文档库 最新最全的文档下载
当前位置:文档库 › PLC上水箱PID液位控制系统

PLC上水箱PID液位控制系统

PLC上水箱PID液位控制系统
PLC上水箱PID液位控制系统

目录

目录

目录 (1)

一.PLC介绍 (2)

1.1 PLC的产生、定义及现状 (2)

二.S7-200中小型PLC和控制对象介绍 (4)

2.1.1 CPU模块 (4)

三PID控制算法介绍 (5)

3.1 PID控制算法 (5)

3.2 PID调节的各个环节及其调节过程 (6)

四控制方案设计 (7)

4.1 系统设计 (7)

4.1.1上水箱液位的自动调节 (8)

4.2 硬件设计 (8)

4.2.1 检测单元 (8)

4.2.2 执行单元 (9)

4.2.3 控制单元 (9)

4.3 软件设计 (10)

4.4具体操作步骤 (10)

4.5 基于MCGS的组态画面 (12)

五实验情况介绍 (13)

5.1 上水箱液位比例调节 (13)

5.2 上水箱也为比例积分调节 (14)

5.3 上水箱液位比例积分微分调节 (14)

六.课程设计总结 (15)

七.参考资料 (16)

一.PLC介绍

1.1 PLC的产生、定义及现状

1985年国际电工委员会(IEC)对PLC的定义如下:可编程控制器是一种进行数字运算的电子系统,是专为在工业环境下的应用而设计的工业控制器,它采用了可以编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟式的输入和输出,控制各种类型机械的生产过程。

④PLC是由继电器逻辑控制系统发展而来,所以它在数学处理、顺序控制方面具有一定优势。继电器在控制系统中主要起两种作用:(1)逻辑运算(2)弱电控制强电。

⑤PLC是集自动控制技术、计算机技术和通讯技术于一体的一种新型工业控制装置,已跃居工业自动化三大支柱(PLC、ROBOT、CAD/CAM)的首位。

在工业自动化领域,可编程控制器和工控机是人们不得不提的两类控制设备,它们是大多数自动化系统的基础设备。可编程控制器和工控机的最新技术发展是工程师对设备应用性能要求的完美体现:控制器的硬件标准化,以及用户的各种控制要求通过软件来进行改变。

可编程控制器是一种利用计算机原理为顺序控制专门设计的、通用的、使用方便的装置。它采用了专用设计的硬件,而使用性能都是通过控制程序来确定的。 PLC目前的技术发展水平已大大超过其出现时技术水平,并定位在不同的层面。PLC适合低成本自动化项目和作为大型DCS系统的I/O站,据预测,2000年我国工业自动化的市场规模达170亿至207亿人民币,其中工控机占40亿左右、PLC占30亿左右,再加上DCS系统、FCS系统和NCC系统(占60亿)中使用的PLC和工控机,可以看出其在工业自动化领域中举足轻重的作用。这两类控制设备在各领域的自动化中扮演了不可缺少的角色。

目前,可编程控制器的主流厂商有A-B、Siemens和Modicon、Mitsubishi 等。工控机的主流厂商有上海康泰克、北京康拓和研华、艾讯等。

PLC在其技术发展的历程中,为了适合工业现场应用的需要和用户二次开发的需要,都积极地发展高可靠性、网络化和高性能的用户开发软件方面的技术性能。以下将重点介绍PLC在硬件、软件和网络方面技术应用现状和发展趋势。

PLC的硬件技术现状和发展

PLC的最终用户为冶金、采矿、水泥、石油、化工、电力、机械制造、汽车、装卸、造纸、纺织、环保等行业,其主要的用途为:

·顺序控制顺序控制是应用最广泛的领域,它包括单机控制、多机群控制、自动生产线控制,如注塑机、印刷机械、订书机械、切纸机械、组合机床、磨床、装配机械、包装生产、电镀流水线和电梯控制等。

·运动控制应用在电力拖动系统或伺服电机的单轴或多轴位置控制。

·过程控制采用模拟量模块能控制物理参数,例如温度、压力、速度和流量等,并提供PID等闭环控制的功能。

·数据处理可以支持数控机床的控制和管理、多轴控制等。

由于自动化系统的要求日益提高,传统的提供I/O点服务的PLC和工控机已经无法满足复杂的工艺要求。因此,PLC和工控机在硬件系统上有了根本的变化。PLC系统在模块上的技术发展有:

·处理器模块配备大容量内存,为满足实时控制的要求而优化设计,除了一般的I/O扫描和控制、远程数据交换外,支持大型的集成控制、通讯、并行运算、处理器独立后台程序和处理器输入中断等功能。如A-B公司的ControlLogix 处理器模块在它的内核中设计有通信功能,借助于它的无源数据总线,系统的瓶颈得以消除。这种灵活的结构允许多个处理器、网络以及I/O在一个机架中搭配使用而没有限制。

·信息协处理器模块读取主处理器的数据表和状态文件,或通过高级语言程序将数据写入主处理器,程序可以在实时多任务环境下以及独立于PLC处理器的方法,单独在协处理器中运行。·网络适配模块在现场总线与处理器之间提供通讯接口,以便PLC处理器和I/O模块进行远程的数据交换。

·具有特殊功能的I/O模块如A-B公司在其产品中提供了智能变送器模块、温度控制模块、称重模块、开环速度控制模块、塑料制造模块、力矩控制模块、绝对编码模块、可组态流量计模块、电流同步模块等。这些模块的设计考虑了特殊行业的需要,使得复杂的控制功能以模块化的方式得以解决,提高了可靠性和专业水平。

工业现场的应用环境要求PLC具有很高的可靠性,而可靠性是靠电磁兼容特性(EMC)和容错技术来保证的。PLC要经过严格的电磁兼容检测,如辐射敏感度检测、谐波/电压波动/电压骤降检测、静电/快速脉冲/雷击检测、电磁干扰检测等。EMC保证了设备在本质上的抗干扰特性。但是,要保证控制设备不出故障是不可能的。因此,采用容错设计的系统对要求不能停机、不能失控的高可靠系统是十分重要的。目前重要的容错设计技术有Watchdog和双机热备(包括主机、模块和通讯介质的热备)。热备系统的工作对用户来说是透明的:即当故障发生时,所有对故障点的切除和数据的备份都是在最短的控制周期内自动完成的。此项技术的完成包括了设备硬件和软件二个方面图2 PLC双机冗余系统结构

随者微机的软硬件技术和网络通讯技术的飞速发展,工业自动化领域发生了革命性的技术进步。而PLC作为工业控制的设备基础,通过技术的不断革新,在工业控制中的地位日益加强,并且成为实现工业控制技术进步的主要工具

S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。

---- S7-200系列出色表现在以下几个方面:

S7-200中小型PLC和控制对象介绍

--------* 极高的可靠性

--------* 极丰富的指令集

--------* 易于掌握

--------* 便捷的操作

--------* 丰富的内置集成功能

--------* 实时特性

--------* 强劲的通讯能力

二.S7-200中小型PLC和控制对象介绍

2.1.1 CPU模块

集成的24V负载电源:可直接连接到传感器和变送器(执行器),CPU 221,222具有180mA输出, CPU 224,CPU 224XP,CPU 226分别输出280,400mA。可用作负载电源。

不同的设备类型

CPU 221~226各有2种类型CPU,具有不同的电源电压和控制电压。

本机数字量输入/输出点

CPU 221具有6个输入点和4个输出点,CPU 222具有8个输入点和6个输出点,CPU 224具有14个输入点和10个输出点,CPU 224XP具有14

个输入点和10个输出点,CPU 226具有24个输入点和16个输出点。

本机模拟最输入/输出点

CPU 224XP具有2个输入点,1个输出点。

中断输入

允许以极快的速度对过程信号的上升沿作出响应。

高速计数器

CPU 221/222

4个高速计数器(30KHz),可编程并具有复位输入,2个独立的输入端可同时作加、减计数,可连接两个相位差为90°的A/B相增量编码器CPU224/224XP/226

6个高速计数器(30KHz),具有CPU221/222相同的功能。

CPU 222/224/224XP/226

可方便地用数字量和模拟量扩展模块进行扩展。可使用仿真器(选件)对本机输入信号进行仿真,用于调试用户程序。-----* 丰富的扩展模块

电池模块

用于长时间数据后备。用户数据(如标志位状态,数据块,定时器,计数器)可通过内部的超级电容存贮大约5天。选用电池模块能延长存贮时间到200天(10年寿命)。电池模块插在存储器模块的卡槽中。

三PID控制算法介绍

3.1 PID控制算法

过程控制――对生产过程的某一或某些物理参数进行的自动控制。

一、模拟控制系统

图5-1-1 基本模拟反馈控制回路

被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。

控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。

二、微机过程控制系统

图5-1-2 微机过程控制系统基本框图

以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。

三、数字控制系统DDC

图5-1-3 DDC 系统构成框图

DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。

DDC 系统也是计算机在工业应用中最普遍的一种形式

3.2 PID 调节的各个环节及其调节过程

一、模拟PID 控制系统组成

图5-1-4 模拟PID 控制系统原理框图

二、模拟PID 调节器的微分方程和传输函数

PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。

1、PID 调节器的微分方程 ?????

?++=?t D I P dt t de T dt t e T t e K t u 0)()(1)()( 式中 )()()(t c t r t e -=

2、PID 调节器的传输函数 ??

????++==S T S T K S E S U S D D I P 11)()()( 三、PID 调节器各校正环节的作用

1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产

生,调节器立即产生控制作用以减小偏差。

2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱

取决于积分时间常数TI ,TI 越大,积分作用越弱,反之则越强

3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

四控制方案设计

4.1 系统设计

单水箱液位控制实验系统的结构如图1所示。它由一个水箱, 一个液位传感器, 一个出水阀门,一个入水阀门以及作为控制器的计算机组成。在实验过程中,水泵将水抽出后经过入水阀门进入柱形水箱, 然后通过出水阀门流出。柱形水箱的进水流量和出水流量可分别由比例阀门进行调节。

图1

该实验系统的被控对象是装有入水阀门和出水阀门的单个水箱, 被控量是液位。

单容水箱液位控制实验系统能够模拟实际生产中的罐状容器(蓄液池或贮液缸) , 完成一些典型的液位控制实

验。例如: 随机出水的的单水箱供液系统液位控制实验

和随机入水的单水箱排液系统液位控制实验等。

4.1.1上水箱液位的自动调节

在这个部分中控制的是上水箱的液位。系统原理图如图2-1所示。单相泵正常运行,打开阀1和阀2,打开上水箱的出水阀,电动调节阀以一定的开度来控制进入水箱的水流量,调节手段是通过将压力变送器检测到的电信号送入PLC 中,经过A/D变换成数字信号,送入数字PID调节器中,经PID算法后将控制量经过D/A转换成与电动调节阀开度相对应的电信号送入电动调节阀中控制通道中的水流量。

当上水箱的液位小于设定值时,压力变送器检测到的信号小于设定值,设定值与反馈值的差就是PID调节器的输入偏差信号。经过运算后即输出控制信号给电动调节阀,使其开度增大,以使通道里的水流量变大,增加水箱里的储水量,液位升高。当液位升高到设定高度时,设定值与控制变量平衡,PID调节器的输入偏差信号为零,电动调节阀就维持在那个开度,流量也不变,同时水箱的液位也维持不变。

系统的控制框图如图3-1所示。其中SP为给定信号,由用户通过计算机设定,PV为控制变量,它们的差是PID调节器的输入偏差信号,经过PLC的PID程序运算后输出,调节器的输出信号经过PLC的D/A转换成4~20mA的模拟电信号后输出到电动调节阀中调节调节阀的开度,以控制水的流量,使水箱的液位保持设定值。水箱的液位经过压力变送器检测转换成相关的电信号输入到PLC的输入接口,再经过A/D转换成控制量PV,给定值SP与控制量PV经过PLC的CPU的减法运算成了偏差信号e ,又输入到PID调节器中,又开始了新的调节。所以系统能实时地调节水箱的液位

4.2 硬件设计

系统硬件的设计包括检测单元、执行单元和控制单元的设计,他们互相联系,组成一个完整的系统。

4.2.1 检测单元

在过程控制系统中,检测环节是比较重要的一个环节。液位是指密封容器或开口容器中液位的高低,通过液位测量可知道容器中的原料、半成品或成品的数量,以便调节流入流出容器的物料,使之达到物料的平衡,从而保证生产过程顺利进行。设计中涉及到液位的检测和变送,以便系统根据检测到的数据来调节通道中的水流量,控制水箱的液位。

液位变送器分为浮力式、静压力式、电容式、应变式、超声波式、激光式、放射性式等。系统中用到的液位变送器是浙江浙大中控自动化仪表有限公司生产的中控仪表SP0018G压力变送器,属于静压力式液位变送器,量程为0~10KPa,精度为,由24V直流电源供电,可以从PLC的电源中获得,输出为4~20mA直流。

4.2.2 执行单元

执行单元是构成自动控制系统不可缺少的重要组成环节,它接受来自调节单元的输出信号,并转换成直角位移或转角位移,以改变调节阀的流通面积,从而控制流入或流出被控过程的物料或能量实现过程参数的自动控制。

执行器的工作原理见图,由执行机构和调节机构(调节阀)两部分组成。执行机构首先将来自调节器的信号转变成推力或位移,对调节机构(调节阀)根据执行机构的推力或位移,改变调节阀的阀芯或阀座间的流通面积,以达到最终调节被控介质的目的。由图可见来自调节器的信号经信号转换单元转换信号制式后,与来自执行机构的位置反馈信号比较,其信号差值输入到执行机构,以确定执行机构作用的方向和大小,其输出的力或位移控制调节阀的动作,改变调节阀的流通面积,从而改变被控介质的流量。当位置反馈信号与输入信号相等时,系统处于平衡状态,调节阀处于某一开度。系统中用到的调节阀是QS智能型调节阀,所用到的执行机构为电动执行机构,输出为角行程,控制轴转动。电动执行机构的组成框图。来自PLC的模拟量输出DC4~20mA信号Ii与位置反馈信号If进行比较,其差值经放大后,控制伺服电动机正转或反转,再经减速器后,改变调节器的开度,同时输出轴的位移,经位置发生器转换成电流信号If。当Ii=If时,电动机停止转动,调节阀处于某一开度,即Q=KIi,式中Q为输出轴的转角,K 为比例常数。电动调节阀还提供手动操作,它的上部有个手柄,和轴连接在一起,在系统掉电时可进行手动控制,保证系统的调节作用。

4.2.3 控制单元

控制单元是整个系统的心脏。在系统中,PLC是控制的中心元件,它的选择是控制单元设计的重要部分。

系统应用的是西门子S7-300系列的PLC,其结构简单,使用灵活且易于维护。它采用模块化设计,本系统主要包括CPU模块、模拟量输入模块、模拟量输出模块和电源模块。

4.3 软件设计

4.4具体操作步骤

1. PLC单元地址分配

VD400:测量值显示单元; VD404:设定值显示单元;

VD408:输出值显示单元

12 增益K c

16 采样时间

20 积分时间Ti

24 微分时间Td

28 积分前项值

32 过程变量前值

2.. 打开S7-200PLC编程软件Step7,建立工程,并录入程序

3. step7编程软件的调试

程序输入完以后,在编程界面下,我们点击“View”下的“Communicabions”将出对话框,在对话框中我们可以通过调整波特率、端口号、地址来看是否通讯成功。如果没有成功将出现提示,成功了,如下图所示:

点击OK即可。然后编译,把程序下载到PLC中。

4.5 基于MCGS的组态画面

MCGS(Monitor and Control Generated System,监视与控制通用系统)是一套基于windows95/98/NT操作系统(或更高版本),用来可快速构造和生成上位机监控系统的组态软件系统,它为用户提供了从设备驱动、数据采集到数据处理、报警处理、流程控制、动画显示、报表输出等解决实际工程问题的完整方案和操作工具。MCGS组态软件具有多任务、多线程功能,其系统框架采用VC++语言编程,通过OLE技术向用户提供VB编程接口,提供丰富的设备驱动件、动画构件、策略构件,用户可随时方便地扩充系统的功能[18]。

工程创建的一般过程为:

工程项目系统分析:分析工程项目的系统构成、技术要求和工艺流程,弄清系统的控制流程和监控对象的特征,明确监控要求和动画显示方式,分析工程中的设备采集及输出通道与软件中实时数据库变量的对应关系,分清哪些变量是要求与设备连接的,哪些变量是软件内部用来传递数据及动画显示的。

工程各项搭建框架:MCGS称为建立新工程。主要内容包括:定义工程名称、封面窗口名称和启动窗口(封面窗口退出后接着显示的窗口)名称,指定存盘数据库文件的名称以及存盘数据库,设定动画刷新的周期。经过此步操作,即在MCGS组态环境中,建立了由五部分组成的工程结构框架。封面窗口和启动窗口也可等到建立了用户窗口后,再行建立。

设计菜单基本体系:为了对系统运行的状态及工作流程进行有效地调度和控制,通常要在主控窗口内编制菜单。编制菜单分两步进行,第一步首先搭建菜单的框架,第二步再对各级菜单命令进行功能组态。在组态过程中,可根据实际需要,随时对菜单的内容进行增加或删除,不断完善工程的菜单。

制作动画显示画面:动画制作分为静态图形设计和动态属性设置两个过程。

前一部分类似于“画画”,用户通过MCGS组态软件中提供的基本图形元素及动画构件库,在用户窗口内“组合”成各种复杂的画面。后一部分则设置图形的动画属性,与实时数据库中定义的变量建立相关性的连接关系,作为动画图形的驱动源。

编写控制流程程序:在运行策略窗口内,从策略构件箱中,选择所需功能策略构件,构成各种功能模块(称为策略块),由这些模块实现各种人机交互操作。MCGS还为用户提供了编程用的功能构件(称之为“脚本程序”功能构件),使用简单的编程语言,编写工程控制程序。

完善菜单按钮功能:包括对菜单命令、监控器件、操作按钮的功能组态;实现历史数据、实时数据、各种曲线、数据报表、报警信息输出等功能;建立工程安全机制等。

编写程序调试工程:利用调试程序产生的模拟数据,检查动画显示和控制流程是否正确。

连接设备驱动程序:选定与设备相匹配的设备构件,连接设备通道,确定数据变量的数据处理方式,完成设备属性的设置。此项操作在设备窗口内进行。

在上位机工程的设计上,经过对实际工程的分析,主要设计的窗口是:液位控制,报警曲线直接加在其中。

五实验情况介绍

5.1 上水箱液位比例调节

以图5.1所示的液位比例调节系统为例,被调节参数是上水箱的液位。在输入的偏差信号

为阶越信号。当比例调节器的小于1时,其比例调节器的实验特性图为图5.1(a)所示:当比例调节器的大于1时,其比例调节器的实验特性图为图5.1(b)所示。

图5.1比例调节器的实验特性图

5.2 上水箱也为比例积分调节

当输入信号为阶越变化时,才用PI调节器的情况。我们得到了PI调节器的实验的变化曲线图,如图5.2所示。

5.3 上水箱液位比例积分微分调节

对上水箱进行比例积分微分调节即PID调节进行实验。当输入信号为阶跃信号时,对应的PID节约相应实验曲线如图5.3所示.

六.课程设计总结

通过这次课程设计使我学到了不少的东西,虽然这次课设过程中出现了不少的饿问题,但是经过老师的指导和自己的努力终于一一解决了。程序已经调试完毕,能够实现液位的控制,效果良好。系统达到了所要求的目的。下位机可以进行自动调节和PID调节两种方式,通过控制直流泵的通断时间成功控制了液面的高度。在进行PID调节前要先通过自动调节的方式确定PID参数,同时可以进行启停的正常操作。实时监测程序时可以发现,PID程序的输出值实时根据实际液面的需要进行调节改变,从而泵的接通时间也在不断的改变。基于MCGS的组态画面的制作简单实用,而且与PLC的通信流畅,可以对PLC的数据进行实时的监测并加以显示,而且可以对PLC的启停、液位高度控制进行操作

单容水箱液位控制实验系统具有广泛的应用背景。依据其不同的实际背景设计随机出水的单水箱供液系统以及随机入水的单水箱排液系统, 并对这些系统的建模进行研究是很有意义的。本文利用模糊推理建模方法分别建立了这两种系统的被控对象的数学模型, 新模型与实际模型拟和的程度良好, 克服了机理建模法和系统辨识法的缺点, 充分考虑了实际系统的非线性特性。由此可见,模糊推理建模的方法能够推广到实际中存在较大干扰的非线性复杂液位控制系统之中

设计中出现了一些问题:(1)传感器电路由于使用的是变阻器为放大电路提

供信号,所以在实际操作中,由于电阻片电阻太小,必须经过放大器电路把信号

放大了,但是也把误差放大了,所以可以看到在监控时放在D501的页面实际值

数据一直在跳变。(2)靠直流泵的通断时间改变输入水量的控制方式精度不是很

高。

这些问题有的是可以通过改变一些量来实现的,如用电阻值大的电阻片代替现在的电阻片,从而流过的电流变小,而且可以使放大器的放大倍数减小,从而使误差的放大倍数也减小,误差也随之减少,波动也减小了。但是直流泵精度低的问题只能通过用变频器控制交流电机实现调速控制才能改变,但随之而来的是成本的问题

七.参考资料

[1]邵裕森,戴先中.过程控制工程(第2版).北京:机械工业出版社.2003

[2]崔亚嵩.过程控制实验指导书(校内)

[3]廖常初.PLC编程及应用(第2版).北京:机械工业出版社.2007

[4]吴作明.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.2007

基于PLC的液位控制系统设计论文

题目:基于PLC的液位控制系统设计姓名: 学号: 系别: 专业: 年级班级: 指导教师: 2013年5月18日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。矚慫润厲钐瘗睞枥庑赖。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。聞創沟燴鐺險爱氇谴净。 本毕业论文内容不涉及国家机密。 论文题目: 作者单位: 作者签名: 年月日

目录 摘要............................................................................................................. 1残骛楼諍锩瀨濟溆塹籟。引言............................................................................................................. 1酽锕极額閉镇桧猪訣锥。 1.研究现状分析 ................................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.1题研究背景、意义和目的 ...................................................... 2謀荞抟箧飆鐸怼类蒋薔。 1.2液位控制系统的发展状况 ...................................................... 3厦礴恳蹒骈時盡继價骚。 1.3课题研究的主要内容................................................................ 4茕桢广鳓鯡选块网羈泪。 2.控制方案设计 ................................................................................... 4鹅娅尽損鹌惨歷茏鴛賴。 2.1系统设计 ...................................................................................... 4籟丛妈羥为贍偾蛏练淨。 2.2单容水箱对象特性 .................................................................... 6預頌圣鉉儐歲龈讶骅籴。 3.硬件配置 .............................................................................................. 8渗釤呛俨匀谔鱉调硯錦。 3.1控制单元 ...................................................................................... 8铙誅卧泻噦圣骋贶頂廡。 3.2检测单元 ...................................................................................... 9擁締凤袜备訊顎轮烂蔷。 3.3执行单元 ...................................................................................... 9贓熱俣阃歲匱阊邺镓騷。 4.软件设计 .............................................................................................. 9坛摶乡囂忏蒌鍥铃氈淚。 4.1STEP 7-Micro/WIN编程软件简介 ........................................ 9蜡變黲癟報伥铉锚鈰赘。 4.2参数设定及I/O分配 .............................................................. 10買鲷鴯譖昙膚遙闫撷凄。 5.程序编程和系统仿真.................................................................. 12綾镝鯛駕櫬鹕踪韦辚糴。 5.1程序设计 .................................................................................... 12驅踬髏彦浃绥譎饴憂锦。 5.2程序仿真和分析....................................................................... 13猫虿驢绘燈鮒诛髅貺庑。 6.结论....................................................................................................... 16锹籁饗迳琐筆襖鸥娅薔。参考文献................................................................................................ 17構氽頑黉碩饨荠龈话骛。附录........................................................................................................... 19輒峄陽檉簖疖網儂號泶。致谢........................................................................................................... 22尧侧閆繭絳闕绚勵蜆贅。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

基于PLC的液位控制系统设计

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计 姓名:濮孝金 学号: 专业:机械电子工程 年月

摘要 在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用 到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。 为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要 的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽 水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。 关键词:水塔液位控制,水位控制,继电器,PLC Abstract In the course of routine industrial and agricultural production we the need to measure the water level and

control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living conditions, the demand for water is also increasing .In order to improve the quality of the water supply system, energy conservation, so I considered use a programmable logic controller, relay and sensor technology, with hardware and software to achieve low water level alarm, warning switch between work and procedures manual / automatic to design practical level control tower scheme. I completed the set up of this simulation using the tank water tower , based on Siemens S7-300 PLC programmable controller tank water level control system as the core .I completed a water tank to

PLC水箱水位控制

自动化系统集成与调试实训报告 自动化系统集成与调试 实训报告 本课程为自动化集成与调试,实际上就是让我们用PLC控制水箱打水。由于实训前接触过类似的程序与硬件,所以做起来相对简单。第一周实训,一开始长江老师让我们重新复习之前所学。我们组并没有急着开始做项目,而是认真的检查电源,传感器,变频器等硬件是否完好。然后再由徐同学与李同学完成硬件的接线,张组长则与吴同学完成程序的编写。 一、接线图: S7-300模拟量输入输出模块、S7-300数字量输入输出模块、传感器以及变频器的接线(注意:用灰色细线将变频器3号端子接PLC数字量输出端子,变频器7号端子接PLC的M端,变频器9号端子接PLC模拟量输出端子,变频器10号端子接PLC模拟量COM端;用红、蓝、黑三种粗线将水箱抽水泵和变频器的U、V、W、PE端子对应接好)。 二、项目要求: 我们所做的项目如下 (一)项目一、PLC控制变频器打水 本项目总任务是通过PLC、变频器控制水泵打水。 任务一、G110变频器参数设置及快速调试 任务二、PLC控制变频器打水的组态、编程及仿真 任务三、S7-300模拟量输出模块与接线 任务四、现场实际调试与运行

(二)项目二、水箱液位的测量 本项目总任务是通过PLC、变频器控制实现水箱液位的测量 任务一、水箱液位测量的组态、编程及仿真 任务二、现场接线 任务三、现场实际调试与运行 (三)项目三、水箱液位两位式调节 本项目总任务是通过PLC、变频器、传感器监测水位控制水泵打水,当测量值大于高限值,变频器停止,水泵停止打水;当测量值小于低限值,变频器启动,水泵打水,当测量值在高限值与低限值之间时,变频器保持原状态。 任务一、水箱液位两位式调节的组态、编程及仿真运行 任务二、水箱液位两位式调节现场实际调试与运行 (四)项目四、水箱液位PID控制 总任务是调用PID模块使变频器的频率自动调节 任务一、了解PID调节的原理 任务二、水箱液位PID控制的组态、编程及仿真 任务三、水箱液位PID控制的现场接线 任务四、箱液位PID控制的现场调试与运行 (五)项目五水箱液位的WinCC监控 通过WinCC的新建变量与PLC S7-300的程序地址的连接,达到用WinCC监控水箱水位的目的。任务一、WINCC的新建工程及项目组态 一、创建新项目 二、组态变量 任务二、创建过程画面并运行调试 第一阶段:WinCC控制变频器打水 第二阶段:两位控制 第三阶段:PID控制 第四阶段:变量记录 一、过程值归档 二、输出过程值归档 第五阶段:报警记录 一、组态报警 二、组态模拟量报警 (六)项目六、反馈控制系统 1、负反馈控制系统: 由信号正向通路和反馈通路构成闭合回路的自动控制系统,又称反馈控制系统。 反馈控制系统是基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通

水箱自动控制系统设计原理图及程序

课程:创新与综合课程设计 电子与电气工程学院实践教学环节说明书 题目名称水箱水位自动控制装置 学院电子与电气工程学院 专业电子信息工程 班级 学号 学生姓名 起止日期13周周一~14周周五

水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。 本次课程设计思路是以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本维持不变。 一、设计题及即要求 1、设计并制作一个水箱水位自动控制装置,原理示意图如下: 2、基本要求:设计并制作一个水箱水位自动控制装置。 (1)水箱1 的长×宽×高为50 ×40 ×40 cm;水箱2 的长

×宽×高为40×30 × 40 cm(相同容积亦可);水箱1 的放在地面,水箱2 放置高度距地0.8-1.2m。 (2)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤1cm。 (3)水箱 2 中要求的水位高度及上下限可以通过键盘任意设置; (4)实时显示水箱2 中水位的实际高度和水泵、阀门的工作状态。 3、发挥部分: (1)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤0.3 cm。 (2)由无线远程控制器实现基本要求,无线通讯距离不小于10 米。远程控 制器上能够同步实现超限报警显示。 (3)其他创新。 二、设计思路: 以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本

单片机水箱水位控制系统设计

单位代码0 2 学号 分类号TH6 密级 课程设计说明书 水箱水位控制系统设计 院(系)名称机械工程学院 专业名称机械设计制造及其自动化学生姓名 指导教师 2015年10 月27 日

黄河科技学院课程设计任务书 机械工程学院机械系机械设计制造及其自动化专业12 级1 班学号1200000000 姓名指导教师 题目: 水箱水位控制系统设计 课程:单片机应用技术 课程设计时间2015 年10 月13 日至10 月27 日共 2 周课程设计工作内容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1. 设计要求 在高塔的内部我们设计一个简易的水位探测传感器用来探测三个水位,即低水位,正常水位,高水位。低水位时送给单片机一个高电平,驱动水泵加水,红灯亮;正常范围的水位时,水泵加水,绿灯亮;高水位时,水泵不加水,黄灯亮。 2. 设计任务与要求(完成后需提交的文件和图表等) 1〉系统硬件电路设计 根据该系统设计的功能要求选择所用元器件,设计硬件电路。要求用Proteus 绘制整个系统电路原理图。 2〉软件设计 根据该系统设计的功能要求进行软件设计,要求用VISIO软件绘制整个系统及各部分的软件流程图。并根据流程图编写程序并汇编调试通过。列出软件清单,软件清单要加以注释。 3〉Proteus仿真 用Proteus对系统软硬件进行仿真调试通过。 4〉软硬件实际调试 5〉编写设计说明书一份,内容包括任务书、设计方案分析、硬件设计部分要绘制整个系统电路原理图,对各部分电路设计原理做出说明。软件设计部分要绘制整个系统及各部分的软件流程图,并列出软件清单,软件清单要求加注释,并在各功能块前加程序功能注释。调试结果整理分析及设计调试的心得体会。3.工作计划(进程安排) 第1周基本完成软、硬件的设计(分散在教学过程中完成)。第二周2天绘

基于PLC的液位控制

摘要 本次课程设计的课题是基于PLC的水箱液位控制系统的设计。涉及到的主要内容包括:水箱的特性确定与实验曲线分析,S7-300可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和应用PLC语句编程来控制水箱水位。 关键词:S7-300西门子PLC、控制对象特性、PID控制算法、压力变送器、电动调节阀、变频器,PID指令。 目录

摘要............................................................................................................................................. I 第1章引言 . (1) 1.1 实验目的 (1) 1.2 实验原理 (1) 1.3 设计方案的确定 (2) 第2章系统硬件介绍 (2) 2.1 西门子PLC控制系统简介 (2) 2.3模拟量输入模块 (3) 2.4模拟量输出模块 (3) 2.5 电源模块 (4) 第三章系统硬件控制设计 (5) 3.1 系统设计 (5) 3.2 硬件设计 (6) 3.2.1 检测单元 (6) 3.2.2 执行单元 (7) 第四章软件设计 (8) 4.1 FC105 介绍: (8) 4.2 FC 106 介绍: (8) 4.3 FB41 介绍 (9) 4.4 软件控制流程图: (10) 第五章程序实现 (10) 5.1 step 7 软件编程: (10) 5.2程序调试与结果 (15) 5.3 过程中出现的问题与解决办法 (15) 第6章实验心得与体会 (19) 附录:程序清单 (20) 参考文献 (24)

(完整版)水位控制系统设计

课题名称:水箱水位控制系统设计专业:电气工程及其自动化学号: 姓名:

水箱水位控制系统设计 摘要 本设计主要基于单片机的硬件电路设计,实现一种能够实现水位自动控制、具有自动保护、自动声光报警功能的控制系统。本控制系统由A/D转换部分、单片机控制部分、数码显示部分、电机驱动部分、电机控制部分等构成。同时对各个部分进行了详细的论述。在设计中对水塔水位控制原理进行分析,选用AT89C51单片机作为控制水塔水位的处理芯片,由AT89C51的P1口直接来控制.设计方案采用模块化程序设计方法,结合程序流程图,编写程序代码,最后利用KEIL公司的u Vision3软件及伟福仿真软件进行仿真实验,达到单片机自动控制水塔水位变化的目的. 关键词:单片机,水塔水位控制原理,AT89C51,伟福仿真软件

目录 前言 (1) 第1章设计内容 (2) 1.1 设计要求 (2) 1.2 方案设计 (2) 第2章硬件电路设计 (3) 2.1 系统框图设计 (3) 2.2 系统原理 (4) 第3章水塔水位控制系统的硬件电路设计 (5) 3.1 水位检测电路 (5) 3.2 水位显示电路 (5) 3.3电机控制电路 (6) 3.4振荡电路和复位电路 (7) 3.5声光报警电路 (7) 第4章软件程序设计 (8) 4.1 系统主程序流程图 (8) 4.2编写C程序 (9) 第5章硬件制作与调试 (10) 结论 (11) 附录 (12) 仿真总图 (12) 源代码 (13)

前言 水塔是在日常生活和工业应用中经常见到的蓄水装置,在我们的生活中起到了重要的作用,而水基于单片机的水塔水位控制系统使水塔水位自动保持在一定的位置,通过对其水位的控制对外供水,以满足需要。塔里面的水位控制是一个水塔发挥作用的关键。该系统使用水位传感器对水塔水位进行检测并将检测到的信号传给单片机来进行处理,通过调整定时器的定时时间来增大或者缩小占空比,并编写程序加以控制,从而实现电机的调速。最后,使用液晶屏显示当前水位状态以及电动机的转速。该系统通过了报警模块来实现了过低水位蜂鸣器鸣笛报警、过低警戒水位自动处理、正常水位蜂鸣器鸣笛报警以及正常水位处理。本系统适应在不同的用水场合下的用水速度需要,节省工作时间,提高了整体工作的效率,实现水塔水位的自动控制。 液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

液位自动控制系统设计

第一章液位自动控制系统原理 液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 应用范围 在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。 图1.1 中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。图5.1中,控制器,执行机构、测量变送器都属 于自动化仪表,他们都是围绕被控对象工作的。也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。性能指标顶的偏低,可能会对产品的质量、产量造成影响。性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。

基于PLC的变频器液位控制设计

基于PLC的变频器液位控制设计 随着电力电子技术以及工业自动控制技术的发展,使得交流变频调速系统在工业电机拖动领域得到了广泛应用。另外,由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。本设计就是利用变频器和PLC实现水池水位的控制。 变频器技术是一门综合性的技术,它建立在控制技术、电子电力技术、微电子技术和计算机技术的基础上。它与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,有许多优点,如节电、容易实现对现有电动机的调速控制、可以实现大X围内的高效连续调速控制、实现速度的精确控制。容易实现电动机的正反转切换,可以进行高额度的起停运转,可以进行电气制动,可以对电动机进行高速驱动。完善的保护功能:变频器保护功能很强,在运行过程中能随时检测到各种故障,并显示故障类别(如电网瞬时电压降低,电网缺相,直流过电压,功率模块过热,电机短路等),并立即封锁输出电压。这种“自我保护”的功能,不仅保护了变频器,还保护了电机不易损坏。 PLC特点:第一,可靠性高、抗干扰能力强,平均故障时间为几十万小时。而且PLC采用了许多硬件和软件抗干扰措施。第二,编程简单、使用方便目前大多数PLC采用继电器控制形式的梯形图编程方式,很容易被操作人员接受。一些PLC还根据具体问题设计了如步进梯形指令等,进一步简化了编程。第三,设计安装容易,维护工作量少。第四,适用于恶劣的工业环境,采用封装的方式,适合于各种震动、腐蚀、有毒气体等的应用场合。第五,与外部设备连接方便,采用统一接线方式的可拆装的活动端子排,提供不同的端子功能适合于多种电气规格。第六,功能完善、通用性强、体积小、能耗低、性能价格比高。 在应用PLC系统设计时,应遵循以下的基本原则,才能保证系统工作的稳定。 (1)最大限度地满足被控对象的控制要求; (2)系统结构力求简单; (3)系统工作要稳定、可靠; (4)控制系统能方便的进行功能扩展、升级; (5)人机界面友好。

水箱水位自动控制系统设计与实施——毕业设计说明书资料

广西电力职业技术学院 毕业设计 题目名称水箱水位自动控制系统设计与实施 系(部)动力工程系 专业检测技术及应用 班级 1 1 1 5 学号 109111540 姓名谢城镔 指导教师梁云岳 广西电力职业技术学院教务科研处编制

摘要 随着科学技术的发展,电器控制技术在各领域,特别是在自动控制领域取得了长足的发展,有了越来越多的应用。PLC以可靠性高、灵活性强、易于扩展、通用性强、使用方便等优点不断发展,在处理速度、控制功能、通讯能力及控制领域等方面都有新的突破,成为工业自动化领域最重要、应用最广的控制设备之一,对国民经济建设有突出的贡献。近年来由于PLC与其他科学技术结合,使其在各个控制领域显示了较强的应用潜力和良好的应用前景。 本毕业设计采用PLC与继电器来实现水位的自动控制以及采用热电偶与压力变送器对温度、压力的监控,系统通过手自动控制,现场内控制与远程控制使其直观地表现出水箱水位自动控制系统的功能化与优良性。 关键字: PLC 水位自动控制热电偶压力变送器

目录 一前言 (3) 二设计方案 (4) (一)系统说明 (4) (二)工作原理及原理图 (6) (三)设备清单及I/O分配表 (7) 1 设备清单 (7) 2 I/O分配表............................................ (8) (四)主要设备及编程软件介绍 (9) 1 西门子PLC简介 (9) 2 V4.0 STEP 7 Micro SP7编程软件简介 (10) 3 组态王软件简介 (12) 三实施过程 (14) (一)水箱制作 (14) (二)管路连接 (14) (三)控制设备接线 (14) (四)控制组态界面设计 (15) (五) PLC程序设计 (16) (六)系统调试 (22) (七)存在问题及解决方法 (22) 四结论 (25) 五心得体会 (26) 致谢 参考文献与附录

基于S7-200PLC的液位控制系统设计

综合自动化实验报告书 题目:基于S7-200PLC的液位控制系统设计学生姓名:何丰丰 学号:2225 专业班级:06电2班 指导教师:刘振东 计算机与自动控制学院 2010年01月14日

综合自动化实验 ——基于S7-200 PLC的液位控制系统设计 实验目的: 1.学习西门子S7-200可编程控制器中模拟量、PID指令; 2.掌握组态王软件的编程调试方法; 3.掌握PLC可编程控制器和组态王软件结合通讯方法。 实验要求: 1. 利用西门子S7-200可编程控制器实现液位PID控制系统,通过调节电动调节阀的开度,改变水箱的进水流量,从而使水箱内的液位维持于恒定值。 2. 在上位机编制工艺画面,能够显示系统的实时状态、通过对现场数据的采集处理,以动画显示、报警处理、流程控制、实时曲线、历史曲线和报表输出等多种方式,向用户提供检验液位PLC控制系统的动态运行情况,显示SP(设定值)、PV(液位高度检测值)、OP(阀开度)、P(比例)、I(积分时间)、D(微分时间),并且在画面上能够实现手自动切换、历史数据查询、报表、报警信息、历史曲线等功能。 实验步骤: 1.掌握各设备的主要功能及工作情况 硬件设备主要包括:上水箱、液位变送器LT1、电动调节阀1,变频器,水泵。各个设备的连接情况如图1所示:

S S S S M M PT 1 LT 3 LT 1 LT 2 S S TE 1 TT 1 TE 2 TT 2 TE 3 TT 3TE 5 TT 5S S S 变频器 FIT 1FIT 2TT 4 TE 4 220 AC TIC 储水箱 下水箱 上水箱 电磁流量计2电磁流量计1 电动调节阀1 电动调节阀2 水泵 图1 过程控制系统结构图 2. 设备之间安装与连接 按照图2所示,将实验所需的设备如液位变送器、PLC 、调节阀等安装并接线。 PC/PPI 通信电缆 M LT 1 上水箱 电动调节阀1 液位变送器 进水 出水 图2 控制系统示意图

基于PID的上水箱液位控制系统课程设计报告

过程控制系统课程设计 基于PID的上水箱液位控制系 统设计

一、课程设计任务书 1.设计容 针对某厂的液位控制过程与要现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。具体设计容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS 组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。 2.设计要求 1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。 2、PLC控制器采用PID算法,各项控制性能满足要求:超调

量20%,稳态误差≤±0.1;调节时间ts≤120s; 3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线; 4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数; 5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试; 6、分析系统基本控制特性,并得出相应的结论; 7、设计完成后,提交打印设计报告。 3.参考资料 1.邵裕森,戴先中主编.过程控制工程(第2版).:机械工业.2003 2.亚嵩主编.过程控制实验指导书(校) 3.廖常初主编.PLC编程及应用(第2版).:机械工业.2007 4.吴作明主编.工业组态软件与PLC应用技术.:航空航天大

学.2007 4.设计进度(2010年12月27日至2011年1月9日) 时间设计容 2010年12月27日 布置设计任务、查阅资料、进行硬 件系统设计 2010年12月28日~ 2010年12月29日 编制PLC控制程序,并上机调试; 2010年12月30日~2010年12月31日利用MCGS组态软件建立该系统的工 程文件 2011年1月2日~2011年1月4日进行MCGS与PLC的连接与调试进行PID参数整定 2011年1月5日~2011年1月6日系统运行调试,实现单容水箱液体 定值控制 2011年1月7日~ 2011年1月9日 写设计报告书

PLC的液位控制系统设计方案

基于PLC的液位控制系统设计 简介:在本系统中,为了实现能源的充分利用和生产的需要,需要对电机进行转速调节,考虑到电机的启动、运行、调速和制动的特性,采用ABB公司变频器,系统中由PLC完成数据的采集和对变频器、电机等设备的控制任务。基于S7 200 PLC的编程软件,采用模块化的程序设计方法,大量采用代码重用,减少软件的开发和维护。利用对PLC软件的设计,实现变频器的参数设置、故障诊断和电机的启动和停止。 关键字:PLC 变频器变频调速 随着电力电子技术以及工业自动控制技术的发展,使得交流变频调速系统在工业电机拖动领域得到了广泛应用。另外,由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。本设计就是利用变频器和PLC实现水池水位的控制。 变频器技术是一门综合性的技术,它建立在控制技术、电子电力技术、微电子技术和计算机技术的基础上。它与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,有许多优点,如节电、容易实现对现有电动机的调速控制、可以实现大范围内的高效连续调速控制、实现速度的精确控制。容易实现电动机的正反转切换,可以进行高额度的起停运转,可以进行电气制动,可以对电动机进行高速驱动。完善的保护功能:变频器保护功能很强,在运行过程中能随时检测到各种故障,并显示故障类别(如电网瞬时电压降低,电网缺相,直流过电压,功率模块过热,电机短路等),并立即封锁输出电压。这种“自我保护”的功能,不仅保护了变频器,还保护了电机不易损坏。

PLC特点:第一,可靠性高、抗干扰能力强,平均故障时间为几十万小时。而且PLC采用了许多硬件和软件抗干扰措施。第二,编程简单、使用方便目前大多数PLC采用继电器控制形式的梯形图编程方式,很容易被操作人员接受。一些PLC还根据具体问题设计了如步进梯形指令等,进一步简化了编程。第三,设计安装容易,维护工作量少。第四,适用于恶劣的工业环境,采用封装的方式,适合于各种震动、腐蚀、有毒气体等的应用场合。第五,与外部设备连接方便,采用统一接线方式的可拆装的活动端子排,提供不同的端子功能适合于多种电气规格。第六,功能完善、通用性强、体积小、能耗低、性能价格比高。 在应用PLC系统设计时,应遵循以下的基本原则,才能保证系统工作的稳定。 (1)最大限度地满足被控对象的控制要求; (2)系统结构力求简单; (3)系统工作要稳定、可靠; (4)控制系统能方便的进行功能扩展、升级; (5)人机界面友好。 本系统中,为了实现能源的充分利用和生产的需要,需要对电机进行转速调节,考虑到电

基于PLC的液位控制系统设计

基于P L C的液位控制系 统设计 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计 姓名:濮孝金 学号: 专业:机械电子工程 年月

摘要 在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用 到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。 为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。 关键词:水塔液位控制,水位控制,继电器,PLC Abstract In the course of routine industrial and agricultural production we the need to measure the water level and control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living

相关文档
相关文档 最新文档