条件有

://I I II

II x a ψψψψ''=-=,cos()

sin()

a

a

Ae B a Ae B a βββααδαδ---+=

-+

即 c t g ()

a βαδα

-+=

(1)

://I II III

III x a ψψψψ''==,cos()sin()a

a

B a Ce B a Ce ββααδβαδ--+-=+ 即 c t g ()

a β

αδα

-+= (2)

由(1)、(2)得

11ctg ()a n β

αδπα

--+=+

(3)

1122ctg (

)ctg ()a n n β

βαδππα

α

---+=+=-

(4)

(4)-(3)得:

-1212()2ctg ()a n n β

απα

=--

令 21n n n =-(为整数),则有

-1ctg ()2

a n π

βαα

=?-

(5)

但1ctg ()sin βα

--=

而222200[22()]/2/E V E V αβμμμ+=+-= 故(5)式可化为:

1sin 2n a πα-=

- (6)

采用数值解法或作图法可求得不同n 值的αn

值,由α= 进而求出E n 。 3-11 不对称力场中的粒子

解:1

2

100

()

V x V x x a V V x a

=??<>?剟

束缚态要求2E V <(但0E >) 与上题解法相类似 令 2221

2/,

2()/E V E αμβμ==- 2222()/V E γμ=- ,α、β、γ均为实数

分别求解定态方程,利用x →±∞,ψ有限条件有

(0)

sin()(0)()x I II x

III

Ae x B x x a Ce x a βγψψαδψ-?=

=+??=>?剟 由x =0,a 时,ψ、ψ'的连续性得

ctg β

δα

=

(1) ctg(2)γ

αδα

-+=

(2)

由(1)

sin δ=

=

1sin δ-??

=

(3)

由(2)

sin()a αδ+=

=

(4)

所以

1sin a n αδπ-??

+=-

1

1

sin sin a n απ--????=--

3-12 平面转子

解:平面转子作一维运动,绕z 轴旋转

由 22

2

?()()()2d H E I d ψ?ψ?ψ??=-=

(1)

令22/IE α= ,(α为实数),方程(1)可化为

222

()

()0d d ψ?αψ??

+= (2)

方程的解为:

()i i Ae Be α?α?ψ?-=+

(3)

由周期条件(2)()ψ?πψ?+=

得 21i e απ±=

22m αππ∴?=?,

(0,1,2,3,)m m α∴==±±±

(4)

(3)中A 项表示逆时针转动,B 项表示顺时针转动,α=m 中,α可正可负,所以只需保留一项,

()im Ae ?ψ?=

(5) 能级 22

22

22m m E I I α==

(6)

(0,1,2,3)m =±±±

3-13 范德瓦尔斯力

解:0

1,0,(),0

x V x x a V x V a x b

x b

-??>?…剟

10V E -<<为束缚态。

分区求解定态方程可得:

量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =?,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ == = =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:()2 r t ψ ,代表t 时刻,粒子在 空间r 处单位体积中出现的概率,又称为概率密度。这 是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。 5.波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδφφτδλλ**''==-??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写 的态中测量粒子动量所得结果在p p dp →+范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为:?F ψλψ =。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19.希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: 1 6 , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。

量子力学课程人学考试主要内容

843量子力学考试大纲 适用于物理学所有学科 Ⅰ考查目标 理论物理、粒子物理与原子核物理、凝聚态物理等专业研究生入学考试《量子力学》课程,重点考查考生掌握量子力学基本概念、基本原理以及运用量子力学基本理论解决具体相关物理问题的能力,为进一步学习其它专业课程或从事科研和教学工作奠定坚实的基础。 Ⅱ考试形式和试卷结构 一、试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 二、答题方式 答题方式为闭卷、笔试。 三、试卷内容结构 波粒二象性、波函数和薛定谔方程 45分 量子力学的力学量及其表象 30分 微扰理论、自旋与全同粒子、粒子在电磁场中的运动 75分 四、试卷题型结构 简答题 2小题,每小题10分,共20分 证明题 2小题,每小题15分,共30分 计算题 4小题,每小题25分,共100分 Ⅲ考查范围 一、波粒二象性、波函数和薛定谔方程 考查主要内容: (1)光的波粒二象性的实验事实及其解释。 (2)原子结构的玻尔理论和索末菲的量子化条件。 (3)德布罗意关于微观粒子的波粒二象性的假设。 (4)德布罗意波的实验验证。 (5)波函数的统计假设和量子态的表示形式。 (6)态叠加原理的内容及其物理意义。 (7)薛定谔方程和定态薛定谔方程的一般形式。

(8)粒子流密度的概念及粒子数守恒的物理内容。 (9)一维薛定谔方程求解的基本步骤和方法。 (10)几个典型的一维定态问题: a.一维无限深势阱; b.一维谐振子; c.一维方势垒; d.一维有限方势阱; e. 势。 二、量子力学的力学量及其表象 考查主要内容: (1)动量算符的表示形式及其与坐标算符间的对易关系,动量算符本征函数的归一化。 (2)角动量算符的表示形式及其有关的对易关系,角动量算符2?L和z L?的共同本征函数及所对应的本征值。 (3)电子在固定的正点电荷库仑场中运动的定态薛定谔方程及其求解的基本步骤;定态波函数的表示形式;束缚态的能级及其简并度;并由此讨论氢原子的能级、光谱线的规律、电子在核外的概率分布和电离能等。 (4)量子力学中的力学量与厄米算符相对应;厄米算符的本征函数组成正交完备集。 (5)力学量可能值、平均值的计算方法,两个力学量同时具有确定值的条件。 (6)不确定关系及其应用,守恒量的判断方法。 (7)矩阵的运算。 (8)态的矩阵表示。 (9)算符的矩阵表示。 (10)量子力学公式的矩阵表示。 (11)不同表象间的变换。 三、微扰理论、自旋与全同粒子、粒子在电磁场中的运动 考查主要内容: (1)非简并定态微扰理论。 (2)简并情况下的定态微扰理论。 (3)电子自旋的实验事实。 (4)电子自旋算符和自旋波函数。 (5)全同粒子的不可区分性原理,玻色子和费米子概念。 (6)全同粒子体系的波函数和泡利不相容原理。 (7)两自旋体系的波函数。 (8)电磁场中荷电粒子的运动,两类动量。 (9)正常塞曼效应。 (10)定域电子(考虑自旋)在均匀磁场中的运动。

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学学习计划.docx

量子力学总结 量子力学研究对象:微观粒子运动规律 第一章 一、经典物理学的困难 1、黑体辐射问题 2、光电效应问题 3、原子的线状光谱和原子结构问题 4、固体在低温下的比热问题 二、量子力学的两个发展阶段 1、旧量子论( 1900-1924)以普朗克、爱因斯坦、玻尔为代表 2、新量子论( 1924年建立)以德布罗意、薛定谔、玻恩、海森堡、狄拉克为代表 三 .光的波动性 典型的实验: 1802年的杨氏干涉实验和后来的单缝、双缝衍射实验。 四 .黑体辐射 如果一个物体能全部吸收投射到它上面的辐射而无反射,这种物体为绝对黑体(简称黑体),它是一种理想化模型。 五、光电效应 1、在光的作用下,电子从金属表面逸出的现象,称为光电效应。 2、自 1887年 Hertz 起,到 1904 年 Milikan 为止,光电效应的实验规律被逐步揭露出来。其中,无法为经典物理学所 解释的有: ( 1)对一定的金属,照射光存在一个临界频率,低于此频率时,不发生光电效应。(不论光照多么强,被照射的金属都不发射电子) ( 2)光电子的动能与照射光的频率成正比(),而与光的强度无关。 ( 3)光电效应是瞬时效应() 六、康普顿效应 定义:短波电磁辐射(如 X 射线,伽玛射线)射入物质而被散射后,除了出现与入射波同样波长的散射外,还出现波长向长波方向移动的散射现象公式推导: 公式是又康普顿提出的,有康普顿和吴有训用实验证实的。 七:玻尔理论的两个基本假设

( 1)量子条件:(且存在定) ( 2)率条件:,有(1)、(2)可得 量子化通:n=1, 2, 3??玻理不能解多子原子 和的度。玻理是半典半量子的理。 八、德布意假 德布意 1924 年提出:微粒子也具有波粒二象性。 德布意关系式: 种表示自由粒子的平面波称德布意波或“物波”。 九、平面波方程 或 种波(自由粒子的平面波)称德布意波。 十、德布意波的 1.子的衍射 1927 年美国科学家戴( Davisson)和革末( Germer)用了德布意波的正确性。后来,姆又用子通金箔得到了子的衍射。 2.子的干涉 3.它是由江希太特和杜开在1954 年作出。后来又由法盖特和特在1956 年做出。 4.其他表面:一切微粒子都具有波粒二象性 5.物波的用 子微(分辨率的普遍表达式) 第二章 一、典力学点的描述(坐和量) 律: 二、自由粒子的波函数(德布意假) 三、波函数的解 Born 首先提出了波函数意的解:波函数在空某点的度(振幅的平方)和在点找到粒子的几率成比例,即描写粒子 的波可以是几率波。 四、波函数的性 1. 表示:在 t 刻 ,在 r 点,在 d τ= dxdydz 体内,找到由波函数Ψ(r,t)描写的粒子的几率是。 2.几率密度:

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

量子力学主要知识点复习资料

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,??? 对频率为ν 的谐振子, 最小能量ε为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p = =v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ρρηρηψψ 粒子的波动性可以用波函数来表示,其中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应 该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψρ ρ η 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 表示点(x,y,z )处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值 2 |(,,)|x y z ψ2|(,,)|x y z x y z ψ???x y z τ?=???2 |(,,)|1x y z dxdydz ψ∞ =?(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,) x y z ψ

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学教学大纲

《量子力学》课程教学大纲 课程代码:090631011 课程英文名称:Quantum Mechanics 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:光电信息科学与工程专业 大纲编写(修订)时间:2017.10 一、大纲使用说明 (一)课程的地位及教学目标 量子力学是近代物理的两大科学之一,是描述微观运动世界的基本理论,是近代光学技术的重要基础,是光信息科学与工程专业一门重要的专业必修基础课。本课程主要讲授量子力学的基本概念,基本原理和数学方法。为后续的专业课程学习打下夯实的量子力学基础。 通过本课程的学习,学生将达到以下要求: 1.掌握量子理论的物理图像,基本概念; 2.获得描述微观物理规律的理论工具--量子力学的基本原理和框架结构,能用这些原理解决常见的,简单的微观物理现象; 3.加深对现代科学理论的形式、特点的认识,提高科学方法论水平; 4.了解量子力学有关的科学发展。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握量子力学的基本原理和总的理论框架 2.基本理论和方法:掌握用波函数描述微观粒子的状态,用算符描述相应的力学量,以及波函数的演化规律——薛定谔方程。会解简单的一维定态薛定谔方程。掌握用矩阵描述态和算符的方法。掌握简并和非简并的微扰理论,以及含时微扰理论,能用含时微扰理论解释原子的跃迁和发光。掌握电子自旋的基本理论,全同粒子的特性及其描述方法。 3.基本技能: 利用数学手段解决具体物理问题的能力。 (三)实施说明 1.大纲中的重点内容是学习量子力学基本理论所必需掌握的内容,教学中如果学生接受的较好,可适当增加一些在实际中有很广泛应用的问题作为重点内容。 2.教学方法,课堂讲授中要重点对基本概念、基本原理和基本方法进行讲解;要站在学生的角度进行讲解,以使学生能较自然的接受以前没有接触到的新的概念,新的理论框架和思想方法。并在讲解中使学生深入理解现代科学理论的建立过程,反过来促进学生对所学内容的理解和掌握。 3.教学手段,本课程属于理论课,在教学中对基本原理,基本方法的讲解主要采用板书形式;对于具体应用并且数学推导较繁琐的问题可采用课件形式,既能使学生看清解题的思路、过程、特点,又能节省时间。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程的先修课程是《线性代数》,《数学物理方法》,《原子物理》 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:一维问题的计算,力学量平均值和幺正变换的计算,微扰问题的计

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

量子力学主要知识点复习资料全

量子力学主要知识点复习资料 全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示, 其中,振幅 表示 波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点 (x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附 件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 2|(,,)|x y z ψ(,,)x y z ψ(,,)c x y z ψα i e C =(,,)i e x y z αψ(,,)x y z ψ

原子物理量子力学主要知识点复习

1.爱因斯坦关系是什么什么是波粒二象性 答:爱因斯坦关系:?? ? ??========k n n h n c h n c E p h hv E ρηρηρρρρηηλπλνπω 22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就 是说光具有波粒二象性。 2.α粒子散射与夫兰克-赫兹实验结果验证了什么 答:α粒子散射实验验证了原子的核式结构,夫兰克-赫兹实验验证了原子能量的量子化 3.波尔理论的内容是什么波尔氢原子理论的局限性是什么 答:波尔理论: (1)原子能够而且只能够出于一系列分离的能量状态中,这些状态称为定态。出于定态时,原子不发生电磁辐射。 (2)原子在两个定态之间跃迁时,才能吸收或者发射电磁辐射,辐射的频率v 由式 12E E hv -=决定 (3)原子处于定态时,电子绕原子核做轨道运动,轨道角动量满足量子化条件:ηn r m = υ 局限性: (1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱; (2)不能给出光谱的谱线强度(相对强度); (3)从理论上讲,量子化概念的物理本质不清楚。 4.类氢体系量子化能级的表示,波数与光谱项的关系 答:类氢体系量子化能级的表示:()2 2202 442n Z e E n ηπεμ-= 波数与光谱项的关系Λ,4,5.3,3,5.2,121 ?22=?? ? ??-=n n R v 5.索莫菲量子化条件是什么,空间取向量子化如何验证 答:索莫菲量子化条件是nh q p =?d 空间取向量子化通过史特恩-盖拉赫(Stern-Gerlach )实验验证。、 6.碱金属的四个线系,选择定则,能级特点及形成原因 答:碱金属的四个线系:主线系、第一辅线系(漫线系)、第二辅线系(锐线系)、柏格曼系(基线系) 碱金属的选择定则:1,0,1±=?±=?j l 碱金属的能级特点:碱金属原子的能级不但与主量子数n 有关,还和角量子数l 有关;且对于同一n ,都比氢(H)能级低。 形成原因:原子实外价电子只有一个,但是原子实的极化和轨道的贯穿产生了影响,产生了与氢原子能级的差别 7.自旋假设内容,碱金属光谱精细结构特点

量子力学数学基础学习知识说明介绍

目录 第1章量子力学简史 (2) 第2章量子力学重要内容简介 (3) 2.1基本假设 (3) 2.2对易力学量完全集 (4) 2.3态矢量、算符 (4) 2.3.1态矢量 (4) 2.3.2算符 (5) 第3章泛函分析简介 (5) 3.1集合与空间 (5) 3.1.1集合 (5) 3.1.2拓扑空间 (6) 3.1.3度量空间 (6) 3.1.4赋范线性空间 (6) 3.1.5内积空间 (7) 3.1.6希尔伯特空间 (7) 3.1.7希尔伯特空间的重要性质 (7) 3.1.8综述 (8) 3.2线性算子 (9) 3.2.1线性算子 (9) 3.2.2线性运算与乘法 (10) 3.2.3伴算子 (10) 3.2.4自伴算子 (11) 第4章量子力学中泛函分析的应用 (12) 4.1量子态的矩阵表示 (12) 4.2算符 (13) 4.3本征方程 (13) 4.4平均值 (14) 第5章后序 (14)

参考文献 (16) 第一章量子力学简史 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利(pauli)等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

《量子力学》的诞生(知识点总结)

第一讲 量子力学的诞生 ★重点与难点解析 一、经典物理碰到的严重困难(不能解释的典型物理现象) 1. 无法解释黑体辐射问题 (1)一些基本概念 黑体;热辐射;单色辐出度;辐射出射度。 (2)单色辐出度的一些理论公式与实验结果的差异 维恩(Wien )公式只在短波波段(高频部分)与实验符合,而在长波波段(低频部分)与实验差别较大。 瑞利—金斯(Rayleigh-Jeans )公式只在长波波段(低频部分)与实验符合,而在短波波段(高频部分)与实验有明显差异,历史上称为“紫外灾难”。 普朗克通过改进维恩公式,得到了一个辐射公式(后称为普朗克公式),其与实验符合的很好。但无法用经典物理来解释这个公式 2. 无法解释光电效应 (1)什么是光电效应;什么是光电子 (2)光电效应的特点 A )对于一定的金属材料做成的(表面光洁的)电极,有一个确定的临界频率0ν,当照射光频率0νν<时,无论光的强度多大,都不会观测到光电子从电极上逸出; B )每个光电子的能量只与照射光的频率有关,而与光强度无关。光强度只影响到光电流的强度,即单位时间从金属电极单位面积上逸出的电子的数目; C )当入射光频率0νν>时,不管光多微弱,只要光一照上,几乎立刻观测到光电子。这与经典电磁理论计算结果不一致。 以上三个特点中,C )是定量上的问题,而A )和B )在原则上无法用经典物理学来解释。 3. 无法解释原子结构 经典理论无法解释原子的线状光谱和稳定性等: (1)根据经典理论,原子向外辐射电磁波,随电子运动轨道的半径不断减小,辐射电磁波的频率将连续变化。而实验发现,原子光谱是离散的线状光谱,并非连续; (2)原子的核型结构是不稳定的,绕核旋转的电子最终将落到原子核上,但实际原子是稳定的,电子不会落到原子核上。 4. 无法解释极低温下固体与分子的比热问题 在极低温下,由经典统计力学的能量均分定理等得到的固体与分子的比热与实验不符。 二、能量量子化思想对上述问题的解释 1. 普朗克(Planck )能量子假说 1900年,普朗克发现:如作下列假设,就可以根据玻尔兹曼分布律从理论上导出与实验结果相符合的普朗克黑体辐射公式。

高中物理选修知识点整理

高中物理选修3-5知识点梳理 一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式P = mv。单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。 3、动量与动能、动量守恒定律与机械能守恒定律的比较。 动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。 动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。 4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状

相关文档