文档库 最新最全的文档下载
当前位置:文档库 › 2014 fungal diversity

2014 fungal diversity

2014 fungal diversity
2014 fungal diversity

Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China

Chao Xu&Chunsheng Wang&Liangliang Ju&Rong Zhang&

Alan R.Biggs&Eiji Tanaka&Bingzhi Li&Guangyu Sun

Received:6March2014/Accepted:2September2014

#School of Science2014

Abstract Apple ring rot inflicts severe economic losses in the main apple producing areas of East Asia.The causal agent of the disease has been variously identified as Macrophoma kuwatsukai,Physalospora piricola and Botryosphaeria berengeriana f.sp.piricola,although B.dothidea is currently the most widely accepted pathogen name.The taxonomic uncertainty has delayed research that is needed to manage effectively this destructive disease.In the present study,gene-alogical concordance phylogenetic species recognition (GCPSR)was applied to pathogenic fungal isolates from apple and pear from several locations in China,along with several reference isolates.Phylogenetic results based on se-quences of four nuclear loci(ITS,EF-1α,HIS and HSP) revealed the existence of two species within the examined isolates.One includes an ex-epitype isolate of B.dothidea and the other includes an isolate that was previously designated as B.berengeriana f.sp.piricola.Morphologically,the latter taxon presented an appressed mycelial mat on PDA whereas B.dothidea displayed columns of aerial mycelia reaching the lids,and conidia of the latter species were longer than B.dothidea.Botryosphaeria dothidea had a faster growth rate than the latter taxon under relatively high temperatures.Path-ogenicity tests showed that on pear stems the latter taxon caused large-scale cankers along with blisters whereas B.dothidea was non-pathogenic,but on apple shoots the two fungi induced large and small wart-like prominences, respectively.Overall,this cryptic species demonstrated suffi-cient genetic variations and biological differences from B.dothidea.As a result of taxonomic study,we described here the latter taxon in a new combination,Botryosphaeria kuwatsukai and designate an epitype.Both B.kuwatsukai and B.dothidea are considered to be the main causal agents for apple ring rot in China and Japan.

Key words Botryosphaeriaceae.Pear.Multi-gene phylogeny.Pathogenicity.Group I intron.Taxonomy Introduction

Ring rot has recently become one of the most destructive apple diseases in China,as well as in several neighboring countries,including Japan and South Korea(Ogata et al. 2000;Park2005;Tang et al.2012).Symptoms of the disease appear as a soft,light-coloured rot on fruit,especially during storage,and extensive cankers and/or warts on branches and trunks(Chen1999).Widespread planting of susceptible cul-tivars(e.g.,Fuji)over the past several years and reduced fungicide usage due to fruit bagging have likely resulted in the increased occurrence of ring rot,resulting in serious eco-nomic losses to Chinese apple growers(Kang et al.2009).

Apple ring rot disease was first reported in Japan in1907. The pathogen was later described as Macrophoma kuwatsukai Hara(Hara1930).Soon afterwards,the sexual morph of the pathogen was found and named Physalospora piricola(Nose 1933).This taxon had long been known as the causal agent

of C.Xu

:C.Wang:L.Ju:R.Zhang:G.Sun(*)

Key Laboratory of Crop Stress Biology in Arid Areas,College of

Plant Protection,Northwest A&F University,No.3Taicheng Road,

Yangling712100,Shaanxi,China

e-mail:sgy@https://www.wendangku.net/doc/2916026237.html,

B.Li(*)

College of Horticulture,Northwest A&F University,No.3Taicheng

Road,Yangling712100,Shaanxi,China

e-mail:bzhli530530@https://www.wendangku.net/doc/2916026237.html,

A.R.Biggs

Kearneysville Tree Fruit Research and Education Center,West

Virginia University,P.O.Box609,Kearneysville,WV25443,USA

E.Tanaka

Division of Environmental Science,Ishikawa Prefectural University,

Suematsu1-308,Nonoichi,Ishikawa921-8836,Japan

Fungal Diversity

DOI10.1007/s13225-014-0306-5

apple ring rot in other countries.Koganezawa and Sakuma (1980,1984)reappraised the sexual morph and tried to equate it with the morphologically identical Botryosphaeria berengeriana,a fungus causing apple Botryosphaeria canker (and fruit rot)in Japan.However,distinctly different symp-toms,cankers and wart bark,caused by B.berengeriana and by P.piricola,respectively,on branches and trunks resulted in the authors proposing the name Botryosphaeria berengeriana f.sp.piricola for Physalospora piricola(Koganezawa and Sakuma1984).As Botryosphaeria berengeriana and B.berengeriana f.sp.piricola induced the same apple rot symptom,diseases caused on fruit were referred to both as apple ring rot(Koganezawa and Sakuma1984).These two pathogen taxons are generally accepted in Japan,but they are rejected by European and American researchers who consider B.berengeriana to be a synonym of B.dothidea(Jones and Aldwinckle1990;Slippers et al.2004a).In China,the correct taxonomy of the apple ring rot pathogen is uncertain,in that Physalospora piricola,Botryosphaeria berengeriana, B.berengeriana f.sp.piricola and B.dothidea have been adopted by different researchers(Qu et al.2007;Peng et al. 2011;Lv et al.2012;Tang et al.2012).

The application of molecular techniques to the taxa asso-ciated with apple ring rot has shown that genetic heterogeneity exists among these pathogenic fungal isolates.Ogata et al. (2000),using ITS sequences,divided isolates of Botryosphaeria causing ring rot on apple fruit into two groups based on twig symptoms(warts or blight)and size of conidia. Huang and Liu(2001)showed that there was marked a dif-ference between B.berengeriana and B.berengeriana f.sp. piricola by RAPD analysis,in spite of their close genetic relationship.Peng et al.(2011)separated isolates from apple ring rot into two ISSR groups.Lv et al.(2012)proposed that the isolates causing apple ring rot with different variable sites in ITS sequences might behave differently in terms of patho-genicity and some biological characteristics(e.g.,the ability to sporulate).Xu et al.(2013)genotyped B.dothidea isolates (including some from apple trees)according to the distribution of ribosomal group I introns.Four genotypes were described and the authors indicated that there may be a correlation between these genotypes and host or geographic origin.The high amount of variation detected by the different approaches suggests that there is a mixture of pathogens rather than a single pathogenic species that causes apple ring rot.

Accurate identification of etiological factors is the founda-tion of plant disease research.Vague classification and con-fused appellation of the apple ring rot pathogen has led to the inability to compare research results from different countries, regions and investigators.Therefore,the objectives of this study were to:1)re-assess the Botryosphaeria isolates asso-ciated with symptoms of apple ring rot,including fruit rot, branch canker and wart bark in China,2)detect the reasons for the high amount of variation among isolates,and3)clarify whether any cryptic fungal species exist within the hypothet-ical pathogenic complex.Our approaches to the study includ-ed genealogical concordance phylogenetic species recognition (GCPSR)of multi-gene loci(Taylor et al.2000),as well as analysis of morphology,pathogenicity and growth characteristics.

Materials and methods

Fungal isolates

Twenty-four isolates(Table1)were used in this study,18of which were collected in the main apple production areas of China(Shaanxi,Henan,Shandong,Liaoning,Jiangsu,Shanxi, Hebei Provinces)during2008–2011.Of these18isolates,16 were either from warts or cankers on apple branches and trunks or apple fruit with rot symptoms;and two were isolated from the diseased woody tissue of pear exhibiting canker symptoms. The other six were reference isolates,including one isolate each of B.dothidea,B.berengeriana and B.berengeriana f.sp. piricola from the Fruit Tree Research Experiment Station of the Ministry of Agriculture,Forestry and Fisheries(MAFF), Japan,two isolates of B.dothidea from the International Col-lection of Microorganisms from Plants(ICMP),New Zealand, and one ex-epitype isolate of B.dothidea from the Centraalbureau voor Schimmelcultures(CBS),Netherlands. All the isolates collected in this research were obtained from either pycnidia directly or diseased tissue by cultivating on potato dextrose agar(PDA),and were examined for colony characteristics and microscopic morphology to preliminarily identify them as Botryosphaeria spp.They were then purified by single conidium isolation and stored at?80°C in College of Plant Protection,Northwest A&F University,China.

DNA extraction,PCR amplification and sequencing

Single-conidial isolates were grown on PDA and incubated for5days at25°C in the dark.Total genomic DNA was extracted from fungal mycelium following the modified phe-nol:chloroform DNA extraction method(Smith et al.2001). Four different gene regions were selected for characterization, including the complete nuclear rDNA internal transcribed spacer(ITS)region(White et al.1990),partial sequence of translation elongation factor1alfa(EF-1α),histone H3(HIS) and heat shock protein(HSP)genes(Inderbitzin et al.2010). The polymerase chain reaction(PCR)was performed in a reaction mixture of25μl containing approximately10–30ng fungal genomic DNA,10×Taq buffer with(NH4)2SO4, 1.5mM MgCl2,0.2μM of each dNTP,5pmol of each primer, 1U Taq polymerase and sterile ultrapure water.The following thermal protocol for PCR was applied:an initial denaturation at94°C for2min,followed by32amplification cycles of

Fungal Diversity

T a b l e 1C o l l e c t i o n d e t a i l s a n d G e n B a n k n u m b e r s o f s p e c i e s t r e a t e d i n t h e p h y l o g e n i e s

S p e c i e s

C u l t u r e s

G e o g r a p h i c o r i g i n H o s t S u b s t r a t e G e n B a n k n u m b e r s a

I T S E F 1-αH S P H I S I s o l a t e s c o l l e c t e d i n t h i s s t u d y B o t r y o s p h a e r i a d o t h i d e a P G 20S h a a n x i ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433398K J 433420K J 433466K J 433442B o t r y o s p h a e r i a d o t h i d e a P G 45S h a a n x i ,C h i n a M a l u s d o m e s t i c a t r u n k K J 433399K J 433421K J 433467K J 433443B o t r y o s p h a e r i a d o t h i d e a P G 77

S h a a n x i ,C h i n a M a l u s d o m e s t i c a b r a n c h K J 433400K J 433422

K J 433468

K J 433444

B o t r y o s p h a e r i a d o t h i d e a P G 267H e n a n ,

C h i n a M a l u s d o m e s t i c a f r u i t K J 433401K J 433423K J 433469K J 433445B o t r y o s p h a e r i a d o t h i d e a P G 293S h a n d o n g ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433402K J 433424K J 433470K J 433446B o t r y o s p h a e r i a d o t h i d e a P G 320L i a o n i n g ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433403K J 433425K J 433471K J 433447B o t r y o s p h a e r i a d o t h i d e a P G 327H e b e i ,C h i n a M a l u s d o m e s t i c a b r a n c h K J 433404K J 433426K J 433472K J 433448B o t r y o s p h a e r i a d o t h i d e a P G 329J i a n g s u ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433405K J 433427K J 433473K J 433449B o t r y o s p h a e r i a d o t h i d e a P G 331S h a n x i ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433406K J 433428K J 433474K J 433450B o t r y o s p h a e r i a k u w a t s u k a i P G 2/C B S 135219S h a a n x i ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433388K J 433410K J 433456K J 433432B o t r y o s p h a e r i a k u w a t s u k a i P G 55S h a a n x i ,C h i n a M a l u s d o m e s t i c a b r a n c h K J 433389K J 433411K J 433457K J 433433B o t r y o s p h a e r i a k u w a t s u k a i P G 259H e n a n ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433390K J 433412K J 433458K J 433434B o t r y o s p h a e r i a k u w a t s u k a i P G 297S h a n d o n g ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433391K J 433413K J 433459K J 433435B o t r y o s p h a e r i a k u w a t s u k a i P G 328H e b e i ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433392K J 433414K J 433460K J 433436B o t r y o s p h a e r i a k u w a t s u k a i P G 330J i a n g s u ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433393K J 433415K J 433461K J 433437B o t r y o s p h a e r i a k u w a t s u k a i P G 332S h a n x i ,C h i n a M a l u s d o m e s t i c a f r u i t K J 433394K J 433416K J 433462K J 433438B o t r y o s p h a e r i a k u w a t s u k a i L S P 5S h a a n x i ,C h i n a P y r u s s p .b r a n c h K J 433395K J 433417K J 433463K J 433439B o t r y o s p h a e r i a k u w a t s u k a i L S P 20

S h a a n x i ,C h i n a P y r u s s p .t r u n k K J 433396K J 433418

K J 433464

K J 433440

R e f e r e n c e s t r a i n s B o t r y o s p h a e r i a b e r e n g e r i a n a M A F F 645001

J a p a n M a l u s d o m e s t i c a

t w i g

K J 433409

K J 433431

K J 433479

K J 433455

B o t r y o s p h a e r i a b e r e n g e r i a n a f .s p .p i r i c o l a

M A F F 645002J a p a n M a l u s d o m e s t i c a t w i g K J 433397K J 433419K J 433465K J 433441B o t r y o s p h a e r i a d o t h i d e a

I C M P 8019

N e w Z e a l a n d P o p u l u s n i g r a

t w i g

A Y 236950

A Y 236899

K J 433476

K J 433452

B o t r y o s p h a e r i a d o t h i d e a I

C M P 13957N e w Z e a l a n d M a l u s ×d o m e s t i c a f r u i t K J 433407K J 433429K J 433477K J 433453B o t r y o s p h a e r i a d o t h i d e a M A F F 410826J a p a n P r u n u s s p .u n k n o w n K J 433408K J 433430K J 433478K J 433454B o t r y o s p h a e r i a d o t h i d e a C B S 115476

S w i t z e r l a n d

P r u n u s s p .

u n k n o w n

A Y 236949

A Y 236898

K J 433475

K J 433451

S e q u e n c e s u s e d B o t r y o s p h a e r i a a g a v e s M F L U C C 11-0125T h a i l a n d A g a v e s p .u n k n o w n J X 646791J X 646856N /A N /A B o t r y o s p h a e r i a a g a v e s M F L U C C 10-0051T h a i l a n d A g a v e s p .u n k n o w n J X 646790J X 646855N /A N /A B o t r y o s p h a e r i a c o r t i c i s C B S 119047U S A V a c c i n i u m c o r y m b o s u m u n k n o w n D Q 299245E U 017539N /A N /A B o t r y o s p h a e r i a c o r t i c i s A T C C 22927U S A V a c c i n i u m s p .u n k n o w n D Q 299247E U 673291N /A N /A B o t r y o s p h a e r i a d o t h i d e a P D 313U S A M a l u s d o m e s t i c a f r u i t G U 251101G U 251233G U 251629G U 251497B o t r y o s p h a e r i a d o t h i d e a P D 314U S A M a l u s d o m e s t i c a f r u i t G U 251102G U 251234G U 251630G U 251498B o t r y o s p h a e r i a d o t h i d e a

C B S 110302P o r t u g a l

V i t i s v i n i f e r a

u n k n o w n

A Y 259092

A Y 573218

N /A

N /A

Fungal Diversity

T a b l e 1(c o n t i n u e d )

S p e c i e s

C u l t u r e s

G e o g r a p h i c o r i g i n H o s t S u b s t r a t e G e n B a n k n u m b e r s a

I T S

E F 1-αH S P H I S

B o t r y o s p h a e r i a f a b i c e r c i a n a

C B S 127193C h i n a E u c a l y p t u s s p .u n k n o w n H Q 332197H Q 332213N /A N /A B o t r y o s p h a e r i a f a b i c e r c i a n a C M W 27108C h i n a E u c a l y p t u s s p .u n k n o w n H Q 332200H Q 332216N /A N /A B o t r y o s p h a e r i a f u s i s p o r a M F L U C C 10-0098T h a i l a n d E n t a d a s p .u n k n o w n J X 646789J X 646854N /A N /A B o t r y o s p h a e r i a f u s i s p o r a M F L U C C 11-0507T h a i l a n d C a r y o t a s p .u n k n o w n J X 646788J X 646853N /A N /A B o t r y o s p h a e r i a r a m o s a C B S 122069A u s t r a l i a E u c a l y p t u s c a m a l d u l e n s i s u n k n o w n E U 144055E U 144070N /A N /A B o t r y o s p h a e r i a s c h a r i f i i C B S 124703I r a n M a n g i f e r a i n d i c a u n k n o w n J Q 772020J Q 772057N /A N /A B o t r y o s p h a e r i a s c h a r i f i i C B S 124702I r a n M a n g i f e r a i n d i c a u n k n o w n J Q 772019J Q 772056N /A N /A C o p h i n f o r m a a t r o v i r e n s M F L U C C 11-0655T h a i l a n d E u c a l y p t u s s p .u n k n o w n J X 646801J X 646866N /A N /A C o p h i n f o r m a a t r o v i r e n s

C B S 117444

V e n e z u e l a E u c a l y p t u s u r o p h y l l a u n k n o w n K F 531822K F 531801N /A

N /A

C o p h i n f o r m a a t r o v i r e n s C B S 117450V e n e z u e l a E u c a l y p t u s u r o p h y l l a u n k n o w n E F 118051G U 134937N /A N /A

D o t h i o r e l l a i b e r i c a C B S 115041S p a i n Q u e r c u s i l e x t w i g A Y 573202A Y 573222G U 251696G U 251564D o t h i o r e l l a i b e r i c a C B S 113188S p a i n Q u e r c u s s u b e r u n k n o w n A Y 573198

E U 673278N /A N /A D o t h i o r e l l a s a r m e n t o r u m C B S 115038U K U l m u s s p .u n k n o w n A Y 573212A Y 573235N /A N /A M a c r o p h o m i n a p h a s e o l i n a C B S 227.33u n k n o w n Z e a m a y s u n k n o w n K

F 531825K F 531804N /A N /A M a c r o p h o m i n a p h a s e o l i n a P D 112U S A P r u n u s d u l c i s b a n d

G U 251105G U 251237G U 251633G U 251501N e o f u s i c o c c u m a n d i n u m C B S 117453V e n e z u e l a E u c a l y p t u s s p .u n k n o w n G U 251155G U 251287G U 251683G U 251551N e o f u s i c o c c u m l u t e u m C B S 110299P o r t u g a l V i t i s v i n i f e r a c a n e G U 251221G U 251353G U 251749G U 251617N e o f u s i c o c c u m m e d i t e r r a n e u m C B S 121558I t a l y O l e a e u r o p e a d r u p e G U 251175G U 251307G U 251703G U 251571N e o f u s i c o c c u m p a r v u m C M W 9081N e w Z e a l a n d P o p u l u s n i g r a u n k n o w n A Y 236943A Y 236888N /A N /A N e o f u s i c o c c u m p a r v u m C M W 10123S o u t h A f r i c a E u c a l y p t u s s m i t h i i u n k n o w n G U 251123G U 251255G U 251651G U 251519N e o f u s i c o c c u m r i b i s C B S 115475U S A R i b e s s p .u n k n o w n A Y 236935A Y 236877N /A N /A N e o f u s i c o c c u m r i b i s W A C 12395A u s t r a l i a E u c a l y p t u s p e l l i t a s t e m G U 251127G U 251259G U 251655G U 251523N e o f u s i c o c c u m v i t i f u s i f o r m e C B S 110887S o u t h A f r i c a V i t i s v i n i f e r a u n k n o w n A Y 343383A Y 343343N /A N /A N e o f u s i c o c c u m v i t i f u s i f o r m e W A C 12401A u s t r a l i a E u c a l y p t u s p a u c i f l o r a l e a f G U 251173

G U 251305

G U 251701

G U 251569

N e o s c y t a l i d i u m h y a l i n u m

C B S 145.78

U K H o m o s a p i e n s u n k n o w n K F 531816K F 531795N /A N /A N e o s c y t a l i d i u m h y a l i n u m P D 103U S A F i c u s c a r i c a l i m b G U 251106G U 251238G U 251634G U 251502N e o s c y t a l i d i u m h y a l i n u m

C B S 499.66

u n k n o w n M a n g i f e r a i n d i c a

u n k n o w n

K F 531820

K F 531798

N /A

N /A

N e o s c y t a l i d i u m n o v a e h o l l a n d i a e C B S 122071A u s t r a l i a C r o t a l a r i a m e d i c a g i n e a u n k n o w n E F 585540E F 585580N /A N /A N e o s c y t a l i d i u m n o v a e h o l l a n d i a e C B S 122610A u s t r a l i a A c a c i a s y n c h r o n i c i a u n k n o w n E F 585536E F 585578N /A N /A L a s i o d i p l o d i a t h e o b r o m a e P D 161U S A P i s t a c i a v e r a b r a n c h G U 251122G U 251254G U 251650G U 251518S p e n c e r m a r t i n s i a v i t i c o l a

C B S 117009S p a i n

V i t i s v i n i f e r a

c a n e

G U 251166

G U 251298

G U 251694

G U 251562

a

S e q u e n c e s g e n e r a t e d i n t h i s s t u d y a r e i n b o l d .T h e o t h e r s e q u e n c e s w e r e d o w n l o a d e d f r o m N C B I G e n B a n k r e f e r r i n g t o t h e w o r k o f I n d e r b i t z i n e t a l .(2010)a n d P h i l l i p s e t a l .(2013)

Fungal Diversity

denaturation at94°C for35s,annealing at their respective dependent temperatures for30s,elongating at72°C for3min and then one final step at72°C for10min.All PCR products (5μl)were electrophoresed on1%agarose gel and stained with the DNA dye,EZ-Vision One(Amresco,USA),and then visualized under UV illumination.PCR products were puri-fied and sequenced using the same forward and reverse primers at Sangon Biotech(Shanghai,China).

Sequence alignment and phylogenetic analysis

Raw sequences of isolates collected in this study and some reference isolates were obtained from ABI3730XL DNA Analyzer(Applied Biosystems,USA)and all the other se-quences used here were downloaded from GenBank(Table1) following Blast searches or references to published papers (Liu et al.2012;Hyde et al.2014).All nucleotide sequences were initially aligned with the software Clustal X2.0,and then imported into BioEdit5.0.9.1for optimizing manually to analyze their nucleotide polymorphisms(Hall1999;Larkin et al.2007).Phylogenetic reconstructions of concatenated and individual gene-trees were performed using Maximum-parsimony(MP)and Bayesian Markov Chain Monte Carlo criteria.In addition,to determine whether the combined se-quences can be used to construct phylogenetic analyses,sta-tistical congruence was examined by applying a partition homogeneity test(PHT)(Farris et al.1994).The PHT was performed in PAUP version4.0b10using1,000replicates and the heuristic standard search options(Swofford2003).

PAUP4.0b10was used to separately analyze single genes and combined genes to construct parsimony trees(Swofford 2003).Gaps were treated as“missing”and all characters were unordered and of equal weight.Insertions/deletions(indels), irrespective of their size,were each treated as one evolutionary event and weighted as one base substitution.MP trees were found using the heuristic search function with1,000random addition replicates and tree bisection and reconstruction(TBR) selected as branch swapping algorithm.Branches of zero length were collapsed and all multiple,equally parsimonious trees were saved.Branch supports were estimated using1,000boot-strap replicates(Felsenstein1985).Tree length(TL),consisten-cy index(CI),retention index(RI),rescaled consistency index (RC)and homoplasy index(HI)were calculated.

Bayesian inferences were performed using MrBayes3.1.2 for single locus datasets and for the combined dataset of multiple loci(Altekar et al.2004).The optimal nucleotide substitution models for each gene region and for the combined data were estimated using MrModeltest v2.2software (Nylander2004).The option for rates was set to invgamma, whereas all the other parameters of the likelihood model were default.Four simultaneous Markov chains were run starting from a random tree for5,000,000generations and trees were sampled every1,000generations.The first1,250of the5,000saved trees were discarded as burn-in,and the consensus tree was based on the remaining3,750trees.To determine the confidence of the tree topologies,values of Bayesian posterior probabilities(BPPs)were estimated using MrBayes.

Novel sequence data are deposited in GenBank(Table1) and the alignment in TreeBASE(https://www.wendangku.net/doc/2916026237.html,/phylo/ treebase/phylows/study/TB2:S15479).

Morphological analysis

Colony traits of single-conidium isolates on potato dextrose agar(PDA)medium were noted after a5-day incubation at 25°C in the dark.To induce sporulation,PDA dishes or malt extract agar(MEA)dishes filled with mycelia were incubated at25°C under alternating12h cycles of light/dark using both fluorescent and UV light for15days.In addition to the18 isolates collected from China’s apple-growing regions that were used for our phylogenetic analyses,18additional sam-ples that were collected similarly were used to make conidial measurements(36total isolates).Conidial measurements were made using conidia collected from pycnidia on the agar sur-face.Conidia were observed and measured from images taken using an Olympus BX51microscope with an Olympus DP72 digital camera(Olympus Corp.,Japan).Thirty measurements of conidial lengths and widths were taken for each isolate,and the ranges and averages as well as length and width ratio were calculated.SPSS statistical software was used to analyze variability in conidial lengths and widths among the isolates.

Growth rates testing

To assess colony growth rate,mycelial plugs(5mm in diam) of all test isolates were taken from the edge of3-day-old colonies and reversely transferred to the centers of9cm PDA dishes.Three replicates for each isolate were used. Colony diameters of each isolate were measured after5days of incubation at25,35and37°C in the dark,and their average growth rates were calculated and expressed as colony growth rate per24h.This experiment was conducted twice.Analysis of variance(ANOV A)of mycelial growth rate was performed using the ANOV A procedure of SPSS statistical software.

Pathogenicity testing

The pathogenicity of tested isolates was evaluated on shoots or stems of apple(Malus×domestica‘Fuji’)and pear(Pyrus pyrifolia Nakai‘Suli’).The pathogenicity test was conducted in an orchard(in Yangling,Shaanxi Province)from May to August,2011,and was repeated in2012.Scions were grafted on Malus micromalus,and then cultivated in the field with1.5-m×4-m spacing.Test isolates were grown on PDA medium at 25°C in the dark for3days before inoculation.The inoculation was performed on the non-wounded bark surface of2-year-old

Fungal Diversity

shoots of4-year-old apple saplings(3to3.5m high and15to 20branches)and2-year-old pear(1to1.5m high)stems.In mid-May,mycelial plugs(5mm in diameter)for each isolate were transferred to the inoculation positions that had been previously disinfected with70%ethyl alcohol,and then cov-ered with sterile moist cotton balls and wrapped with Parafilm to maintain high humidity.Five inoculations(10cm away from each other)were made on a tree as one replicate,and three replicates were used for each isolate;controls were treated in a similar manner with noncolonized PDA plugs.The inoculated trees were arranged in a randomized block design.In mid-August of those two years,the symptoms and sizes of lesions at the inoculated positions were examined,measured and re-corded.Measurements on the same tree were averaged,and then data among treatments in each repeated test were com-pared using ANOV A in SPSS statistical software.

Pathogenicity was tested also on detached non-wounded apple fruit in the laboratory.Mature apple(Fuji)fruit were washed,surface disinfested with3.5%NaOCl for5min, rinsed twice with sterile-distilled water,and dried in a transfer hood.Three mycelial plugs(5mm in diameter)cut from the margin of a5-day-old culture were placed on the surface of each non-wounded fruit with an equal distance between adja-cent plugs.Three fruits(replicates)were used for each isolate. Fruit inoculated with PDA plugs without fungus were used as controls.The incidence of lesions at the inoculated positions was determined on the second day after inoculation.

Re-isolation of fungi from diseased parts of inoculated shoots,stems and fruit was performed to complete Koch’s postulates.Warts or edges of the lesions were cleansed with 3.5%NaOCl for surface disinfestation,washed in sterile-distilled water twice,and then kept on PDA media at25°C for5days.Fungi were identified based on morphology and the sequence of the rDNA ITS region as described previously.

Intron analysis

The rDNA small-subunit(SSU)regions of all tested isolates were amplified and then sequenced to determine the presence or absence,distribution and primary structure of group I introns with reference to the method of Xu et al.(2013). Sequences of these introns were submitted to GenBank for BLASTN to clarify their attributes.

Results

Phylogenetic placement of tested isolates based on combined ITS and EF1-αsequences

A total of36sequences including four randomly selected tested isolates were comprised by the alignment of ITS and EF1-αregions,which contained760characters.In the parsi-mony analysis,555characters were constant,189characters were parsimony informative while16variable characters were parsimony uninformative.The first one(TL=342,CI= 0.7719,RI=0.9242,RC=0.7134,HI=0.2281)of100equally parsimonious trees yielded is presented here(Fig.1).The Bayesian tree(GTR model)agreed with the topology of the parsimonious tree,so Bayesian posterior probabilities are shown next to bootstrap values at the nodes.This phylogram provided a preliminary guide for identification of the isolates used in the research.In spite of low bootstrap values,isolates PG20and PG45cluster together and are evolutionarily rela-tively far apart from the clade that contains the isolates PG2 and LSP5.In terms of the topology of the tree,PG20and PG45are close to B.dothidea,whereas PG2and LSP5seem-ingly belong to an unrecognized taxon under the genus Botryosphaeria.

Phylogeny of individual and combined genes

ITS,EF-1α,HIS and HSP were used to construct phylogeny trees separately based on all18tested isolates and eight reference sequences.MrModeltest v2.2computed appropriate evolutionary models for each of the four loci used in Bayesian analyses as follows:GTR model for ITS,EF-1αand HSP,and HKY model for HIS.For all these genes(except ITS),topol-ogies of their trees are basically identical in the maximum parsimony and Bayesian inference.Only unrooted trees de-rived from the parsimony analysis are presented with the parsimony bootstrap values and posterior probabilities shown at the branches(Fig.2).Statistical data for individual trees are summarised in Table2.In the four gene genealogies,two distinct groups are consistently observed,of which nine tested isolates including PG20and PG45,B.berengeriana isolate MAFF645001and B.dothidea isolates PD314,CBS115476, ICMP13957,MAFF410826and ICMP8019belong to cluster A while the other nine tested isolates including PG2 and LSP5,B.dothidea isolate PD313and B.berengeriana f. sp.piricola isolate MAFF645002gather in cluster B.This partition is supported by high bootstrap values and posterior probabilities in EF-1α,HIS and HSP datasets,although slight variations still existed within cluster A according to the three genes(Fig.2b-d).For the ITS region,however,the two clusters are supported by low bootstrap values and they cannot be distinguished in Bayesian tree.Additionally,for sequences of genesβ-tubulin and Actin,too few parsimony-informative characters were found(Table2),so their phylogeny trees are not presented here.

The datasets including ITS,EF-1α,HIS and HSP were also analyzed collectively.Through the partition homogeneity test (Cunningham1997),no significant conflicts(P≥0.05)were found among them before catenation.The combined aligned data matrix contained37sequences including the outgroup

Fungal Diversity

Lasiodiplodia theobromae and 1610characters,of which 311characters were parsimony informative,185variable and parsimony uninformative,and 1114constant.The parsimony analysis resulted in a most parsimonious tree (TL=940,

CI=

Fig.1Phylogram inferred from combined parsimony analysis of ITS and EF1-αsequences from species of the genera Botryosphaeria ,Cophinforma ,Macrophomina ,Neoscytalidium ,Dothiorella and Neofusicoccum .The phylogenetic tree resulting from Bayesian inference had a topology identical to the MP tree presented.Bootstrap values/Bayesian posterior probabilities (>50%)are given at the nodes.The tree was rooted to Neofusicoccum luteum .Clades corresponding to genera and species are highlighted

Fungal Diversity

Fig.2Unrooted maximum-parsimony trees resulting from separate analysis of the sequences of ITS(a),EF-1α(b),HIS(c)and HSP(d).Bootstrap values/ Bayesian posterior probabilities(>50%)are indicated next to the branches.Two clusters(A and B)are respectively highlighted in dark and light green

Table2Information on the se-quence dataset and maximum parsimony(MP)trees for each locus

Locus

ITS EF-1αHIS HSPβ-tubulin Actin

Total no.of alignable characters502208506346373186 Total no.of variable characters1622531 No.of parsimony-informative characters1418501 No.of most parsimonious trees11002111 Tree length(TL)1622532 Consistency index(CI)111111 Homoplasy index(HI)000000 Retention index(RI)11110/01 Rescaled consistency index(RC)11110/01

Fungal Diversity

Fig.3Most parsimonious tree inferred from the combined four locus dataset of ITS,EF-1α,HIS and HSP.The phylogenetic tree resulting from Bayesian inference had a topology identical to the MP tree presented.Bootstrap values/Bayesian posterior probabilities(>50%)are given at the nodes.The tree was rooted to Lasiodiplodia theobromae.Clades corre-sponding to genera and species are highlighted

Fungal Diversity

0.6968,HI=0.3032,RI=0.8208,RC=0.5719)(Fig.3). Bayesian tree(GTR model)with an identical topology to the MP tree was reconstructed,and its posterior probabilities were thus added next to the bootstrap values.In the phylogenetic reconstruction of combined dataset,two deep clades were recognized and strongly supported with bootstrap values equal to100%and posterior probabilities of1.00,which completely corresponded to the two clusters formed in the individual gene genealogies.

Morphological characteristics

On PDA,colonies of all tested isolates were initially white, gradually becoming greenish brown to grey and then turning dark grey after5days of incubation.The reverse side of colonies was at first white,but after2or3days becoming dark green to olive green from the centre.No pigments were released to the medium by these pure cultures.For the isolates belonging to cluster A,bundles of aerial mycelia were com-monly observed and they could even reach the lids of Petri dishes.However,the isolates contained in cluster B generally produced compact and shorter aerial mycelia that can be described as an appressed mycelial mat(Fig.4a).

Conidial dimensions(lengths and widths)of17isolates belonging to cluster A and19isolates belonging to cluster B were measured in this study.Conidial lengths and widths of the cluster A isolates ranged from20.3to26.7μm and5.3to 7.0μm,respectively.Conidial lengths and widths of the cluster B isolates ranged from18.6to24.7μm and5.3to 7.2μm,respectively(Fig.4b).Average conidial length (23.3μm)of cluster A isolates was longer than that (21.9μm)of cluster B isolates(P<0.01),whereas there was no significant difference(P>0.01)in conidial width between these two groups of isolates.

Growth rates

Data from two repeated experiments on mycelial growth were not significantly different(P>0.05),and therefore were com-bined to calculate average colony diameter of each tested isolate.Isolates belonging to cluster A and cluster B were treated as two groups and there was no statistical difference (P>0.05)in growth rate among isolates of the same group when incubated at25,35and37°C,respectively.We then compared the average growth rates of these two groups of isolates at the above three incubation temperatures.At25°C, the average growth rates of cluster A and cluster B isolates were respectively12.4and11.9mm per24h and there was no difference(P>0.05)between them.When incubated at35°C, however,the growth rate(8.5mm per24h)of cluster A isolates was significantly faster than that(1.7mm per24h) of cluster B isolates(P<0.01).At37°C,no visible colony development was observed for any isolates of cluster B,whereas cluster A isolates could still extend slowly at an average growth rate of3.3mm per24h(Fig.5). Pathogenicity

Rounded protuberances were commonly visible approximate-ly40to60days after inoculating apple shoots with mycelial plugs.They presented distinctly different sizes and denseness between cluster A and cluster B isolates(P<0.01),and here only measurement data of seven inoculation treatments(six isolates plus one control)are presented(Table3).Smaller protuberances(0.7–1.0mm in diameter)induced by the clus-ter A isolates were distributed densely,and described as a verruculose surface,whereas the cluster B isolates produced bigger but sparser protuberances(3.0–4.1mm in diameter), described as a verrucose symptom,which occasionally broke through the epidermis(Fig.6).As the infection progressed, the protuberances usually increased in number,darkened in colour and eventually cracked.When these isolates were inoculated on pear stems,more complex symptoms were observed after about6weeks(Table3,Fig.6).For the cluster A isolates,just small areas around the inoculation positions turned brown(i.e.,local necrosis).In this situation,the above isolates could be considered non-pathogenic on pear trees.For the cluster B isolates,however,the symptoms were extensive and necrosis extended on a large scale into the phloem tissues (cankers15.0–17.5mm in diameter).Additionally,blisters (2.5–3.0mm in diameter)were noticed to form over the cankers and occasionally cause splitting of the periderm in the necrotic areas.No symptoms were observed on apple and pear trees that belonged to the control group

On apple fruit,all tested isolates caused brown soft rot symptoms on non-wounded fruit,and exudation could be observed in the lesion areas.There was no marked difference between cluster A and cluster B isolates in pathogenicity.Fruit that were inoculated with PDA plugs without fungi remained healthy.

Analysis of introns

The rDNA SSU of18tested isolates used in this study(not published)were scanned for group I introns that related to the genetic diversity(four genotypes)within B.dothidea discussed in our previous research(Xu et al.2013).As a consequence,all cluster A isolates possessed a1349-bp intron (Bdo.S1199-A)at position1199,which agreed with the ge-notype I of B.dothidea.The cluster B isolates were detected to have the same primary nucleotide structure of rDNA SSU as genotype II of B.dothidea that was characterized by two group I introns(Bdo.S943and Bdo.S1506)inserted at posi-tions943and1506,respectively(Fig.7).

Fungal Diversity

Taxonomy

Based on these individual gene genealogies (ITS,EF-1α,HIS and HSP),multi-locus phylogeny inferred by their combined alignment and biological characteristics,the 18tested isolates associated with branch or fruit ring rot of Malus×domestica

and Pyrus pyrifolia were shown to belong to cluster A and cluster B,respectively,which should be identified as two species of Botryosphaeria ,i.e.,a previously described species B.dothidea and one new taxon.

Botryosphaeria kuwatsukai (Hara)G.Y .Sun and E.Tana-ka,comb.nov.et.emend (Fig.8)MycoBank:MB 808073.

Facesoffungi Number:FoF00170.

Basionym:Macrophoma kuwatsukai Hara,Pathologia Agriculturalis Plantarum 482(1930)

=Physalospora pyricola Nose,Ann https://www.wendangku.net/doc/2916026237.html,.-Gen.Chosen 7.161(1933).(as “piricola ”)

≡Guignardia pyricola (Nose)W.Yamamoto,Sci.Rep.Hyogo Univer.Agric.5.11(1961).(as “piricola ”)

=Botryosphaeria berengeriana De Notaris f.sp.pyricola Koganezawa &Sakuma,Bull.Fruit Tree Res.Stat.,C11:58,1984.(as “piricola ”)

Lectotype designated here (MB 808072):illustration of Macrophoma kuwatsukai Hara,Pathologia Agriculturalis Plantarum 482:figure 191(1930

)

Fig.4 a.The colony

morphology of cluster A isolates (left)and cluster B isolates (right)from above after 5-day cultivation on PDA at 25°C.b.The average lengths and widths of 30conidia measured for each of 36tested isolates.Seventeen cluster A isolates and 19cluster B isolates are indicated on the graph as blue triangles and red squares,

respectively

Fig.5Mean mycelium growth rates (mm per 24h)obtained for isolates of cluster A and cluster B 5days after inoculation on PDA at 25,35and 37°C.Bars above columns are the standard error (5%)of the mean

Fungal Diversity

Epitype:CHINA,Shaanxi Province,Yangling,from fruit of M.×domestica,7September2011,CS Wang,dried culture, HMAS245112(PG2);living cultures derived from ex-epitype—CBS135219=CGMCC3.15244.

Colonies on PDA attaining52mm diam.after4days at25°C in the dark,initially white with moderately dense,appressed mycelial mat and aerial mycelium without columns,gradually becoming grey to dark grey.The reverse side of the colonies at

Table3Symptoms on apple shoots and pear stems inoculated with isolates of cluster A and cluster B via the mycelium plug method

Apple Pear

Isolate Symptom Size(mm)Symptom Canker size(mm)Blister size(mm)

Cluster A

PG77Verruculose0.7–0.9–––

PG320Verruculose0.9–1.0–––

PG329Verruculose0.8–0.9–––

Cluster B

PG2Verrucose 4.0–4.1Canker with blister16.7–17.5 2.7–2.8

PG259Verrucose 3.0–3.6Canker with blister16.0–16.3 2.6–3.0

PG330Verrucose 3.5–3.8Canker with blister15.0–15.5 2.5–2.8 Control––––

Fig.6Symptoms on non-

wounded apple and pear shoots or

stems one or two months after

inoculation(via mycelial plugs)

with different isolates from cluster

A and cluster B.a.Small

protuberances on apple shoots.b.

Large protuberances on apple

shoots.c.Localized necrotic spots

on pear stems.d.Cankers with

blisters on pear stems.a-1and

c-1:PG45.b-1and d-1:PG2.

a-2and c-2:PG293.b-2and d-2:

PG330.a-3and c-3:PG327.b-3

and d-3:LSP20.4:Control

Fungal Diversity

first white,but after 2–3days becoming dark green to olive-green from the centre.This colouration gradually spreads to the edge and becomes darker from the centre until the entire underside of the colony is black.Conidiomata absent in culture on PDA or on MEA in the dark,formed under the 12-h interactive treatment with black light and fluorescent lamp within 15–20d,superficial,dark brown to black,globose,mostly solitary and covered by mycelium.Conidiogenous cells holoblastic,hyaline,sub-cylin-drical,7–18×2–4μm,proliferating percurrently with one or more proliferations and occasionally resulting in periclinical thickening.Conidia produced in culture similar to those formed in nature,narrowly fusiform,or irregularly fusiform,base subtruncate to bluntly rounded,smooth with granular contents,widest in the middle to upper third,(18.5–)20–24.5(?26)×5–7(?8)μm (mean±SD=22.3±2.1×6.2±0.9μm,n=60,L/W ra-tio =3.6),forming 1–3septa before germination.Microconidiomata globose,dark brown to black.Microconidiophores hyaline,cylindrical to sub-cylindrical,3–10×1–2μm.Microconidia unicellular,hyaline,allantoid to rod-shaped,3–8×1–2μm.Sexual state not observed in culture.Known hosts:Malus×domestica and Pyrus pyrifolia Known distribution:China,Japan and North America Additional material examined:CHINA,Shaanxi Province,on branch of M.×domestica ,2011,CS Wang,culture PG 55;Henan Province,on fruit of M.×domestica ,2011,CS Wang,culture PG 259;Shandong Province,on fruit of M.×domestica ,2011,CS Wang,culture PG 297;Hebei Province,on fruit of M.×domestica ,ZQ Zhou,culture PG 328;Jiangsu Province,on fruit of M.×domestica ,ZQ Zhou,culture PG 330;Shanxi Province,on fruit of M.×domestica ,ZQ Zhou,culture PG 332;Shaanxi Province,on branch of Pyrus pyrifolia ,2012,CS Wang culture LSP 5;Shaanxi Province,on fruit of P .pyrifolia ,2012,CS Wang,culture LSP 20;JAPAN,Iwate,on twigs of M.pumila Mill.var.domestica ,1980,H.Koganezawa,culture MAFF 645002.

Notes :Miura (1917)found ring rot disease on pears and named the fungus as “Coniothecium ”.Kuwatsuka (1921)said that the fungus belonged to “Macrophoma ”,and Hara (1930)described it as Macrophoma kuwatsukai Hara.The original description was only in Japanese.Nose (1933)found the sexual stage,which he described as Physalospora piricola Nose,also with only a Japanese description.Yamamoto (1961)transferred the fungus to Guignardia piricola (Nose)W.Yamamoto,but this was not accepted by others.Koganezawa and Sakuma (1984)proposed the name,Botryosphaeria berengeriana De Notaris f.sp.piricola Koganezawa &Sakuma for the fungus causing apple wart bark to separate typical B.berengeriana (=B.dothidea )caus-ing cankers on apple and pear.Even though there was no Latin description or diagnosis for both Macrophoma kuwatsukai and Physalospora piricola ,they are validly published (Art.39.1).Macrophoma kuwatsukai has priority over Physalospora piricola ,even though it is an asexual stage name (Art.59.1),and should be treated as the basionym.Botryosphaeria kuwatsukai ,which had been always confounded with B.dothidea ,was described and identi-fied in this study based on multiple locus genealogies.Biological characteristics including aerial mycelia growth,mycelial growth rate and pathogenicity also supported the segregation of these two species.Morpho-logically,however,it is hard to discriminate B.kuwatsukai from B.dothidea as they produce similar conidia.In the original description of Macrophoma kuwatsukai Hara (1930),the holotype was not designat-ed.The illustration should be treated as the lectotype.Based on the lectotype,it is hard to discriminate it from other morphological similar species,thus we designate an epitype.

Botryosphaeria dothidea (Moug.ex Fr.)Ces.&De Not.,Commentario della SocietàCrittogamologica Italiana 1(4):212(1863)

Material examined:CHINA,Shaanxi Province,on fruit of M.×domestica ,2011,CS Wang,culture PG 20;Shaanxi Province,on trunk of M.×domestica ,2011,CS Wang,culture PG 45;Shaanxi Province,on branch of M.×domestica ,2011,CS Wang,culture PG 77;Henan Province,on fruit of M.×domestica ,2011,CS Wang,culture PG 267;Shandong Province,on fruit of M.×domestica ,2011,CS Wang,culture PG 293;Liaoning Province,on fruit of M.×domestica ,ZQ Zhou,culture PG 320;Hebei Province,on branch of M.×domestica ,ZQ Zhou,culture PG 327;Jiangsu Province,on fruit of M.×domestica ,ZQ Zhou,culture PG 329;Shanxi Province,on fruit of M.×domestica ,2012,CS Wang,culture PG 331;SWITZERLAND,Crocifisso,isolated from Prunus sp.,October 2000,B.Slippers,culture CBS 115476;NEW ZEALAND,Bay of Plenty,Te Puke,from bark of dead twig of

Populus

Fig.7Primary structures of the rDNA SSU in cluster A isolates and cluster B isolates.The entire SSU rDNA is shown by the blue rectangle.The triangles in purple,green and yellow indicate three different group I introns.The position,length and name of each intron are given separately above,in and below the triangles.The insertion sites correspond to the 16S rRNA of E.coli J01859

Fungal Diversity

nigra ,1December 1981,G.J.Samuels,culture ICMP 8019;NEW ZEALAND,Waikato,on fruit of M.×domestica ,1April 1999,M.A.Manning,culture ICMP 13957;JAPAN,IBARAKI,isolated from Prunus sp.,May 1993,T.Yamada,culture MAFF 410826;JAPAN,Iwate,on twigs of M.pumila Mill.var.domestica ,1978,H.Koganezawa,culture MAFF 645001.Notes :Botryosphaeria dothidea was isolated as the patho-gen causing apple ring rot from fruit and branches of Malus×domestica in this study.The colony characteristics and micro-scopic morphology is exactly similar to the ex-epitype of B.dothidea (Slippers et al.2004a ;Liu et al.2012;Hyde et al.2014).In the phylograms,our nine isolates confidently clustered together with the ex-epitype isolate of B.dothidea (CBS 115476)and other referential B.dothidea

isolates

Fig.8Asexual structures of Botryosphaeria kuwatsukai (from ex-epitype CBS 135219).a .Infected fruit of apple (black conidiomata scattered on the lesion)b .Culture on PDA (5days old)c.Conidiomata on PDA d .Conidia and microconidia e -g .Conidia before germination

with 1–3septa h .Microconidiomata i .Microconidiophores j .Conidia k -l .Conidiophores and conidiogenous cells.Scale bars:c=500μm d,f,h and i=10μm e,g=5μm i,j and l=20μm

Fungal Diversity

including ICMP8019,ICMP13957,MAFF410826and MAFF645001(Figs.2,and3).

Discussion

The theory of multiple gene genealogies has been increasingly applied in studies of species boundaries in both human and plant pathogenic fungi,revealing vast numbers of cryptic species and species complexes in fungal taxa previously iden-tified as one morphospecies(Pringle et al.2005;Hyde et al. 2010,2014;Liu et al.2012;Maharachchikumbura et al.2012; Udayanga et al.2012;Morgado et al.2013).In Botryosphaeriaceae,for example,Slippers et al.(2004a) redefined the circumscription of B.dothidea sensu stricto and separated out B.parva and B.ribis that had previously served as synonyms of B.dothidea.Pavlic et al.(2009)revealed three cryptic species within the Neofusicoccum parvum/N.ribis com-plex isolated from Syzygium cordatum trees in South Africa. Furthermore,Diplodia scrobiculata was described as a sister species of D.pinea(De Wet et al.2003)and N.eucalypticola and N.australe were perceived as sister species of N.eucalyptorum and N.luteum,respectively(Slippers et al. 2004b,c).In this study,Botryosphaeria kuwatsukai is described and identified from pathogenic isolates causing ring rot of apple and pear trees in China,thus proving our hypothesis that the previous ring rot pathogen,B.dothidea,is a species complex. This cryptic species was recognized primarily based on DNA sequence data of four nuclear genes combined with some phe-notypic characters as supplementary evidence.

According to the phylogram of combined ITS and EF1-αsequences(Fig.1),we can estimate that the four randomly selected tested isolates belong to two different taxa(one probably equals to B.dothidea)in Botryosphaeria.Further analysis of the genealogies of EF-1α,HIS and HSP genes and their combination(Figs.2,and3)demonstrated that all tested isolates were subsumed in two genetically well-separated clusters(cluster A and cluster B),which correspond to the above two taxa.In cluster A,despite some slight variations, nine tested isolates gathered well with five reference B.dothidea isolates including the ex-epitype CBS115476, indicating that they truly belong to B.dothidea.In cluster B, the remaining nine tested isolates and two reference B.dothidea isolates were re-identified and named as B.kuwatsukai,thus suggesting that previous B.dothidea iden-tified from apple ring rot was a species complex.Two other genes,β-tubulin and Actin,widely used in phylogenetics, were also analyzed here.They were more inclined to make all tested isolates fall together in the B.dothidea clade.This is consistent with the result of Tang et al.(2012),who considered according to the multi-gene sequence data of ITS,β-tubulin and Actin that isolates associated with symptoms of apple and pear ring rot(warts,cankers and fruit rot)all belong to the same pathogen,B.dothidea.

In microscopic morphology,B.kuwatsukai and B.dothidea exhibited a statistically significant difference in conidial length.However,this variation represented a continuum among isolates of the B.dothidea/B.kuwatsukai complex and,therefore,it was too difficult for us to use this character to set a clear delimitation of groups,and then to screen B.kuwatsukai out of B.dothidea prior to the application of some other effective methods.This indicates that genetically isolated species do not necessarily show divergence in some morphological characters such as conidial morphology,which is consistent with conclusions of several previous studies (Pavlic et al.2009;Maharachchikumbura et al.2012; Udayanga et al.2012;Muggia et al.2014).Colony morphol-ogy and different growth patterns of aerial mycelia(i.e., appressed mycelial mat from B.kuwatsukai and columns of aerial mycelia from B.dothidea)can be used to preliminarily distinguish these two species.

When cultured below their optimal temperatures(generally 22to28°C)in darkness,both B.kuwatsukai and B.dothidea grew faster on PDA as temperature increased and there was no significant difference between their growth rates(unpublished data).When cultured above their optimal temperatures,both species grew more slowly as temperature increased;however, the decline in growth rate was more pronounced with https://www.wendangku.net/doc/2916026237.html,pared to the demanding requirement for techniques and equipment used in molecular identification,it is undoubtedly a more expeditious approach to differentiate the two species by simultaneously cultivating them at rela-tively high temperatures(e.g.,35°C)and then assessing their colony diameters after3–5days.

Although the host affiliations of isolates collected in this study were limited to apple and pear,host ranges of the two fungi could be inferred according to previous research (Inderbitzin et al.2010;Marques et al.2013;Xu et al.2013). As mentioned above,the isolates of B.kuwatsukai actually correspond to the genotype II of previous B.dothidea,whereas the other three genotypes(III and IV were not isolated here)are still considered to be genetically different populations within current B.dothidea.Through investigation and statistics,Xu et al.(2013)found that genotype II isolates of B.dothidea could be isolated only from apple and pear,and was the only popu-lation detected on pear,whereas the other three genotypes of B.dothidea collectively infected dozens of shrubs and trees, except pear.From the above,it is conjectured that B.kuwatsukai may have host specificity for apple and pear.

The phylogenetic analyses showed that both species caus-ing apple ring rot belong to the genus Botryosphaeria(Liu et al.2012;Hyde et al.2014).The Japanese B.berengeriana isolate MAFF645001belonged to B.dothidea,which agrees with the conclusion of Slippers et al.(2004a),whereas another Japanese isolate B.berengeriana f.sp.piricola MAFF645002

Fungal Diversity

and B.dothidea isolate PD313from the USA were both re-identified as B.kuwatsukai,which suggests that this species is a cosmopolitan fungus,not unique to China.According to the morphological and biological description of B.berengeriana f.sp.piricola by Koganezawa and Sakuma(1984),this fungus is morphologically identical with B.dothidea,grows slower than B.dothidea and mainly causes ring rot of apple and pear. All these characters are shared by B.kuwatsukai,supporting our phylogenetic results.Reference isolates PD313and PD314(Inderbitzin et al.2010),which were isolated from fruit of M.domestica in USA,were once both described as B.dothidea and caused a prevalent disease called apple white rot(Jones and Aldwinckle1990;Inderbitzin et al.2010). However,in this study the two isolates were classified as different species,indicating that apple white rot,which is widely distributed in the North America,is probably able to be induced by two pathogens, B.dothidea and/or B.kuwatsukai.

Pathogenicity tests revealed that both B.kuwatsukai and B.dothidea could induce protuberances on the surfaces of apple shoots,with the two species associated with protuber-ances of different size and density(described as verrucose and verruculose,respectively).Protuberances caused by B.kuwatsukai were nearly four times as larger than those by B.dothidea.Previously,this phenomenon was often attributed to differences in virulence of different B.dothidea isolates and was applied to the establishment of evaluation criteria for host resistance(Zhou et al.2010;Lin et al.2011).Our results show that size of protuberances is not related to virulence differences and this character should not be applied when screening for resistance.

The common canker symptom of apple ring rot on shoots was not observed in the inoculation tests.Koganezawa and Sakuma(1984)inoculated mycelial plugs of B.berengeriana (B.dothidea)isolates and B.berengeriana f.sp.piricola (=B.kuwatsukai)isolates on wounded apple trunks,and re-ported the former produced typical cankers while the latter formed rough callus bark on inoculation sites.They also inoculated spore suspension of the two pathogens on non-wounded apple trunks,and consequently B.berengeriana caused no symptoms while B.berengeriana f.sp.piricola produced typical wart-like protrusions.Tang et al.(2012) performed similar pathogenicity tests with several B.dothidea isolates,in which warts formed only on non-wounded apple shoots whereas cankers often appeared on wounded apple shoots.Therefore,we speculate that different inoculation methods(non-wounded or wounded and mycelium plugs or spore suspension)lead to different symptoms on apple trunks.

B.kuwatsukai tends to infect hosts from the lenticels and causes wart-like protuberances,whereas B.dothidea tends to infect hosts from wounds and causes cankers and,in fact, when the inoculum dose is enough(e.g.,mycelium plugs), B.dothidea can cause similar symptoms as B.kuwatsukai (Koganezawa and Sakuma1984;Zhang et al.2011).On pear stems,large-scale cankers along with blisters were produced by B.kuwatsukai,whereas B.dothidea just induced localized necrotic spots,which could be regarded as non-infectious. This agrees with the view of Koganezawa and Sakuma (1984)that B.berengeriana f.sp.piricola(=B.kuwatsukai) is the true and only pathogen of pear ring rot.

Our research provided sufficient evidence to prove that apple ring rot disease is caused by two different pathogens, B.dothidea and B.kuwatsukai,whereas B.kuwatsukai alone is the pathogen responsible for pear ring rot.With increased understanding of the etiology of apple ring rot,we can begin to develop targeted management strategies based on sanita-tion,cultural methods,chemical methods and resistance breeding.

Acknowledgments We are grateful for help in sample collecting by Prof.Zengqiang Zhou(Zhengzhou Institute of Pomology,Henan,China) and Prof.Meng Zhang(Henan Agricultural University,Henan,China). We thank Prof Pedro W.Crous(CBS-KNAW Fungal Biodiversity Cen-tre,The Netherlands.)and Dr Eric H.C.McKenzie(Landcare Research, Auckland,New Zealand)for exchanging the authentic cultures and giving suggestion in nomenclature.This work was supported by National Natural Science Foundation of China(31371887,31171797),the111 Project from Education Ministry of China(B07049),Specialized Re-search Fund for the Doctoral Program of Higher Education (20130204110002)and China Agriculture Research System(CARS-28). References

Altekar G,Dwarkadas S,Huelsenbeck JP,Ronquist F(2004)Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylo-genetic inference.Bioinformatics20:407–415

Chen C(1999)Advances in the research of apple ring rot.Acta Phytopathol Sinica29(3):1–7(in Chinese)

Cunningham CW(1997)Can three incongruence tests predict when data should be combined?Mol Biol Evol14:733–740

De Wet J,Burgess T,Slippers B,Preisig O,Wingfield BD,Wingfield MJ (2003)Multiple gene genealogies and microsatellite markers reflect relationships between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia.Mycol Res107:557–566 Farris JS,K?llersj?M,Kluge AG,Bult C(1994)Testing significance of incongruence.Cladistics10:315–319

Felsenstein J(1985)Confidence limits on phylogenies:an approach using the bootstrap.Evolution39:783–791

Hall TA(1999)BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT.Nucleic Acids Symp Ser41:95–98

Hara K(1930)Pathologia Agriculturalis Plantarum.Yokendo,Tokyo,pp 481–483(in Japanese)

Huang C,Liu K(2001)RAPD analysis of the pathogenic fungi of apple ring rot and other major related diseases.Acta Phytopathol Sinica 31(2):69–74

Hyde KD,Chomnunti P,Crous PW,Groenewald JZ,Damm U,Ko TWK, Shivas RG,Summerell BA,Tan YP(2010)A case for re-inventory of Australia’s plant pathogens.Persoonia25:50–60

Hyde KD,Nilsson RH,Alias SA,Ariyawansa HA,Blair JE,Cai L,de Cock AWAM,Dissanayake AJ,Glockling SL,Goonasekara ID, Gorczak M,Hahn M,Jayawardena RS,van Kan JAL,Laurence

Fungal Diversity

MH,Lévesque CA,Li X,Liu JK,Maharachchikumbura SSN, Manamgoda DS,Martin FN,McKenzie EHC,McTaggart AR, Mortimer PE,Nair PVR,Paw?owska J,Rintoul TL,Shivas RG, Spies CFJ,Summerell BA,Taylor PWJ,Terhem RB,Udayanga D, V aghefi N,Walther G,Wilk M,Wrzosek M,Xu JC,Yan JY,Zhou N (2014)One stop shop:backbones trees for important phytopathogenic genera:I.Fungal Divers67:21–125.doi:10.1007/s13225-014-0298-1 Inderbitzin P,Bostock RM,Trouillas FP,Michailides TJ(2010)A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond.Mycologia102: 1350–1368

Jones AL,Aldwinckle HS(1990)Compendium of apple and pear dis-eases.American Phytopathological Society,St.Paul,Minnesota, USA

Kang L,Hao H,Yang Z,Li X,Kang G(2009)The advances in the research of apple ring rot.Chin Agric Sci Bull25(09):188–191(in Chinese)

Koganezawa H,Sakuma T(1980)Fungi associated with blister canker and internal bark necrosis of apple trees.Bull Fruit Tree Res Station C(Morioka)7:83–99

Koganezawa H,Sakuma T(1984)Causal fungi of apple fruit rot.Bull Fruit Tree Res Station C(Morioka)11:49–62

Kuwatsuka K(1921)J Okitsu Hortic Soc(Engei no Kenkyu)17:190–195,in Japanese

Larkin MA,Blackshields G,Brown NP,Chenna R,McGettigan PA, McWilliam H,V alentin F,Wallace IM,Wilm A,Lopez R(2007) Clustal W and Clustal X version2.0.Bioinformatics23(21):2947–2948 Lin Y,Huang L,Suolang L,Gao X,Chen Y,Kang Z(2011)A rapid laboratory evaluation system for apple ring rot.Acta Phytophylacica Sinica38(1):37–41(in Chinese)

Liu JK,Phookamsak R,Doilom M,Wikee S,Li YM,Ariyawansa H, Boonmee S,Chomnunti P,Dai DQ,Bhat JD,Romero AI,Zhuang WY,Monkai J,Jones EBG,Chukeatirote E,Ko Ko TW,Zhao YC, Wang Y,Hyde KD(2012)Towards a natural classification of Botryosphaeriales.Fungal Divers57:149–210

Lv D,Zhang J,Zhang Z,Zhou Z,Chen X,Du X,Qu S(2012)The relationship between rDNA-ITS sequences and biological charac-teristics of the apple ring rot pathogen Botryosphaeria berengeriana de Not f.sp.piricola(Nose).Fungal Genom Biol2:104 Maharachchikumbura SSN,Guo LD,Cai L,Chukeatirote E,Wu WP, Sun X,Crous PW,Bhat DJ,McKenzie EHC,Bahkali AH,Hyde KD (2012)A multi-locus backbone tree for Pestalotiopsis,with a poly-phasic characterization of14new species.Fungal Divers56:95–129 Marques MW,Lima NB,de Morais MA,Michereff SJ,Phillips AJL, Camara MPS(2013)Botryosphaeria,Neofusicoccum, Neoscytalidium and Pseudofusicoccum species associated with mango in Brazil.Fungal Divers61:195–208

Miura M(1917)Ringo no Byoki.Shokabo,Tokyo,pp106–109(in Japanese)

Morgado LN,Noordeloos ME,Lamoureux Y,Geml J(2013)Multi-gene phylogenetic analyses reveal species limits,phylogeographic pat-terns,and evolutionary histories of key morphological traits in Entoloma(Agaricales,Basidiomycota).Persoonia31:159–178 Muggia L,Prerez-Ortega S,Fryday A,Spribille T,Grube M(2014)Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra.Fungal Divers64:233–251 Nose T(1933)On the ring rot of pears and the causal organism,especially on its perfect generation Physalospora piricola.Ann Agric Exp Sta Chosen7(2):156–163(in Japanese)

Nylander JAA(2004)MrModeltest v2.Program Distributed by the Author.Uppsala University,Evolutionary Biology Centre

Ogata T,Sano T,Harada Y(2000)Botryosphaeria spp.isolated from apple and several deciduous fruit trees are divided into three groups based on the production of warts on twigs,size of conidia,and

nucleotide sequences of nuclear ribosomal DNA ITS regions.

Mycoscience41:331–337

Park EW(2005)An infection model of apple white rot based on conidial germination and appressorium formation of Botryosphaeria dothidea.Plant Pathol J21:322–327

Pavlic D,Slippers B,Coutinho TA,Wingfield MJ(2009)Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae:a case study on the Neofusicoccum parvum/ N.ribis complex.Mol Phylogenet Evol51:259–268

Peng B,Liu L,Wu H,Tian L,Zhou Z,Gu Q(2011)The intraspecific genetic diversity of pathogenic fungi of apple ring rot.Sci Agric Sin 44(6):1125–1135(in Chinese)

Phillips AJL,Alves A,Abdollahzadeh J,Slippers B,Wingfield MJ, Groenewald JZ,Crous PW(2013)The Botryosphaeriaceae:genera and species known from culture.Stud Mycol76:51–167

Pringle A,Baker DM,Platt JL,Wares JP,Latge JP,Taylor JW(2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus.Evolution59:1886–1899

Qu J,Li X,Zhang Y,Fan K(2007)Evaluation of fungitoxicity of tebuconazole against Alternaria mali and Physalospora piricola on apple in laboratory and in field.Chin J Pestic Sci9(2):149–152(in Chinese)

Slippers B,Crous PW,Denman S,Coutinho TA,Wingfield BD, Wingfield MJ(2004a)Combined multiple gene genealogies and phenotypic characters differentiate several species previously iden-tified as Botryosphaeria dothidea.Mycologia96:83–101 Slippers B,Fourie G,Crous PW,Coutinho TA,Wingfield BD,Carnegie AJ,Wingfield MJ(2004b)Speciation and distribution of Botryosphaeria spp.on native and introduced Eucalyptus trees in Australia and South Africa.Stud Mycol50:343–358

Slippers B,Fourie G,Crous PW,Coutinho TA,Wingfield BD,Wingfield MJ(2004c)Multiple gene sequences delimit Botryosphaeria australis sp.nov.from B.lutea.Mycologia96:1030–1041

Smith H,Crous PW,Wingfield MJ,Coutinho TA,Wingfield BD(2001) Botryosphaeria eucalyptorum sp.nov.,a new species in the

B.dothidea-complex on Eucalyptus in South Africa.Mycologia

93:277–285

Swofford DL(2003)PAUP*.Phylogenetic analysis using parsimony(* and other methods).Version4.Sinauer Associates,Sunderland, Massachusetts

Tang W,Ding Z,Zhou Z,Wang Y,Guo L(2012)Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea.Plant Dis96:486–496

Taylor JW,Jacobson DJ,Kroken S,Kasuga T,Geiser DM,Hibbett DS, Fisher MC(2000)Phylogenetic species recognition and species concepts in fungi.Fungal Genet Biol31:21–32

Udayanga D,Liu X,Crous PW,McKenzie EHC,Chukeatirote E,Hyde KD(2012)A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis).Fungal Divers56:157–171

White TJ,Bruns T,Lee S,Taylor J(1990)Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.

PCR Protoc:Guide Methods Appl18:315–322

Xu C,Wang C,Sun X,Zhang R,Gleason ML,Eiji T,Sun G(2013) Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea:implication for intraspecific genetic diver-sity.PLoS One8:e67808

Yamamoto W(1961)Species of the genera of Glomerella and Guignardia with special reference to their imperfect stages.Sci Rep Hyogo Univ Agric5(1):1–12(in Japanese)

Zhang G,Li B,Dong X,Wang C,Li G,Guo L(2011)Microanatomy conformation of apple branch tumors caused by Botryosphaeria dothidea.Acta Phytopathol Sinica41(1):98–101(in Chinese) Zhou Z,Hou H,Wang L,Zhu F(2010)Trunk apple ring rot artificial inoculation method and the identification of cultivar resistance.J Fruit Sci27(6):952–955(in Chinese)

Fungal Diversity

2014江苏省中小学教师心理健康网络知识竞赛(100分二)

2014江苏省中小学教师心理健康网络知识竞赛-小学 本卷最终为100分,请放心采纳。 1、题型:判断题分值:2 语言是抽象思维的先决条件,因此,幼儿不可能具有知识。 正确 错误 2、题型:判断题分值:2 从毕生发展观看,人的一生可以分为儿童、成人、老人三个阶段。 正确 错误 3、题型:判断题分值:2 如果学生的理性水平低,则采用松散的结构组织教学。 正确 错误 4、题型:判断题分值:2 心理辅导中倾听技术最基本的作用在于鼓励来访者把他的观念和感受表达出来。 正确 错误 5、题型:判断题分值:2 在学校中的心理治疗,面对个例,建议采用个别谈话进行沟通治疗。对于叛逆期的中小学生,一般都是一对一的治疗,小组治疗收效甚微。 正确 错误

6、题型:判断题分值:2 精神文化属于班级文化的构成! 正确 错误 7、题型:判断题分值:2 寻求来自他人的情绪支持是能从情绪和生理上帮助个体适应压力源的策略之一。 正确 错误 8、题型:判断题分值:2 通常因负性事件的发生而责备自己,相信诸如此类的事情会毫无疑问再次发生,而且让这些事情影响自己生活中的很多方面,这类人的归因风格属于乐观型。 正确 错误 9、题型:判断题分值:2 心理健康教育中的个案辅导就是通过提供信息,来批评教导人,达到100%解决问题的目的。 正确 错误 10、题型:判断题分值:2 教师的职责是将学生的利益最大化,自己存在的价值可以被忽略。 正确 错误 11、题型:判断题分值:2 心理评估是通过观察、面谈、心理测验等手段对个体的心理现象进行描述。

正确 错误 12、题型:判断题分值:2 在教师职业中我们获得了多重价值,其中最核心的价值是生命价值。 正确 错误 13、题型:判断题分值:2 焦虑有时会伴有生理上的不适,严重时会降低人们的对疾病的抵抗能力,是指人内心的不安、恐惧、困扰和紧张的感受。 正确 错误 14、题型:判断题分值:2 行为指导属于影响性技术。 正确 错误 15、题型:判断题分值:2 A型人格的最关键特征是敌意。 正确 错误 16、题型:判断题分值:2 班主任是班级的促进者、陪伴者、带领者,更是组织者。 正确 错误

2014年度江苏省基础教育青年教师教学基本功大赛获奖名单

附件:2014年江苏省基础教育青年教师教学基本功大赛 获奖名单 小学音乐 一等奖(8人) 陆韵梅南通市崇川学校 崔海鹏如皋市安定小学 盛昕熳常州市局前街小学教育集团 李静常州市第二实验小学 彭剑慧连云港市东港小学 吕乐怡无锡市洛社中心小学 薛冰江阴市晨光实验小学 薛张悦苏州高新区金色小学 二等奖(8人) 季洁南京市琅琊路小学天润城分校 王龄萱连云港市解放路小学 郑倩徐州市淮西小学 吴琳苏州工业园区星洲学校 王蕊南京师范大学附属小学 王霞盐城市实验小学 丁音音扬州市沙口小学 张敏东台市第一小学教育集团

三等奖(9人) 余亚镇江市金山小学 张莉莉淮安市实验小学 李淑娟丹阳市新区实验小学 王梓徐州市黄山中心小学 方畅妍泰州九龙实验学校 朱秀秀宿迁市泗洪县明德学校 徐静宿迁第一实验小学 张妤淮阴师范学院第一附属小学胥洁雯扬州宝应开发区国际学校 小学品德 一等奖(8人) 徐美玲镇江扬中市第二实验小学 乐琰盐城市毓龙路实验学校 胡清南京市赤壁路小学 华琳智苏州工业园区星湾学校 吴梦玉淮安市曙光双语学校 王苏泰州市实验小学 沈红霞南通市海门实验学校附属小学鲁剑锋无锡市新区坊前实验小学

二等奖(8人) 卞小利连云港师专第二附属小学 郭筱凯常州市第二实验小学 梁翠芳宿迁市沭阳县南湖小学 桂冠群无锡市塔影中心小学 王燕镇江扬中市油坊中心小学 黄俊俊南通市如东县实验小学 陈萍盐城东台市实验小学 王成宿迁市泗洪县第一实验学校 三等奖(10人) 李竞淮安市实验小学 陈蕾南京市晓庄学院第一实验小学胡静苏州张家港市梁丰小学 赵余霞泰州靖江市城中小学 许丽扬州市江都区真武小学 宋梅徐州市青年路小学 朱翠莹扬州市江都区龙川小学 王颖徐州邳州市英华实验学校 李桦常州市怀德苑小学 马丽连云港市大庆路小学

【最新】2014江苏省中小学教师心理健康网络知识竞赛多选题

2014江苏省中小学教师心理健康网络知识竞赛多选题 1、面对压力,人们可能会产生的心理反应有哪些?(234) 选项1: 抑郁 选项2: 战斗反应 选项3: 逃离反应 选项4: 认知阻滞 2、“举一反三”和“触类旁通”指的是(3) 选项1: 创造性 选项2: 发现学习 选项3: 学习迁移 选项4: 学会学习 3、教育生态观具有哪些特性?(1234) 选项1: 整体和谐型 选项2: 动态开放性 选项3: 真实有效性 选项4: 自主独立性 4、教师在面对学生出现学习和情绪上的问题时,应该要怎么做?(124) 选项1: 不急躁、不恐慌 选项2: 师生进行心灵沟通 选项3: 批评教育,让家长督促管教 选项4: 倾听学生的心声,了解问题真相,对症下药 5、解决师生冲突的关键是(1) 选项1: 教师 选项2: 学生 选项3: 宽容 选项4: 学校 6、下面关于师生沟通的说法,不正确的有(3) 选项1: 与学生沟通时,老师要注意恰当地运用沟通语言 选项2: 与学生沟通时,老师要避免空洞的说教与劝诫 选项3: 老师坚持从“有助学习,有助班集体建设”角度与学生进行沟通 选项4: 师生心灵沟通的智慧只能通过实践、反思与研讨才能完善起来 7、常见的人格测验有(123) 选项1: MMPI 选项2: 16PF 选项3: EPQ 选项4: SAT 8、咨询过程中,咨询师需要注意和思考哪些问题?(1234) 选项1: 理念与技术的关系 选项2: 咨询关系的作用 选项3: 倾听的重要性 选项4: 伦理的约束作用 9、什么样的人格特质更容易导致职业倦怠的发生(3) 选项1: 意志坚强 选项2: 高自尊 选项3: A型性格 选项4: 擅自控 10、马斯洛判断心理健康的标准包括(23错误) 选项1: 生活的目标切合实际

2014年高考志愿填报指南-志愿填报的方法、技巧、最新政策

2014年高考志愿填报指南 高考志愿填报对每一位考生来说都是大事,但是大部分家长存在思路不清晰,知识匮乏的问题,为了解决这个问题,高健老师和我特意撰写了2014年高考志愿填报指南系列文章为您介绍填志愿的方法、技巧及最新政策,并设计了《高考志愿填报导图》供大家参考。 从导图中我们可以看得出来,高考志愿填报就是根据考生的分数选择出适合的学校,再根据孩子的未来职业规划选择出自己想学的专业和自己想就读的地域,然后这四个因素交叉匹配,就选择出来最适合我们孩子的志愿来了。 一、先说分数 很多家长存在误区,认为高考志愿填报主要是分数决定一切,没有分数就没法研究高考志愿填报,不知道你是不是也是这种想法? 如果有,我告诉你,这种想法是错误的,因为我们研究高考志愿填报的目的是根据孩子的高考分数,分尽其用,给孩子做一个最好的

选择。 孩子考多少分,我们家长帮不上什么忙。孩子考400分,我们就要发挥400分的最大作用,分尽其用;孩子考600分,我们在填报志愿时选择600这个档的学校中最好的学校和专业。 2、再说拨云现日高考志愿导图中的第二个元素——院校 每一个分数段都会对应着一批学校,这些学校中既有综合性大学(比如南京大学,文理兼收什么专业都有),又有理工类大学(比如华中科技大学,理工类的大学),还可能有特色性院校(北京航空航天大学,通过名字就可以看出来他是学什么的),而且没有国家统一的排名,让家长往往很难取舍。 再就是在选择大学时,还有很强的技巧性,这一点也是众多家长难于把握的。 举个例子,比如吉林大学是一个非常不错的重点大学,但是他曾经合并了很多学校,这些合并的学校中,有的就是一些非常普通的学校。 如果你非要冲着吉林大学的名气报考,一不小心被分配到某些合并的学校中去,那真是得不偿失。 二本三本专科学校中这样的陷阱会更多,这些我将会在《2014高考志愿填报指南》的其他文章中为大家列举。 3、再一个就是地域 同等资历的学校,沿海地区的录取分数要比内陆高不少,这对家长和考生来说,往往是一个难于取舍的问题。

针灸科2013年度工作总结和2014年工作计划

针灸科2013年度工作总结和2014年度工作计划 一、精神文明建设 2013年科室在抓医德医风、服务态度上狠下功夫,认真学习医务人员日常行为规范,强调“修医德、强医能、铸医魂”内涵建设,积极参加“树名医、创名科、建名院”的“三名”工程,并积极投入到实践当中,参与院内院外多次关于如何杜绝医疗纠纷发生的讨论与学习,使我们深切认识到加强医患沟通在杜绝医疗纠纷中的重要作用,信任和谐的医患关系,是立于不败之地的重要基础,是维护医患双方权益不可缺少的根本保证。2014年我科将进一步狠抓医德医风的建设,时刻牢记作为一名医生,应有的责任与义务,在医疗服务中,时刻牢记医务人员日常行为规范,严格操作规范,杜绝医疗差错事故的发生。 二、科室建设与医疗工作 1、2013年2月份我科被正式命名为邯郸市重点专科,并在5月份 做为我院邯郸市重点专科,迎接“二甲”复审,并圆满完成任务。 2013年11月份完成省级重点专科--康复科的省专家组检查工作。 2、今年投资近2.6万元用于购置理疗设备。进一步提高了各种设 备在临床医疗中的使用率。 3、截止11月份,2013年度我科总收入79.35万元,比2012年度 减少8.81%,其中门诊收入49.64万元,住院收入29.71万元。年门诊人次11350多人次,年住院人次176人次。2014年度收入争取30%的增长幅度,突破100万元。 4、继续开展了“冬病夏治”疗法,治疗各类慢性病人300余人次, 普遍反应效果非常满意。2014年进一步开展此项新疗法,加大宣

传力度,争取达到800-1000人次以上。 5、2013年开展了艾灸疗法,在临床上得到广泛应用取得了非常好的临床疗效。并通过网络平台学习了针灸“三通法”、穴位注射、腹针等新技术,并应用于临床。2014年借新院搬迁之东风,积极开展2项新技术,中药熏蒸疗法和射频疗法,更好地为患者服务。 6、2013年我科做为河北医科大学针灸推拿系临床教学科室,承担了10余人临床实习学生教学任务。还多次为乡镇卫生院、乡村卫生室医生进行中医适宜技术培训。 7、人员培养和学术交流 (1)人员培养见下表 (2)2014年计划再派一名同志进修学习康复技术等。 (3)2014年继续加强科室业务学习与经验交流,并邀请上级医院高级医师来我院讲授多种微针法的操作与临床应用等。 8、在院内组织的病历检查评比中多次名列前三甲,得到医务科、院领导肯定与表扬。 三、继续教育及科研工作 1、采取送出去、请进来等多种方式,加强业务学习,积极参加院

2014江苏省中小学教师心理健康网络知识竞赛答题

江苏省中小学教师2014心理健康网络知识竞赛判断题 1、A型人格的最关键特征是敌意(√) 2、艾瑞克?伯恩是沟通分析理论的创立者(√) 3、爱心、耐心和方法正确是对学习障碍学生进行治疗的最佳办法。(√) 4、班华教授在《德育论》中描述到:“通常所说的兴趣教育、思维训练、能力培训、创造教育、意志锻炼、 性格教育、情感培养、生活技能训练、社会适应性等均属于心理教育,是心理教育的组成部分”。(×) 5、班级活动和课堂教学是学校教育的两个重要的途径,它们相辅相成,又相对独立。(√) 6、班级活动就是学科教学能起到替代班级活动的作用(×) 7、班级活动与课堂教学是学校教育两个重要途径,相辅相成,相互独立(√) 8、班级价值观,班级精神是班级文化的品牌(√) 9、班级是小学生进入的第一个社会组织,对于小学生具有重要的生命意义(√) 10、班级团队建设是运用心理学视角技术促进班级发展,在小学班级这个微型的社会组织内促进小学班级团 队的形成和发展的过程(√) 11、班级团队形成的阶段并非线性和清楚明确的,不能机械地按年级按阶段(√) 12、班级文化建设有一个启动、发展和成熟的过程,具有短期性(×) 13、班级文化是指以儿童为主体的班级成员共有的目标的复合体(×) 14、班级属于学生和老师。班级既是一个群体,又是一个社会组织,所以班级团队建设需要兼顾到这两个方面的特性(√) 15、班主任是班级的促进者、陪伴者、带领者,更是组织者(√) C 16、蔡志忠说自己是个相当放纵的人,他的观点是“放纵自己做自己想做的事,是我的原则。”(√) 17、惩罚在不能正确使用的前提下,往往不能起到正面的教育效果(√) 18、冲动是指受到突然的刺激,自然产生的缺乏理智而带有盲目性的行为,是每个人都会有的一种正常行为 并不是一种行为缺陷(×) 19、处理学生上课注意力不集中的问题时,可以通过提问学生不能回答的问题来提高其注意力(√) 20、处于青春期的学生,不会产生向往性爱、追求事业等之类的成人需求等(×) 21、从毕生发展观看,人的一生可以分为儿童、成人、老人三个阶段(√) 22、从德育和心理健康的目标、内容、方法看,两者存在着诸多共同的因素,所以说德育和心理健康教育可 以互相取代(×) 23、挫折只会对人造成消极方面的影响(×) D 24、大多数儿童处于存在理论和增量理论之间的连续体上,并且,他们可能在数学上持增量理论,而在艺术 方面持存在理论。(√) 25、大脑并不是对事物进行被动地记录,它积极地储存和唤起记忆(√) 26、大脑的左右半球应分别教育以使其的效用最大化(×) 27、大学生心理问题主要集中在学习、就业、人际交往、情感等问题上(√) 28、单向的谈话也是一种沟通(×) 29、当刺激事件打破了有机体现有的平衡或超过了个体的能力所及,个体就会感受到压力。(√) 30、当认知和情感不一致时,一般是认知将决定人的行为。(×)

2016年史上最详细的高考志愿填报指南(转载)

2016年史上最详细的高考志愿填报指南(转载)

2016年史上最详细的高考志愿填报指南(转载) 常言道:七分考,三分报。孩子十几年的寒窗苦读,怎样能有效最大限度的利用分数,报取到理想的学校,需要家长协助,因为孩子们高考前没有时间顾及这些,考完了时间也不充裕,家长应早做准备,信息收集越早,分析越透彻,就越能使自己在竞争中占得先机。那么该如何收集对报志愿有用的信息呢?收集的信息又该怎样派上用场呢?在这里我就把自己了解到的,还有自己的一些粗浅认识说一说,希望对那些还对报志愿缺乏了解,又迷茫无助的朋友有点启发和帮助。下面我就以河北为例,分6部分,和大家说一说。高考志愿填报指南一:信息搜集俗话说:巧妇难为无米之炊,要想报好志愿,首先得搜集信息和资料,做到知己知彼,才能有的放矢。我就先说下搜集信息的内容和途径吧。一、搜集信息内容:(一般有以下5个方面)1、政策信息填报志愿首先要了解招生政策和规定,特别是与填报志愿密切相关的政策和规定。 一个是国家的政策,比方说,教育部每年要发布一些当年高校的招生文件。 还有一个是省的,每个省的都有特殊情况,要特别关注自己所在省市的招生政策。比如录取批次的划分、录取体制和办法、加分照顾政策、录取程序、投档办法、高考体检指

以上列举了这些,当然还有其它需要了解的,建议各位家长朋友根据自己的情况进行搜集。二、学习搜集信息资料有那些途径: 一是省考试院的官方网站,需要必须看而且要常看,它的信息具有权威性、及时性和准确性;二是看准备报考高校的官方网站,因为它介绍了学校的招生计划、专业计划,还是详细了解该学校一般情况的重要便捷途径。三是考试院发的《报考指南》、《招生计划》、《招生章程》、《录取分数分布统计》等。省考试院发的《报考指南》,上面关于政策、条件、加分、怎么录取等原则性、规则性的东西说得很详细,那本书最关键的就是有近三年高校在本省招生的分数统计,可根据前面三年的数据测算今年你所报的这个学校在本省预计的提档线。需要提醒的是:现在网上信息很多,报刊书籍也多,但要以考试院发的资料为准,那是权威的;参考所报学校的官方网站,那也是权威的。有的学校还开通了网上咨询台和微博,解答问题,也可以打电话咨询考试院或学校。大家还可以看阳光高考网站,这是教育部招生阳光工程指定平台。有时间有条件的可以去学校实际看看,咨询一下,那更好。其它的小道消息,甚至有些报纸做的宣传可能都不太准确,切勿信小道消息和传言。高考志愿填报指南二:自我定位全国两千多所高校,分不同档次、不同性质,每个学校都看,都搜集,那得费多少时间

2013年工作总结及2014年工作计划

2013年工作总结及2014年工作计划 任丘市供销社 2013年11月28日 2013年,市供销社紧紧围绕市委、市政府和上级社的中心 工作,以爱任丘、谋发展”解放思想大讨论和百日攻坚”活动为契机,抓龙头、上项目、建网络,发展农合组织,扎实推进各项工作的开展,较好地完成了各项指标任务。预计全年完成商品购进6.1亿元,实现商品销售6.2亿元,实现利税340万元。 一、具体工作措施: (一)推进基层组织体制创新,提升供销社为农服务水平巩固基层社组织体制改革成果。市供销社按照巩固提高的原则,积极推进基层社组织体制创新。一是完善管理制度。我市 16个基层社全部建立健全新型基层社议事规则、财务管理制度和内部规章,完善了社员代表大会制度,建立了现代企业制度。二是明晰产权,提高运行质量。社有资产实行占用制改革,固定资产归市社所有,流资实行股份合作制,建立不亏损的利益机制,调动了社员参与基层社经营管理的积极性,为农民提供了质优价 廉的农资商品,引领了农民合作经济组织的发展,搭建了助农增收新平台,基层社经济效益和社会效益显著提升。

(二)抓好项目建设,破解制约供销社发展的瓶颈 1.积极推进现代化农资配送中心项目建设。市生产资料公 司作为我市最大的农资销售龙头企业,初步构建了覆盖全市的农 资流通网络,发挥了农资销售主渠道作用。但目前生产资料公司 经营场地狭小,仓储设施陈旧,道路狭窄,车辆通行困难,严重影响了农资配送业务的开展,因此,我们计划新建一座现代化农资配送中心。目前,我们已完成了农资配送中心项目的前期设计规划,正在积极寻找地源。 2 .抓好盐业公司升级改造项目。盐业公司经营设施老化, 房屋破旧,硬件设施不达标,阻碍了企业的发展,我们积极筹措资金,抓好盐业公司配送中心升级改造项目,目前,完成了对盐业公司仓库、办公住房的重建,对沿街门店进行了整体装修,着力打造AAA级和谐企业。 3.抓好土产公司外迁项目。土产公司承担着全市烟花爆竹的供应任务,该公司地处居民区,交通拥挤,出行困难,安全问题日益突出,市安监局已多次要求外迁,为此,我们计划征地30亩,做好外迁工作。目前,正在积极争取用地指标。 (三)抓好龙头企业建设,打造农村现代流通服务体系 1 .抓好农资销售龙头企业建设。我们以市丰田农资公司为 龙头,16个基层社,150家农资农家店,190个农资零售网点为销售终端,大力开展农资连锁经营业务,积极与中农、省农资公司和农资生产厂家合作,实行厂商联合,开展总代理总经销业务,

2012年度总结及2013年度计划

2012年度总结及2013年度计划D

平远汽车运输有限公司 二0一二年度工作总结及二0一三年度工作计划 2012年度,我司在上级党委和市粤运公司的正确领导及当地交通主管部门的大力支持下,深入贯彻落实科学发展观,认真学习宣传党的十八大精神,围绕市粤运公司确定的“转变发展方式、加快企业发展、建设幸福企业”的核心任务,认真抓好自营车的生产经营和承包车的管理工作,强化安全生产,不断完善企业内部管理考核制度,狠抓各项制度的落实,不断规范企业各项管理工作,提高企业管理水平。同时认真开展文明服务活动,提高服务质量。加强企业精神文明建设和员工的学习教育,提高职工队伍的整体素质。加强党的建设,落实党风廉政建设责任制,扎实开展排头兵实践活动和“创先争优”活动,提高党员干部素质,发挥党组织的战斗堡垒作用和党员在企业生产经营中的模范带头作用。公司领导班子团结一心,开拓进取,组织带领全司员工扎实工作,克服困难,不断取得工作成果,较好地完成了2012年的各项工作任务,取得了较好的经济效益,企业生产经营保持了良好的发展态势,使企业实现了安全、增效、和谐的发展目标,企业发展前景喜人。 生产指标任务及经营效益如下: (1)客运量20.02万人次,完成计划50.05%,客运周转量5966.88万人公里,完成计划60.89%。其中自营车客运量8.15万人次,同比减少3.54%;客运周转量3688.76万人公里,同比减3.58%。

供了保障。充分利用新车站站场宽阔、停车方便、设施先进、服务周到等优势,吸引旅客到新车站购票乘车,聚集了客源,实现了主营业务稳步发展。客运站进站班车38台,日发班车50班次,上半年共发出班车8710班次,同比增长10.43%;输送旅客11.23万人次,同比增长10.48%;组织加班178班次,同比增长4.09%,包车38班次,同比减少15.8%。其中公司17台自营车发班3702班次,同比减少 %;运送旅客8.15万人次,同比减少3.54%。农村客运总站进站经营车辆21台,日发班车42班,上半年发出班车7699班次,同比增0.26%,输送旅客6.44万人次,同比增8.7%。 (二)全力以赴抓好重大节假日旅客运输工作,安全增收创效益。 2012年春运,我司精心组织,周密部署,积极组织客源和运力,增加加班、包车台次,尽量满足旅客要求,让旅客走得安全、及时、有序、满意,春节运输安全、和谐、高效。客运站和农村客运站春运共售票547.81万元,发出班车3538班次,输送旅客5.05万人次。其中客运站售票533万元,发出班车2026班次(加班包车176班),发送旅客3.57万人次,同比分别增长11.51%、10.22%和11.55%。公司投入14台自营车参加春运,营运收入399.28万元,发班898班次(加班34班),运送旅客2.21万人次,取得了良好的经济效益. “五·一”、端午等重大节假日,我司同样精心组织,合理安排,尽最大的人力、运力输送旅客,增加营运收入,为全年运输生产任务的完成打下基础。 (三)坚持公司、生产部门领导值班和公司生产会议制度。每天召开生产碰头会,每月召开司务会,及时了解掌握企业生产经营情况、生产经营中出现的问题、以及各项管理工作落实情况,提出完善和整改意见,协调部门工作,保证了生产任务、各项工作的完成。每月召开一次经济活动分析会,各部门对生产经营指标完成情况进行分析对比,查找存在的问题,

2014年流行色

2014年春夏秋冬流行色是什么时尚总是轮回的,每一次的循环与回归都预示着下一季潮流的卷土重来,2014年,最流行什么颜色是不少爱美人士关注的焦点,具体流行什么颜色,请看图文解说。 1.海洋蓝 海洋蓝将是2014年不退色的潮流,今年的海洋蓝,更偏向于金属的淡淡光泽感,这似乎是今年流行色的共同点,少了几分低调,凭添更多华贵的气质。 2.黄与红 这一系列是大地色系的变异,看着这2个颜色,是不是有浓浓的拉丁风情,席卷而来的感受呢,这是很热情、温暖的颜色,适合熟女穿,比较有亲和力。

3.白加黑 无需多说,黑白是经久不过时的颜色,无论在哪个年代,有这两种颜色撑场面,相比也不会逊色太多。感觉黑色鸭梨山大的,可以选择深灰色减轻负重感。

4.富贵金 2014年必定大热的一款颜色,模特儿们还勉强能撑起这么华美的颜色,像一般路人穿这种颜色,估计是hold不住的,一股浓浓的土豪即视感。

5.渐变紫 渐变是时尚的永恒主题,无论什么时候,渐变都会存在,不过个人不建议买渐变紫颜色的衣服,因为,东方人的皮肤在紫色的映衬下会更加显暗淡。

色彩机构潘通Pantone发布2014年度流行色蝴蝶兰紫 色彩专家Pantone公司最近发布了2014的年度流行色。你还记得2010年的流行色是绿松石,所以一整年我们都随处可见这种蓝绿色的身影,从明星们的眼影,到T台上模特们的指甲,再到新上市的彩妆盘。到了2011年,最热门的颜色变成了“忍冬花”(honeysuckle),这种淡淡的粉红色调能给肌肤带来健康的光泽,这种光泽被认为是魅力、活力和表现,能振奋人的精神。2012年,流行色是橘色,所以在T台我们总能看到饱和鲜艳的橘色唇膏带来的十足热力。今年的流行色则是Radiant Orchid,也就是蝴蝶兰紫。

江苏省中小学教师继续教育网络培训答案

江苏省中小学教师继续教育网络培训答案13 第83题《2014公民教育实践活动中难点解析》网络培训答案 (一)单选题 1. 我国最高的立法机关是() 答案:(A)全国人民代表大会 2. 品德教学活动中提倡“请人助教”的教学思路,公民教育实践活动中学生接触到的( )正是“请”到的“人”。 答案: (B)专业人士 3. 我国的根本大法是() 答案: (A)《中华人民共和国宪法》 4. 制定出班级方案后我们应该采取的正确的行动是()。 答案: (A)向与研究问题相关的政府部门递交班级方案 5. 在公民教育实践活动中,学生通过实践发现和提出问题,在体验、探究和问题解决的过程中,形成良好道德品质,实现社会性发展。这正与品德课程的学习是( )相统一的过程不谋而合。 答案:(A)知与行 6. 在采访时,我们一般可以使用( )表格。 答案:(B)采访表 7. 公民法制教育实践活动中常用的“七种表格”分别是:问题确认与分析表、( ) 、印刷资料表、广播/电视观察表、文献资料表:出版物信息资料、文献资料表:信函或采访信息、宪法意见表。

答案: (A)采访表 (二)多选题 1. 在第四步骤:编制班级方案的过程中,我们要遵循的原则是()。 答案: (A)说服性 (B)实用性 (C)法律性 (D)全体性 2. 视频中,在第三步骤收集班级所要研究问题的有关资料时,我们可以通过实地查看、采访相关人员、上网、看电视、()()这些渠道来收集资料。 答案: (A)去新华书店 (B) 查看报刊、书籍 (C)去图书馆 (D)发放调查问卷 3. 在公民教育实践活动与学科教学整合的过程中,需要着力做好()。 答案:(A)将公民课题纳入原有课程体系进行课程定位(B)确立新课程的学习目标(C)精心进行教学活动的设计与实施(D)重视学习成果展示和学习反思 4. 品德课堂教学与公民教育实践活动的联结点是儿童的现实生活,这包含着( )。 答案:(A)真实的生活(B)普通的生活(C)日常的生活(D)今天的生活(正在进行的生活)(E)首属群体中的生活(儿童主要生活圈中

2013年测绘工作总结及2014年工作计划

2013年测绘工作总结及2014年工作计划 一、2013年测绘工作总结 2013年,公司在各级领导的带领下及各部门员工的支持下,坚持贯彻“技术求新,测绘求精,服务周到,与时俱进”的质量方针,坚持“公正、诚信、专业、快捷”的服务理念,始终把提高业务素质、服务质量和经济效益作为事业发展的根本。在公司全体职工的共同努力下,全年各项工作基本顺利完成。现将我这一年工作做如下总结。 (一)工作作风及理论技术方面 在过去的一年中我身为项目经理,始终都以身作则,带领组员较好的完成领导下达的每项任务,在工作中出现问题能够和领导及同事一起探讨,争取做到每个测绘项目都是合格的。我把我会的毫无保留的与单位同事分享,不会的虚心向领导请教。在这一年得工作中,让我深刻体会到了测绘工作是一项严谨、认真的工作,不负责任,工作敷衍,弄虚作假,是测绘工作坚决不允许的。即使你不会,不懂,也不能装着什么都会了,这样的态度会给公司在社会上造成极坏的影响,我们应该杜绝此类的现象发生,我一直都坚持倡导良好的学习风气,认真的工作态度,领导交代给的任务要按时完成,并且还要保证质量。 测量是一项即艰苦而又技术含量非常高的工作,在这个电子信息的时代,测量设备在不断的更新,大家所掌握的知识也应该要不断的更新。公司的荣辱直接关系到每个员工的切身利益,我们应该看远一点,为单位的长久发展贡献自己微薄之力,只有这样我们才能为公司创造更多的财富与价值,体现自己的专业技术水平,所以在这过去的一年中我报考了全国注册测绘师考试,以使自己能很好

的适应测绘事业的发展,同时我也是想通过自己的努力为公司的发展尽自己的一点微博之力,因为注册测绘师制度将会是以后测绘事业发展的必然,但遗憾的是由于自己资历太浅、经验不足,还有就是准备的不够充分,所以考的不是很理想,但我还会再接再厉,毕竟注册测绘师考试涉及到测量的十二个专业,而我学的仅仅只是其中一个专业的某几个分支,所以在这次的考试中我也颇有收获,至少感觉自己测绘专业理论水平里高了。 (二)业务方面 据统计,在过去的一年中,我项目组较好的完成了20多个开发商房产测绘项目(包括保山交通运输集团有限责任公司腾冲分公司-棚户期改造项目实测;腾冲休闲度假庄园有限公司D、E3、F、G、H、J区项目实测;保丰房地产开发有限责任公司腾冲分公司-玉泉名居-项目实测;南门外文化旅游发展有限公司-月楼、城门楼项目预测;龙龙房地产开发有限公司-凯龙城一期、二期项目实测;云峰置业开发有限公司-云峰山居项目实测;腾恒基房地产开发有限公司-汇和园项目实测;腾龙开发有限公司-龙腾国际项目预测;冲州房地产开发有限公司-天成商业街项目预测;腾冲雅居乐房地产开发有限公司-山居高黎、绿野牧歌、浣溪果林等项目预测;腾冲兴华房地产开发有限公司-兴华物流国际商贸城项目预测;云南腾驿房地产开发有限公司-腾冲国际商贸城项目预测;腾冲恒益东山休闲度假房地产开发有限公司-商业中心、低层住宅组团1、2、4、多层住宅组团1、2、3、6、7项目实测、多层住宅组团4项目预测);腾冲鼎晟房地产开发有限责任公司-金色家园项目实测;驼峰机场开发管理有限公司-民航大厦项目

2014江苏省中小学教师心理健康网络知识竞赛多选题

2014江苏省中小学教师心理健康网络知识竞赛多选题及参考答案 1.小学心理健康教育中的合作与统合包括:校内资源的合作、校内与校外资源的统合、校内资源的统合、校内与校外资源的合作 2.教师在面对学生出现学习和情绪上的问题时,应该要怎么做?不急躁、不恐慌;师生进行心灵沟通;倾听学生的心声,了解问题真相,对症下药 3.常见的人格测验有MMPI 16PF EPQ 4.中小学教师在应对有自杀倾向的学生时可以采取的措施是及时报告做好监护持续关心心理辅导 5.班级文化由哪些方面构成?精神文化行为文化制度文化物质文化 6.教师劳动的特点为复杂性创造性示范性长期性 7.完整的心理档案包括以下哪些内容学生基本情况学习适应性分析职业倾向分析心理健康状况分析 8.“桃李不言,下自成蹊”这句话所体现的是榜样示范法 9.以下属于心理健康教育课开设目标的是传授心理健康知识陶冶心理品质全面提高心理健康水平 10.在中小学建立学生心理档案有何意义?有助于进一步完善教育教学工作,提高教育教学质量有助于促进学生心理的发展有助于对学生心理健康工作的开展有助于加强对青少年心理的研究 11.心理健康教育课的开设目标包括:陶冶心理品质训练心理素质 12.学生早恋或者与异性交往过密,可能存在的原因有哪些?不良的师生关系长期的学业失败沉重的学习压力丧失功能的家庭教育 13.张老师是A型个性,那么以下性格特点中可能属于张老师的是渴望成功较强的竞争性追求完美 14. 马斯洛判断心理健康的标准包括生活的目标切合实际与现实环境保持接触能保持良好的人际关系适度的情绪表达与控制 15. 优秀教师的主要特质是能够教人以智慧能够教人以知识能够教人以发展能够教人以道义 16. 教师呈现课堂教学内容必须符合哪些感知规律强度律差异律活动律组合律 17. 缓解压力的心理调节方法有哪些?()美好想象解压法运动解压法谈话聊天解压法走进大

2014年高考填报指南:2014高考志愿填报指南必知一百问

2014年高考填报指南:2014高考志愿填报指南必知一百问 高考研究 2014-04-15 2043 2014高考志愿填报指南必知一百问 一、必备基础 1问:什么是高考志愿填报? 答:填报高考志愿是指考生在选择自己希望就读的高校与专业时,按当地规定的形式向招生部门和招生院校就自己的决定所表达的书面意见。一般采取填涂志愿卡(表)的形式,北京、天津、广东等许多地方已开始采取网上填报的方式。 2问:报志愿就是签?大学录取协议?吗? 答:考生所填报的高考志愿既是省(直辖市、自治区)招办投档的重要依据,又是招生院校录取新生的必要条件。现在各地一般所有批次的院校全部以考生统一填报的志愿(含征集志愿)为录取依据,省市区招办按考生填报的志愿从高分到低分投档,没有按省(直辖市、自治区)招办统一规定的时间和方式填报志愿的考生,不可能被院校录取。在招生政策范围内,只有考生与院校双方都同意的选择,才会圆满实现。因此,填报高考志愿从实质上来说,就是考生与院校之间按招生规则进行双向选择所签署的?大学录取协议?。 3问:重考试、轻报考的危害在哪里? 答:作为高考招生非常重要的必不可少的志愿填报,有许多人从重要性上将其称之为第二次高考,也有许多人从技巧性上将其称之为第二次高考,还有更多的过来人坦言?考得好不如报得好?,无论如何将其归结为?七分成绩定,三分志愿拼?是不为过的。高考志愿填报成功了,将会锦上添花使考生及家长心想事成,从而上个理想的、心仪的大学;而高考志愿?报砸?了,就不仅是事与愿违、?损分折业?这么简单了,稍强一点的,上个不理想的大学或不如意的专业,就有可能使其心情郁闷、黯然神伤;遇到稍差的,就有可能是?由本到专?,甚至是?名落孙山?,足以使其改变人生、抱憾终身。

机电管理部2013年年终总结及2014年工作计划(排版后)

机电管理部 2013年年终总结及2014年工作计划2013年以来,随着矿井从基建期转型至运营期。机电管理部在公司领导的正确指引下,在公司各部门通力配合下,认真研究在专业化运营模式下的机电管理现状,针对基建单位与专业化运营单位交叉作业,相互推诿扯皮等难点。积极收集资料,协调处理,全面服务于一线生产建设。针对各运营单位机电管理组织机构不健全,基层机电管理薄弱,机电从业人员整体素质较低的现状,深入现场。从基础资料入手,“三率”达标为主,服务一线为基,技术交流为辅,基本实现了机电系统的安全运行。 现将2013年工作总结汇报如下: 一、通过完善制度建立健全机构,出台考核标准进一步规范公司机电管理的行业标准。2013年以来,机电管理部先后出台了《延安市禾草沟煤业有限公司机电管理制度汇编》 《延安市禾草沟煤业有限公司机电专业质量标准化考核标准》、《延安市禾草沟煤业有限公司机电设备完好标准细则》以及《延安市禾草沟煤业有限公司供电、供排水系统管理办法》、《延安市禾草沟煤业有限公司定值、保护、整定实施细则》、《延安市禾草沟煤业有限公司胶带运输机皮带保护管理办法》、《综采、

综掘工作面机电设备管理办法》等文件。对全矿机电专业规范化管理起到了指导作用。在上级公司的多次安全检查中,机电管理部专门制定机电专业考核、检查重点。分阶段、分主次、突出重点。对全矿机电管理工作逐步加强,使机电管理机构进一步健全,基础管理深入,技术档案健全等方面也有了明显加强。 二、通过对选煤厂的系统改造保障了矿井正常运行和全年生产任务的完成。根据入洗原煤特点和设备缺陷,机电管理部在公司领导的决策和安排下,与中煤洗选一起制定方案。合理设计,精心组织,先后对浓缩池加药系统、浓缩机自动升降耙系统、板式压滤机滤板改造、耐磨管道的消缺处理、空压机房系统改造以及根据煤泥特点增加带式压滤机等措施提高了原煤入洗能力。及时调整产品结构,根据市场要求合理出台相应的煤质考核标准。组织了多次劳动竞赛,使入洗能力和产品质量有了逐步提高。 三、通过对大型固定设备的规范化管理保障了矿井全年 大型固定设备零事故。2013年以来,机电管理部和采矿部、洗选部一起相继制定出台了《大型固定设备操作规程》、《岗位责任制》、严格执行《交接班制度》、《巡回检查制度》。特别是坚决落实大型固定设备《强制检修制度》,保证每天四小时的强制检修时间,有计划、有准备、有落实的保障了全矿大型设备的完好率、开机率,降低了大型固定设备的故障 率。

2014江苏省中小学教师心理健康网络知识竞赛(100分卷)

2014江苏省中小学教师心理健康网络知识竞赛-小学(本卷为随机组卷) 1、题型:判断题分值:2 寻求来自他人的情绪支持是能从情绪和生理上帮助个体适应压力源的策略之一。 正确 2、题型:判断题分值:2 学生的学习心理具有时代特征。 正确 3、题型:判断题分值:2 团队与群体的不同之处在于:团队的成员会形成一些共享的目标,并为实现这些目标而形成一套有效率且有效果的组织结构。 正确 4、题型:判断题分值:2 班级文化是指以儿童为主体的班级成员共有的目标的复合体。 错误 5、题型:判断题分值:2 爱心、耐心和方法正确是对学习障碍学生进行治疗的最佳办法。 正确 6、题型:判断题分值:2 班级文化建设有一个启动、发展和成熟的过程,具有短期性。 错误 7、题型:判断题分值:2 咨询师发现求助者之所以会陷入困境,常常是因为他们的价值观与大多数人的价值观不同,那么,咨询师在咨询过程中有责任改变他的价值观。 错误 8、题型:判断题分值:2 婴儿早期几个月几乎全部用于睡眠,因此,他们肯定是被动的和无知的。 错误 9、题型:判断题分值:2 外向型个性的人,遇事通常情绪反应比较强烈,对事件的体验也较为深刻,但情绪的持续时间也不长,恢复心理平衡较容易;内向型个性的人,情绪反应较淡但持久,恢复心理平衡的过程较长。 错误 10、题型:判断题分值:2 在沟通当中,通常非语言沟通所占的成分更大。 正确 11、题型:判断题分值:2 青春期的孩子尚处在心理断乳期,仍然保留许多儿童期的特点,比如不成熟、难沟通。 正确 12、题型:判断题分值:2 在心理测评中使用面谈技术时,要尽量少用专业词汇,通俗易懂为好。 正确 13、题型:判断题分值:2 心理健康教育就是做学生的工作,让学生听话。

人力资源部2013年工作总结和2014年工作计划

人力资源部2013年工作总结 和2014年工作计划 第一部分2013年度工作总结 一、人力资源业务工作盘点 1、招聘情况 2013年全年招聘录用42人,其中,财务类2人,物资类3人,经营类5人,工长类9人,技术类4人,质检类2人,安全类6人,资料类3人,行政类6人,其他类2人。 2、培训情况 全年岗位取证培训共64人次,其中,施工员33人、预算员3人,安全类9人,质检员10人、材料员3人、资料员3人、农民工管理员3人;执业资格培训共10人次; 全年继续教育培训共28人次,其中,安全类继续教育11人,造价类继续教育7人,二级建造师继续教育6人,一级建造师继续教育4人。 专业内训共实施12场,主要以BIM培训为主,各职能部门的培训次数明显不足。 应届生座谈共安排2场,主要是2012届和2013届应届入司的毕业生,了解其工作情况和思想状态,并为其成长和成才指明方向。 3、社会保险管理 截至2013年11月底,公司参保人员共计174人,按月进行社保增减员,适时办理保险单位内转移、保险北京转外埠、外埠转北京、医疗报销、生育报销、社保卡申领等业务。 4、员工关系管理 (1)劳动合同管理:全年新签劳动合同42份,续签27份,合同签订率100%,确保劳动合同新签和续签及时无误。 (2)员工离职面谈与年底电话访谈:与离职员工尤其是主动辞职的员工进行沟通,了解员工离职深层次原因并进行记录和分析统计。 5、基础人事工作

全年办理新员工入职手续42人次,员工转正手续57人次,人员调动手续98人次,员工离职手续19人次。 全年办理人事档案调入手续6人次,调出手续2人次。 不断完善员工信息库、及时更新员工资质证件台账和资质库,满足了公司内部投标和施工管理对员工资质证件的需要。 二、人力资源管理改善探索 1、招聘渠道拓展与测评技术完善 关于招聘渠道:当今社会人才争夺战愈演愈烈,除了主流的招聘渠道—网络招聘和现场招聘会以外,更多新兴的招聘方式的比重在逐步加大。如猎头招聘、微博招聘、“职来职往”、“非你莫属”等电视节目招聘。根据公司具体情况,今年在招聘渠道拓展上有两点探索: 第一,参考猎头招聘。对于关键岗位或是招聘难度大的岗位,打破传统的面试时间和面试地点局限,走出办公区域,到公共场所约谈。但是这种方式对招聘人员的专业素养和综合能力要求都较高,也要求人力资源部门要不断提升自身职业化形象。 第二,启动外部推荐。对前来面试的人员,向其展示公司良好的企业平台和综合实力,无论其本人最终是否入职,今年都获得了不少面试者推荐相关人员的机会。另外,积极参加专业人力资源论坛,拓展招聘人员的人脉圈和人脉资源,一步步做好人脉资源的积累。 关于测评技术:今年对测评工具进行了不少尝试,如增加DISC、MBTI两种性格测试工具,尝试结构化面谈、无领导小组讨论评价方法,一定程度上增强了面试专业性,改善了招聘效果。但是在校园招聘的效果方面还不尽理想,这是2013年招聘重点要突破的地方。 2、部门建设与专业素养提升 人力资源部门当前人员配置为2人,如何在做好模块业务工作如招聘、培训、薪酬、劳动关系的同时,探索人力资源管理体系如选、育、用、留机制的建设与完善,甚至上升到人力资源战略和规划的高度,对部门来说,是要持续考虑和想办法解决的问题。 首先,部门人员责任心和价值观的塑造。作为人力资源部人员,经常会要给

2014江苏省中小学教师心理健康网络知识竞赛 35 套 修订版

2014江苏省中小学教师心理健康网络知识竞赛 班华教授在《德育论》中描述到:“通常所说的兴趣教育、思维训练、能力培训、创造教育、意志锻炼、性格教育、情感培养、生活技能训练、社会适应性等均属于心理教育,是心理教育的组成部分”。 正确错误答案正确 从德育和心理健康的目标、内容、方法看,两者存在着诸多共同的因素,所以说德育和心理健康教育可以互相取代。 正确错误答案错误 教师也是人,也需要得到尊重、理解、关怀、自由与归属。 正确错误答案正确 心理教育课主要解决和处理共性的、典型性问题。 正确错误答案正确 个体心理咨询工作的三大要素为:尊重、热情、真诚。 正确错误答案错误 惩罚在不能正确使用的前提下,往往不能起到正面的教育效果。 正确错误答案正确 根据Super的生涯发展理论,探索期(14-24岁)时,多数人在此时已经找到最合适的工作,决定在此领域建立稳固的地位。 正确错误答案正确 焦虑有时会伴有生理上的不适,严重时会降低人们的对疾病的抵抗能力,是指人内心的不安、恐惧、困扰和紧张的感受。 正确错误答案正确 人感到幸福的两大因素是充实与闲适。 正确错误答案正确 A型人格的最关键特征是敌意。 正确错误答案正确 焦虑是一种病态的反应,一旦产生,就要尽快消除。 正确错误答案正确 对于理性水平低的学生,宜采用松散的结构组织教学。 正确错误答案正确 教师在调控学生非正式群体时要重视非正式群体核心人物的作用。 正确错误答案正确 只要学生的知识技能掌握的好,智力发展水平较高,并形成良好的品德,其心理就会健康的发展了。

正确错误答案正确 心理学家发现,动机与学习呈正相关,即在智力水平相当的情况下,学习动机高的学生比学习动机低的学生学习成绩更好。 正确错误答案正确 在心理评估中,与来访者进行面谈时,应当多用专业词汇,以表现咨询师的专业性。 正确错误答案正确 个案辅导不是一般的助人行为,而是运用心理学的知识、理论和方法从心理上为来访学生提供帮助的活动。 正确错误答案正确 心理健康教育中的个案辅导就是通过提供信息,来批评教导人,达到100%解决问题的目的。 正确错误答案正确 在教师的人际竞争中,主要的功利目标是评优、职评和晋级等,所以教师职场最大的竞争也是同事之间的竞争。 正确错误答案正确 心理宣泄是有计划和理智地疏导自己的思想感情、欲望、冲动等,有建设性宣泄和破坏性宣泄之分。 正确错误答案正确 教师在设计和组织心理健康活动课时要遵循参与性原则,坚持此项原则,应注意哪些? 选项1: 保证给每个学生机会选项2: 教师要允许不同意见存在选项3: 教师以平等的身份 参与活动选项4: 教师应当自觉地、主动地以多样性的形式适应不同学生需求 答案错误 教师呈现课堂教学内容必须符合哪些感知规律 选项1: 强度律选项2: 差异律选项3: 活动律选项4: 组合律 答案正确 小学心理健康教育中的合作与统合包括 选项1: 校内资源的合作选项2: 校内与校外资源的统合选项3: 校内资源的统合选项 4: 校内与校外资源的合作 答案正确 教师管理压力缓解训练包括以下那些方法 选项1: 转移注意力选项2: 心理移位选项3: 合理释放选项4: 情绪升华1234 教师在面对学生出现学习和情绪上的问题时,应该要怎么做? 选项1: 不急躁、不恐慌选项2: 师生进行心灵沟通选项3: 批评教育,让家长督促管教 选项4: 倾听学生的心声,了解问题真相,对症下药 答案正确

相关文档
相关文档 最新文档