文档库 最新最全的文档下载
当前位置:文档库 › 守恒实验报告

守恒实验报告

守恒实验报告
守恒实验报告

幼儿守恒实验

1 引言

守恒实验由瑞士儿童心理学家皮亚杰创设,他将儿童认知发展界定为4个阶段:感知运动阶段(0~2),前运算阶段(2~7岁),具体运算阶段(7~11岁),形式运算阶段(11~15岁),守恒实验即用来考察前运算阶段儿童的思维特征。守恒是指即使在物体外观改变的情况下,它特定的自然特征(如数量、质量、长度、重量、面积)仍然保持相同。在心理学上,守恒是儿童认识到一个事物的知觉特征无论如何变化,它的量始终不变。

皮亚杰认为前运算阶段的儿童的思维尽管比婴儿期发展了

更高的思维能力,但还不能掌握守恒的原理,只能集中于问题的一个维度而忽视另一个维度,注意的是事物表面的、明显的特征,具有中心化的特点。已有大量研究表明,儿童达到不同形式的守恒的年龄不同。最先达到的数量守恒(6~7岁),然后是长度守恒(7~8岁),然后是重量守恒(9~10岁),最后是体积守恒(12岁)。

本研究旨在测量儿童守恒能力发展情况,了解前运算儿童的思维特征。由于被试均为4~7岁幼儿,最大年龄为7岁,可能还不能形成较好的数量守恒、长度守恒、重量守恒、体积守恒,当物体外形发生了一定变化时,他们还不能把握物体所具有的某一

不变的特质。因此,本研究假设,儿童在四种形式守恒中数量守恒完成情况优于其他形式的守恒,守恒能力在幼儿中不存在年级和性别差异。

2 研究方法

2.1 被试

选取济南市一所幼儿园大中小班3个年级共30名被试,被试具体情况分布如表1:

表1 守恒任务被试具体情况

班级平均年龄男女合计大班(6岁) 4.4 6 5 11

中班(5岁) 5.4 4 5 9

小班(4岁) 6.1 4 6 10 合计14 16 30

2.2 实验材料

(1)数量守恒:12颗一模一样的纽扣。

(2)长度守恒:两根相同长度的木棍。

(3)液体守恒:两个一模一样的透明玻璃杯,一个较高较细的透明玻璃杯。

(4)重量守恒:大小相同的两块泥球。

2.3 实验程序

(1)数量守恒

先向儿童呈现两排相同的纽扣(每排6个),问儿童每排有几颗纽扣,在儿童回答正确纽扣的数量并确认两排纽扣的数量是一样的之后,将其中的一排纽扣间的距离拉大,问被试两排纽扣的数量是否相同。得到儿童的回答后,无论儿童回答“相同”还是“不相同”,都询问其作出判断的原因。

(2)长度守恒

在儿童面前并排呈现两支同样的铅笔,在儿童确认两支铅笔长度相等后,把其中一支铅笔向右(或向左)移动一段距离,问儿童两支铅笔的长度是否相等。得到儿童的回答后,无论儿童回答“相等”还是“不相等”,都询问其作出判断的原因。

(3)液体守恒

向儿童呈现两个一模一样的透明玻璃杯,把两个杯子装入相同体积的水。在儿童认为两个杯子装有一样多的水之后,在儿童面前将一个杯子中的液体倒入一个较高较细的杯子里,并问儿童“这个杯子(较高的杯子)里的水与这个杯子(较矮的杯子)里的水是不是一样多”。得到儿童的回答后,无论儿童回答“一样多”还是“不一样多”,都询问其作出判断的原因。

(4)重量守恒

先把两个大小、形状、重量相同的泥球给儿童看,在儿童确认两个泥球一样重之后,在儿童面前把其中一个压成薄饼状,问儿童重量是不是还相同。得到儿童的回答后,无论儿童回答“相同”还是“不相同”,都询问其作出判断的原因。

3 结果

3.1 数量守恒的年级差异

表3 不同年级儿童的数量守恒任务的描述统计

未达到达到总计

小班7 3 10

中班大班3

4

6

7

9

11

总计14 16 30

卡方检验结果显示,χ2(2)=3.36,p=1.86>0.05.在此实验中,儿童的数量守恒达

到情况在大中小班上没有差异。 4.讨论

儿童的数量守恒大约6、7岁达到,大班儿童的年龄为6到7岁,而与中小班没有显著差异,可能是因为此幼儿园的儿童达到数量守恒稍晚一些。

液体守恒 1、年级差异

对不同年龄儿童的液体守恒任务是否通过进行描述统计和卡方检验,描述统计结果如表1所示。

表1 不同年龄儿童的液体守恒任务的描述统计 未通过 通过 合计 小班 5 5 10 中班 7 2 9 大班 9 2 11 合计

21

9

30

由表一可看出,随着年龄的增长,儿童达到液体守恒的人数依次为50%,22%,19%,根据卡方检验的结果可知,不同年龄段达到液体守恒的差异不显著(χ

2

(2)=2.66,p >.01),因而随着年龄的增长,儿童达到液体守恒的水平增长并不

显著。 2、性别差异

对不同性别儿童的液体守恒任务是否通过进行描述统计和卡方检验,描述统计结果如表2所示。 表2 不同性别儿童的液体守恒任

务的描述统计

未通过 通过 合计 男生

10 4 14 女生 11 5 16 合计

21

9

30

由表2可知,男生和女生达到液体守恒的比率分别为29%,33%,卡方检验结果显示男女差异不显著(χ2(2)=.026, p >.01),因而男孩女孩在液体守恒问题上没有显著差异。

3、讨论

3.1 年龄差异

根据我们的实验发现,儿童在4岁时即可获得液体守恒的能力,同时存在着个体差异显示,一些儿童在6岁,甚至7岁时仍然无法完成液体守恒任务。这与皮亚杰的认知发展观中强调的儿童认知水平的发展阶段性相悖。我们推断主要有一下原因:

1、在本实验中,实验环境、主试指导语等人为因素可能对儿童守恒问题的完成产生了一定影响。本实验中实验环境较为嘈杂,在幼儿园教室中进行实验对被试的反应产生影响。主试初次接触此类实验,对指导语的不熟悉,幼儿园环境和儿童特点的不熟悉影响了主试对实验的操控,对儿童产生影响。

2、由于本实验为学生实验,所取被试样本数较小,影响了研究的内部效度,使得发展的阶段性差异不显著。

3.2性别差异

男女儿童在液体守恒问题上的差异不显著则表明,男孩和女孩在认知发展的水平上不存在显著的差异。

重量守恒

是否

是否获得人

班级

小班 2 8

中班 1 8

大班 1 10

卡方检验得,X2(2)=0.60(p>.05)表明小中大班儿童的重量守恒获得能力不存在显著差异。理论上儿童9-10岁是才普遍获得重量守恒,出现这个结果与理论相

符。

小中大班重量守恒获得情况

班级

小班中班大班

是否掌握长度守恒

获得 2 1 1

未获得8 8 10

长度守恒

1材料

两根长度一样的铅笔

2程序

向儿童呈现两根长度相同的铅笔,让儿童确认长度一样;把其中一根铅笔向左(或向右移动),然后问儿童“现在两根铅笔是不是一样长?”儿童回答“一样长(或不一样长)”,主试可以询问儿童原因。

3结果

3.1儿童理解长度守恒概念能力的年龄差异

儿童掌握长度守恒概念的能力与年龄之间不存在显著差异(X2(2)=0.84,p >.05)。

表1 年龄对儿童掌握长度守恒能力的影响的列联分析

3.2儿童理解长度守恒概念能力的性别差异

儿童掌握理解长度守恒概念的能力与性别之间不存在显著差异,X 2(2)=0.57,p >.05。

表2 性别对儿童掌握长度守恒能力的影响的列联分析

是否掌握长度守恒 性 别 是 否

合 计 X 2 男 2(40%) 12(48%)

女 3(60%) 13(52%) 14 0.57

16

4.讨论

本实验发现,年龄和性别对4—7岁儿童长度守恒影响不存在显著性的差异。这与以往的研究结果一致。皮亚杰发现,前运算阶段的儿童(2-7岁)往往不能

班 别

是 否

合 计 X 2

小 班

中 班 大 班 1(20%) 9(36%) 2(40%) 7(28%) 2(40%) 9(36%) 10 0.84

9

11

形成守恒,他们的思维具有两个基本特征:片面性和缺乏可逆性。学前幼儿往往只能关注事物的表面特征,因此只能判断两根两端对齐的铅笔是一样长的,其他摆放形式,基本都判断错误。而守恒概念的形成是儿童具体运算阶段(7-12岁)的重要发展成果之一。但在本研究中发现,中班幼儿在老师做适当引导时可以做出正确的判断。可见,对幼儿进行适宜的教学能帮助幼儿较早的掌握长度守恒概念。这一研究结果对促进幼儿思维的发展具有启发意义,教学走在发展的前面,重视教学的最佳期。

6参考文献

白先同等,皮亚杰守恒实验的比较研究[J].广西师范大学学报.1991,(2):58-65

质量守恒定律的验证

探究实验设计之质量守恒定律的验证1.化学反应原理: ⑴白磷在密闭的容器内燃烧,生成固体五氧化二磷。 反应前后物质的总质量不变。由此证明质量守恒定律的正确性。 ⑵铁和硫酸铜溶液反应,生成铜和硫酸亚铁,反应前后,物质的总质量不变。 2.实验仪器:天平、砝码、锥形瓶、小烧杯、玻璃管、单孔橡皮塞、小气球、酒精灯等。 实验药品:白磷、铁钉(或铁丝)、硫酸铜溶液等。 3.探究方案: ⑴取出天平,调平衡。待用。 取一块白磷,放入盛水的培养皿中,在水下用小刀切下一粒绿豆大小的白磷,用滤纸吸干表面的水,放入锥形瓶中。(为防止白磷燃烧时,灼裂锥形瓶,可以瓶下事先放入少量的细砂。)将盛白磷的锥形瓶、绑有小气球的玻璃管一起放在天平的左盘中,在右盘添加砝码,并移动游码,使天平平衡。如图13-1所示。

取出锥形瓶及导管,将橡皮塞上的玻璃管放在酒精灯的火焰上灼烧至红热后,迅速用橡皮塞将锥形瓶塞紧,并将白磷引燃。可见白磷燃烧,产生浓厚的白烟。待锥形瓶冷却,白烟沉降后,重新放到托盘天平上,观察天平仍然平衡。 ⑵在100 mL烧杯中加入约30 mL稀硫酸铜溶液,将几根打磨光亮的铁钉和盛硫酸铜溶液的烧杯一起放在天平上称量,读出读数,记录。如图13-2。 将铁钉浸泡在硫酸铜溶液中,可观察到铁钉表面析出一层紫红色的物质,溶液颜色逐渐变浅。如果时间足够长,可看到溶液的颜色由蓝色变浅绿色。 将反应后烧杯和内容物放到天平上再次称量,读出读数,记录。将两次称量的结果加以比较,质量相等。 4.探究评价: 实验⑴生成烟状的五氧化二磷,具有一定的代表性,现象也很明显。但由于白磷燃烧时放热,致气体逸出,往往易导致实验的失败。 实验⑵操作简单,实验的成功率很高。但无气体或烟状物质生成,现象不是十分明显,代表性不强。 5.资源开发: ⑴该实验可以按排学生当堂实验,学生分组多,证据足,更能说明问题。学生实验可安排一些现象明显、操作简单的。以下推荐几例,仅供参考。

机械能转化实验实验报告

机械能转化实验实验报告 篇一:机械能转化演示实验 篇二:机械能转化实验 机械能转化实验 一、实验目的 1.观测动、静、位压头随管径、位置、流量的变化情况,验证连续性方程和柏努利方程。 2.定量考察流体流经收缩、扩大管段时,流体流速与管径关系。 3.定量考察流体流经直管段时,流体阻力与流量关系。 4.定性观察流体流经节流元件、弯头的压损情况。 二、基本原理 化工生产中,流体的输送多在密闭的管道中进行,因此研究流体在管内的流动是化学工程中一个重要课题。任何运动的流体,仍然遵守质量守恒定律和能量守恒定律,这是研究流体力学性质的基本出发点。 1.连续性方程 对于流体在管内稳定流动时的质量守恒形式表现为如下的连续性方程: ?1??vdA??2??vdA (1-1) 12 根据平均流速的定义,有?1u1A1??2u2A2 (1-2)即

m1?m2(1-3)而对均质、不可压缩流体,?1??2?常数,则式(1-2)变为 u1A1?u2A2 (1-4) 可见,对均质、不可压缩流体,平均流速与流通截面积成反比,即面积越大,流速越小;反之,面积越小,流速越大。 对圆管,A??d/4,d为直径,于是式(1-4)可转化为 2 u1d1?u2d2(1-5) 22 2.机械能衡算方程 运动的流体除了遵循质量守恒定律以外,还应满足能量守恒定律,依此,在工程上可进一步得到十分重要的机械能衡算方程。 对于均质、不可压缩流体,在管路内稳定流动时,其机械能衡算方程(以单位质量流体为基准)为: upup z1?1?1?he?z2?2?2?hf (1-6) 2g?g2g?g 显然,上式中各项均具有高度的量纲,z称为位头,u/2g 称为动压头(速度头),p/?g称为静压头(压力头),he称为外加压头,hf称为压头损失。 关于上述机械能衡算方程的讨论: 理想流体的柏努利方程 无黏性的即没有黏性摩擦损失的流体称为理想流体,就是说,理想流体的hf?0,若此时又无外加功加入,则机械能

实验:验证机械能守恒定律实验报告

实验:验证机械能守恒定律 班级: 姓名: 时间: 2017年4月20 [实验目的] 1.验证机械能守恒定律。 2.掌握实验数据处理方法,能定性分析误差产生的原因。 [实验原理] 当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒。若某一时刻 物体下落的瞬时速度为v ,下落高度为h ,则应有:21mg m 2 h v =。借助打点计时器,测出重物某时刻的下落高度h 和该时刻的瞬时速度 v ,即可验证机械能是否守恒,实验装置如图1所示。 测定第n 点的瞬时速度的方法是: T 2h -h 1 -n 1n n +=v [实验器材] 铁架台(带铁夹)、打点计时器、纸带、交流电源、导线、带铁夹的重锤、纸带、刻度尺等。 [实验步骤] 图 1 图2

1.按如图1装置把打点计时器安装在铁架台上,并使两限位孔在同一竖直线上,以减小摩擦阻力。用导线把打点计时器与交流电源连接好。 2.把纸带的一端在重锤上用夹子固定好,另一端穿过计时器限位孔,用手竖直提起纸带使重锤停靠在打点计时器附近。 3.先接通电源,再松开纸带,让重锤带着纸带自由下落。 4.重复几次,得到3~5条打好点的纸带。 5.在打好点的纸带中挑选点迹清晰且第1、2两计时点间的距离接近2mm 的一条纸带,在起始点标上0,再在距离0点较远处开始选取相邻的几个计数点依次标上1、2、3……用刻度尺测出对应下落的高度h 1、h 2、h 3…… 6.应用公式T 2h -h 1 -n 1n n += v 计算各点对应的瞬时速度v 1、v 2、v 3…… 7.计算各点对应的重力势能减少量mgh n 和动能的增加量2 2 1n mv , 进行比较,并讨论如何减小误差。 [数据处理及误差分析]

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

化学反应中的质量守恒 (实验)

杜郎口中学理化生学科教师备课活页

第五单元第一节化学反应中的质量守恒题库 基础题: 1、有人说他能点石(主要成分CaCO3 ,读作碳酸钙)成金(符号为Au),你认为他的说法是否有科学道理? 2、下列各项:①原子的数目②分子的数目③元素的种类④物质的种类⑤物质的分子个数⑥原子的种类。在化学反应前后,肯定没有变化的是( ) A.①②③⑤ B.①⑥ C.②③⑤ D.①③⑥ 3、用质量差确定某反应物或生成物的质量 (1)24g镁与16g氧气恰好完全反应则生成氧化镁的质量为____g。 (2). 6g碳与一定量的氧气恰好完全反应,生成二氧化碳22g,有______g氧气参加了反应。 中等题: 1、推断反应物或生成物的组成元素 酒精在氧气中燃烧生成二氧化碳和水,能否根据这一事实,推断出酒精中肯定会有元素?可能会有元素? 2、在化学反应前后一定发生变化的是() A、物质质量 B、物质种类 C、分子数目 D、原子数目 3、下列现象可用质量守恒定律解释的是() A.10g水受热变成10g水蒸气 B.纸在空气中燃烧后化为灰烬.灰烬的质量比纸的质量小 C.糖溶解在水中形成糖水,质量不变 D.蜡烛受热熔化,冷却后质量不变 4、关于质量守恒定律,下列叙述中正确的是() A、煤燃烧化为灰烬,该反应不符合质量守恒定律 B、24克镁在空气中完全燃烧生成40克氧化镁,实际消耗空气质量为16克 C、一切化学反应都遵从质量守恒定律 D、质量守恒定律只适用于有气体或固体生成的化学反应 高档题: 1、“齐二药”假药事件是将“二甘醇”用于药品生产造成的。“二甘醇”在人体内可发生如下反应:C4H10O3+4O2=2X+3H2O,而导致人中毒。X的化学式为[ ] A、C4H4O8 B、C2H4O4 C、C2H2O2 D、C2H2O4 3、2005年10月12日,我国“神舟”六号载人飞船成功发射。航天飞船是用铝粉与高氯酸铵的混合物的固体燃料,点燃时铝粉氧化放热引发高氯酸铵反应: 2NH4ClO4 = N2↑ + 4H2O + X + 2O2↑,则X的化学式为() A、HCl B、ClO2 C、Cl2 D、HClO

质量守恒定律的实验探究

在“质量守恒定律”的课堂教学中,老师引导同学们进行“化学反应中,反应物与生成物的质量关系”的实验探究.他们使用的实验装置和选用药品如图所示,现分别以A、B、C、D表示如下: A、B、C、D四个实验分别由甲、乙、丙、丁四个组的同学来完成,他们都进行了规范的操作、准确的称量和细致的观察. (1)A实验:锥形瓶底放层细沙的原因是:______;小气球的作用是: ______;白磷刚引燃,立即将锥形瓶放到天平上称量,天平不平衡.结论是:质量不守恒.待锥形瓶冷却后,重新放到托盘天平上称量,天平平衡.结论是:质量守恒.你认为结论正确的是______(填“前一种”或“后一种”),而导致另一种结论错误的原因是:______. (2)丙组同学认为C实验说明了质量守恒定律.请你从原子的角度说明为什么?______.乙、丁两组同学得到的错误结论是“实验B、D均说明质量不守恒”.老师引导同学们分析了B、D两个实验反应前后天平不平衡的原因.你认为B实验天平不平衡的原因是:______;D实验天平不平衡的原因是: ______. (3)如果A装置中只是将药品改为少量的二氧化锰和过氧化氢,反应前后天平仍不平衡,原因是:______;结论是:参加反应的过氧化氢的质量一定 ______(填“等于”或“不等于”)生成的水和氧气的质量总和.

详细信息 物质发生化学变化的前后,总质量是否发生改变?是增加、减小还是不变?小刘、小李按下面的步骤进行探究: (1)提出假设:物质发生化学变化前后总质量不变. (2)设计并进行实验:小刘设计的实验装置和选用药品如A所示,小李设计的实验装置和选用药品如B所示,他们在反应前后都进行了规范的操作、准确的称量和细致的观察.①这两个实验所发生的化学反应方程式为:小刘的实验:______ 小李的实验:______ ②实验结论: 小刘认为:在化学反应中,生成物的总质量与反应物的总质量相等; 小李认为:在化学反应中,生成物总质量与反应物总质量不相等. ③你认为______的结论正确,导致另一个实验结论错误的原因是:______ ④请从原子的角度分析你认为正确的结论的原因:______ ⑤使用上述实验装置,请你选择另外两种药品进行实验达到实验目的,这两种药品可以是和______(填化学式)[注:以上四种药品均不能再用].

守恒实验实验报告

守恒实验实验报告

摘要主要探讨4-6岁儿童的实验守恒情况。实验一对长度守恒情况的探讨,要求儿童判断眼前的两根线是否是等长的;实验二,三对体积守恒情况的探讨,分别要求对2个大小相同形状不同的橡皮泥做成的求比较是否相等和对2个大小不一但装得水一样多的杯子比较是否相等,然后比较通过率得出体积守恒情况在8岁左右发展。 关键词:前运算阶段守恒概念儿童 1 引言 皮亚杰的心理发展阶段论将儿童从出生后到15岁智力的发展划分为四个发展阶段。⑴感知运动阶段(0-2岁)⑵前运算阶段(2-6岁)⑶具体运算阶段(6、7岁-11、12岁)⑷形式逻辑阶段(11-15岁) 守恒概念是具体运算阶段和形式运算阶段的“分水岭”,掌握守恒概念标志着儿童进入形式运算阶段,是认知发展的一个质的飞跃。守恒概念:是指物体的形式(主要是外部特征)起了变化,但个体认识到物体的量(或内部性质)并未改变。包括有质量守恒、重量守性、面积守恒、

体积守恒、长度守恒等。守恒概念是皮亚杰对儿童认知发展阶段论中的核心概念之一。 在第三个阶段,即具体运算阶段,皮亚杰认为在这一阶段儿童智慧发展的最重要表现是获得了守恒性和可逆性的概念。具体运算阶段儿童并不是同时获得这些守恒的,而是随着年龄的增长不断获得的,先是在7-8岁获得质量守恒概念,之后是重量守恒(9-10岁)、体积守恒(11-12岁)。皮亚杰确定质量守恒概念达到时作为儿童具体运算阶段的开始,而将体积守恒达到时作为具体运算阶段的终结或下一个运算阶段(形式运算阶段)的开始。这种守恒概念获得的顺序在许多国家对儿童进行的反复实验中都得到了验证,几乎完全没有例外。 但是,新近的一些研究认为,皮亚杰低估了儿童的能力。如在皮亚杰数量守恒重复试验中,只有少数(16%)4-6岁的儿童理解了数的守恒。然而,不久以后,一些心理学家认为,增加问题的情境性,儿童能表现出更强的守恒掌握能力。 研究者给四五岁的儿童展示两根长度相等的小棍,并排对齐了放在桌上。儿童认为它们是等长的。当研究者将其中一根小棍往前稍微挪动

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

守恒实验报告_李星凯

实验名称:儿童理解数量守恒概念的能力的研究 实验人员:李星凯 2013704137 实验日期:2014年5月 实验报告

5-8岁儿童守恒实验报告 摘要主要探讨5—8岁儿童的实验守恒情况。实验一、二对数量守恒情况进行探讨,要求每行6个硬币、糖果,共2行比较是否一样多。我们深入湛江赤坎区的四所幼儿园及小学,对168名被试进行了硬币数量守恒实验,糖果数量守恒实验的检测。实验结果证明了皮亚杰的经典守恒实验理论:儿童进入具体运算阶段后会运用认知和逻辑过程去回答生活中的问题,而不再受事物表象的影响。 关键词具体运算阶段守恒概念儿童 1引言 守恒是指物体的形式(主要是外部特征)起了变化,但个体认识到物体的量(或内部性质)并未改变。包括有质量守恒、重量守性、面积守恒、体积守恒、长度守恒等。 守恒概念是皮亚杰对儿童认知发展阶段论中的核心概念之一。 守恒实验是由瑞士著名儿童心理学家皮亚杰创设的,用来考察前运算阶段儿童(2-7岁)的思维特征。皮亚杰发现,处于前运算阶段的儿童往往不能达到守恒,他们的思维具有两个特征:第一,片面性,即考虑问题只将注意集中在物体的另一方面,而忽略其他方面,顾此失彼,造成对问题的错误的解释;第二,缺乏可逆性,集中注意事物的状态,而忽略事物的转化过程。儿童大概到7岁进入具体运算阶段,就能运用三种形式的诊断达到守恒:第一,同一性诊断(如液体守恒实验中,儿童认为既没有增加又没有拿走水,因此他们是相等的);第二,可逆性诊断(如液体守恒实验中,儿童认可将C杯中的水倒回原来的B杯中,因此是相同的)。 当然,从前运算阶段到具体思维的转变不可能是一蹴而就的。在儿童确定出于具体运算阶段的前两年中,他们的思维在前运算阶段和具体运算阶段之间来回的转换。一般他们只能回答出物体守恒,却不知道为什么。 2 研究方法 2.1被试 本研究选取168名5至8岁的儿童作为被试,其中5岁儿童36名(男17名,女19名);6岁儿童44名(男22名,女22名);7岁儿童45名(男22名,女23名); 8岁儿童43名(男22名,女21名) 2.2 工具 采用大小一样、数量相等的硬币12枚和相同包装、大小相同的糖果12颗为实验材料。 2.3 实验程序 实验中,第一步先在被试面前以同等间距呈现两行相同的硬币(如图1),让被试数出数量,并询问数量是否相同。第二步,把第二排硬币的间距扩大,再问被试硬币数量是否一样多,并记录两次询问被试的回答。通过守恒实验编码为1,未通过编码为0。糖果数量守恒实验与硬币数量守恒程序相同。每名主试负责完成两个被试,每名被试分别进行硬币数量守恒实验和糖果数量守恒实验。

守恒实验报告

幼儿守恒实验 1 引言 守恒实验由瑞士儿童心理学家皮亚杰创设,他将儿童认知发展界定为4个阶段:感知运动阶段(0~2),前运算阶段(2~7岁),具体运算阶段(7~11岁),形式运算阶段(11~15岁),守恒实验即用来考察前运算阶段儿童的思维特征。守恒是指即使在物体外观改变的情况下,它特定的自然特征(如数量、质量、长度、重量、面积)仍然保持相同。在心理学上,守恒是儿童认识到一个事物的知觉特征无论如何变化,它的量始终不变。 皮亚杰认为前运算阶段的儿童的思维尽管比婴儿期发展了 更高的思维能力,但还不能掌握守恒的原理,只能集中于问题的一个维度而忽视另一个维度,注意的是事物表面的、明显的特征,具有中心化的特点。已有大量研究表明,儿童达到不同形式的守恒的年龄不同。最先达到的数量守恒(6~7岁),然后是长度守恒(7~8岁),然后是重量守恒(9~10岁),最后是体积守恒(12岁)。 本研究旨在测量儿童守恒能力发展情况,了解前运算儿童的思维特征。由于被试均为4~7岁幼儿,最大年龄为7岁,可能还不能形成较好的数量守恒、长度守恒、重量守恒、体积守恒,当物体外形发生了一定变化时,他们还不能把握物体所具有的某一

不变的特质。因此,本研究假设,儿童在四种形式守恒中数量守恒完成情况优于其他形式的守恒,守恒能力在幼儿中不存在年级和性别差异。 2 研究方法 2.1 被试 选取济南市一所幼儿园大中小班3个年级共30名被试,被试具体情况分布如表1: 表1 守恒任务被试具体情况 班级平均年龄男女合计大班(6岁) 4.4 6 5 11 中班(5岁) 5.4 4 5 9 小班(4岁) 6.1 4 6 10 合计14 16 30 2.2 实验材料 (1)数量守恒:12颗一模一样的纽扣。 (2)长度守恒:两根相同长度的木棍。 (3)液体守恒:两个一模一样的透明玻璃杯,一个较高较细的透明玻璃杯。 (4)重量守恒:大小相同的两块泥球。 2.3 实验程序 (1)数量守恒 先向儿童呈现两排相同的纽扣(每排6个),问儿童每排有几颗纽扣,在儿童回答正确纽扣的数量并确认两排纽扣的数量是一样的之后,将其中的一排纽扣间的距离拉大,问被试两排纽扣的数量是否相同。得到儿童的回答后,无论儿童回答“相同”还是“不相同”,都询问其作出判断的原因。 (2)长度守恒

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

化学实验报告

实验题目:观察和描述一对蜡烛及期燃烧的探 实验目的: 1、培描述的能力。养观察和 2、学习科学探究的方法。 实验器材: 蜡烛、小木条、烧杯2个、澄清石灰水 实验步骤: 1、点燃前,观察蜡烛的颜色、状态、形状和硬度;观察把蜡烛投入水中的情况。 2、燃着时,火焰分几层,用小木条比较火焰不同部分温度的高低,用烧杯推测燃烧后的生成物。 3、燃灭后,用火柴去点白烟,蜡烛能否重新燃烧。 现象: 1、蜡烛是乳白色,柱状固体、无味,能被轻易切成处,放于水中飘浮于水面上。 2、火焰分为三层。小木条上外焰接触的部分被烧焦得最厉害,干燥的烧杯内壁有水珠,涂有石灰水的烧杯变浑浊。 3、白烟能被点燃。 分析及结论: 1、蜡烛难溶于水、质软。 2、外焰温度最高,蜡烛燃烧有水和CO2生成。 3、吹灭蜡烛后的白烟是可燃物。

实验题目:对人体吸入的空气和呼出的气体的探究 实验目的: 探究人体吸入的空气和呼出的气体有何不同 实验器材: 水槽、集气瓶4个、玻璃片4块、滴管、石灰水、饮料管、小木条 实验步骤: 1、用吹气排水法收集两瓶呼出的气体。 2、收集两瓶空气。 3、在1瓶空气和1瓶呼出气中滴入石灰水、振荡。 4、将燃着的木条分别插入空气和呼出气中。 5、对着干燥的玻璃片呼气。 现象: 1、滴入石灰水后,充满呼出气的集气瓶更浑浊一些; 2、插入呼出气中的木条立即熄灭,插入空气中的木条正常燃烧过了一会儿才熄灭; 3、呼气后干燥的玻璃片上有较多的水珠。 分析及结论: 人体呼出的气体中有CO2含量较高,吸入的空气中O2含量较高,呼出气中H2O含量较高。

实验题目:化学实验的基本操作 实验目的: 熟练掌握药品的取用,给物质的加热,仪器洗涤的操作 实验器材: 镊子、药匙、试管、量筒、滴管、酒精灯、试管夹、试管刷、锌粒、盐酸、碳酸纳粉末、氢氧化钠溶液、硫酸铜溶液 实验步骤: 一、药品的取用 1、用镊子夹取了粒锌放入试管中,并将试管放在试管架上。 2、取少量碳酸钠粉末放入试管中,并半试管放在试管架上。 3、量取2ml盐酸加入到试管2中,往试管一中滴加盐酸。 二、结物质的加热 取2ml氢氧化钠溶液倒入试管中,滴加硫酸铜溶液,然后在酒精灯火焰上加热。 三、洗涤仪器 将本实验中所用的试管、量筒洗干净。 现象: 一、3加入盐酸后产生大量气泡,试管外壁发热。 二、先产生蓝色紫状况淀,受热后,变为黑色的沉淀。 分析及结论: 一、3碳酸钠与盐酸反应放出二氧化碳气体,盐酸也锌粒反应放出氢气。 二、氢氧化钠与硫酸铜反生或氢氧化铜,氢氧化铜受热分解生成氧化铜。 三、掌握化学实验的基本操作是我们安全、正确、快速的进行实验并获得可靠结果的重要保证。

【实验报告】《质量守恒定律》(人教)

班级:姓名: 一、实验目的:探究化学反应前后质量是否守恒 二、实验用品:托盘天平(带砝码盒)镊子、烧杯(100mL)、量筒(10 mL )、胶头滴管、砂纸、抹布、硫酸铜溶液、铁钉; 三、实验步骤: 1、检查仪器、药品。 2、在天平的两托盘上各方一张同样的纸,检查并将天 平调至平衡。 3、将一根铁钉用砂纸打磨干净。用天平准确称量盛有 10mL硫酸铜溶液的烧杯和一根铁钉的总质量。 4、把铁钉放入盛有硫酸铜溶液的烧杯中,反应一段时间后,观察天平是否保持平衡(注意:砝码不需要从天平上拿下来)。 5、使天平复原,整理复位。 6、填写实验分析表。

班级:姓名: 一、实验目的:探究化学反应前后质量是否守恒 二、实验用品:托盘天平(带砝码盒)药匙、烧杯(100mL)、小试管、胶头滴管、抹布、盐酸、碳酸钠粉 末; 三、实验步骤: 1、检查仪器、药品。 2、在天平的两托盘上各方一张同样的纸,检查并将天 平调至平衡。 3、取一药匙碳酸钠粉末于烧杯中。将盛有适量盐酸的小试管放入盛有碳酸钠粉末的小烧杯中(注意:不要让盐酸流入烧杯),一起放在托盘天平上,调节天平平衡,读数。 4、将小试管中的盐酸倒入小烧杯中,使盐酸与碳酸钠粉末反应,观察现象。一段时间后,再把小烧杯放在托盘天平上,观察天平是否平衡(注意:砝码不需要从天平上拿下来)。 5、使天平复原,整理复位。 6、填写实验分析表。

班级:姓名: 一、实验目的:探究化学反应前后质量是否守恒 二、实验用品:托盘天平(带砝码盒)药匙、锥形瓶、带导管和气球的橡皮塞、小试管、胶头滴管、抹布、 盐酸、碳酸钠粉末; 三、实验步骤: 1、检查仪器、药品。 2、在天平的两托盘上各方一张同样的纸,检查并将天平调 至平衡。 3、取一药匙碳酸钠粉末于锥形瓶中。将盛有适量盐酸的小试管放入盛有碳酸钠粉末的锥形瓶中(注意:不要让盐酸流入锥形瓶),塞上橡皮塞,一起放在托盘天平上,调节天平平衡,读数。 4、将锥形瓶倾斜,使小试管中的盐酸倒入锥形瓶中(注意:橡皮塞不要打开),盐酸与碳酸钠粉末反应,观察现象。一段时间后,再把锥形瓶放在托盘天平上,观察天平是否平衡(注意:砝码不需要从天平上拿下来)。 5、使天平复原,整理复位。 6、填写实验分析表。

实验1 动量守恒定律的研究

实验1 动量守恒定律的研究 ――气垫导轨实验(一) 气垫技术是20世纪60年代发展起来的一种新技术,这一新技术克服了物体与运动表面之间的摩擦阻力,减少了磨损,延长了仪器寿命,提高了机械效率。因此,在机械、电子、纺织、运输等领域中得到了广泛的应用,如激光全息实验台、气垫船、空气轴承、气垫输送带等。 气垫导轨(Air track )是采用气垫技术的一种阻力极小的力学实验装置。利用气源将压缩空气打入导轨腔内,再由导轨表面上的小孔喷出气流,在导轨与滑行器(滑块)之间形成很薄的空气薄膜,浮起滑块,使滑块可以在导轨上作近似无阻力的直线运动,为力学实验创造了较为理想的测量条件。在力学实验中,利用气垫导轨可以观察和研究在近似无阻力情况下物体的各种运动规律,极大地减少了由于摩擦力的存在而出现的较大误差,大大提高了实验的精确度。利用气垫导轨和光电计时系统,许多力学实验可以进行准确的定量分析和研究,使实验结果接近理论值,实验现象更加真实、直观。如速度和加速度的测量,重力加速度的测定,牛顿运动定律的验证,动量守恒定律的研究,谐振运动的研究,等等。 动量守恒定律是自然界的一个普遍规律,不仅适用于宏观物体,也适用于微观粒子,在科学研究和生产技术方面都被广泛应用。本实验通过两个滑块在水平气垫导轨上的完全弹性碰撞和完全非弹性碰撞过程来研究动量守恒定律。 【实验目的】 1.了解气垫导轨的基本构造和功能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本组成和原理,掌握电脑通用计数器的使用方法。 3.用观察法研究完全弹性碰撞和完全非弹性碰撞的特点。 4.验证动量守恒定律,学会判断实验是否能够验证理论的基本方法。 【实验原理】 1.碰撞与动量守恒定律 如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。 在一直线上运动的两个物体,质量分别为1m 和2m ,在水平方向不受外力的情况下发生碰撞,碰撞前的运动速度为10v 和20v ,碰撞后的运动速度为1v 和2v ,则由动量守恒定律可得 2211202101v m v m v m v m +=+ (1) 实验中利用气垫导轨上两个滑块的碰撞来研究动量守恒定律。 2.完全弹性碰撞 完全弹性碰撞的特点是碰撞前后系统的动量守恒,机械能也守恒。如图1所示,如果在两个滑

《质量守恒定律》实验探究过程设计

《质量守恒定律》实验探究过程设计 实验学校邱金平 1.化学反应原理: ⑴白磷在密闭的容器内燃烧,生成固体五氧化二磷。反应前后物质的总质量不变。由此证明质量守恒定律的正确性。 ⑵铁和硫酸铜溶液反应,生成铜和硫酸亚铁,反应前后,物质的总质量不变。 2.实验仪器: 天平、砝码、锥形瓶、小烧杯、玻璃管、单孔橡皮塞、小气球、酒精灯等。实验药品:白磷、铁钉(或铁丝)、硫酸铜溶液等。 3.探究方案: ⑴取出天平,调平衡。待用。 取一块白磷,放入盛水的培养皿中,在水下用小刀切下一粒绿豆大小的白磷,用滤纸吸干表面的水,放入锥形瓶中。(为防止白磷燃烧时,灼裂锥形瓶,可以瓶下事先放入少量的细砂。)将盛白磷的锥形瓶、绑有小气球的玻璃管一起放在天平的左盘中,在右盘添加砝码,并移动游码,使天平平衡。如图A所示。 取出锥形瓶及导管,将橡皮塞上的玻璃管放在酒精灯的火焰上灼烧至红热后,迅速用橡皮塞将锥形瓶塞紧,并将白磷引燃。可见白磷燃烧,产生浓厚的白烟。待锥形瓶冷却,白烟沉降后,重新放到托盘天平上,观察天平仍然平衡。 ⑵在100 mL烧杯中加入约30 mL稀硫酸铜溶液,将几根打磨光亮的铁钉和盛硫酸铜溶液的烧杯一起放在天平上称量,读出读数,记录。如图B。 将铁钉浸泡在硫酸铜溶液中,可观察到铁钉表面析出一层紫红色的物质,溶液颜色逐渐变浅。如果时间足够长,可看到溶液的颜色由蓝色变浅绿色。 将反应后烧杯和内容物放到天平上再次称量,读出读数,记录。将两次称量的结果加以比较,质量相等。 4.探究评价:

实验⑴生成烟状的五氧化二磷,具有一定的代表性,现象也很明显。但由于白磷燃烧时放热,致气体逸出,往往易导致实验的失败。实验⑵操作简单,实验的成功率很高。但无气体或烟状物质生成,现象不是十分明显,代表性不强。 5.资源开发: ⑴该实验可以按排学生当堂实验,学生分组多,证据足,更能说明问题。学生实验可安排一些现象明显、操作简单的。以下推荐几例,仅供参考。 ⑵质量守恒定律的探究不仅需要安排正例,还需要安排反例。教材中已为我们安排了两个反例。 ①把盛有盐酸的小试管小心地放入装有碳酸钠粉末的小烧杯中,将小烧杯放在托盘天平上用砝码平衡。取下小烧杯并将其倾斜,使小试管中的盐酸与小烧杯中的碳酸钠粉末反应。 盐酸与碳酸钠粉末迅速反应,有大量气泡产生。一段时间后,再把烧杯放在托盘天平上,观察天平是否平衡。 天平不再平衡,这是由于有二氧化碳气体生成逸出的缘故。 ②取一根用砂纸打磨干净的长镁条和一个石棉网,将它们一起放在托盘天平上称量,记录称得的质量。在石棉网上方将镁条点燃。 镁条剧烈燃烧,产生耀眼的强光,生成白色固体氧化镁。再将镁条燃烧后的产物和石棉网一起放在托盘天平上称量,记录质量。比较两次称量的质量。 6.创新思维: ⑴白磷燃烧验证质量守恒定律的实验,可以按探究实验五相关内容改进。可防止漏气。 ⑵镁条燃烧后质量怎么变化? 有多位老师告诉笔者,他们的实验结果是:燃烧后生成物质质量比镁的质量增大了。但笔者做了很多次实验,其结果恰好相反--质量减小。 实验时我们发现,镁燃烧时,有大量白烟生成,这些白烟挥发了。连夹持镁条的坩埚钳上都凝结着大量的白色粉末状物质。因此,反应后剩余物质的质量减轻也就不难理解了。做化学实验,不仅要求学生有正确的科学态度,老师也应该有科学的态度。遇到问题,不能绕道走,更不能简单地以为实验失败。要多次实验,从多次实验的结果中找出规律,以求问题的最多解决。 ⑶碳酸钠与盐酸的反应,可否用于验证质量守恒定律? 教学参考书中指出:"这个实验也可以用固体跟液体反应产生气体的实验代替(例如碳酸钙跟盐酸反应)。反应在吸滤瓶中进行,在抽气口上套一个气球,反应开始后气球膨胀,但天平保持平衡。" 在吸滤瓶中加入适量的碳酸钠粉末,在小试管中加入浓盐酸。将小试管放入吸滤瓶中,并用止水夹夹住支管处的橡皮管。整个装置放入托盘天平中,并用砝码平衡,记录读数。取出吸滤瓶,倾斜,使小试管中的盐酸倾倒入瓶中,与碳酸钠粉末反应。可观察到瓶中有大量气泡出现,气球胀大,如图C。 将装置再次放入托盘天平中称量,记录读数。将两次结果相比较。

验证机械能守恒定律实验报告

验证机械能守恒定律 [实验目的] 验证机械能守恒定律。 [实验原理] 当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒。若某一时刻物体下落的瞬时速度为v ,下落高度为h ,则应有:2 1mg m 2 h v = 。借助打点计时器,测出重物某时刻的下落高度h 和该时刻的瞬时速度v ,即可验证机械能是否守恒,实验装置如图1所示。 测定第n 点的瞬时速度的方法是: T 2h -h 1 -n 1n n ?= +v [实验器材] 铁架台(带铁夹)、打点计时器、学生电源、导线、带铁夹的重锤、纸带、米尺。 [实验步骤] 1.按如图装置把打点计时器安装在铁架台上,用导线把打点计时器与学生电源连接好。 2.把纸带的一端在重锤上用夹子固定好,另一端穿过计时器限位孔,用手竖直提起纸带使重锤停靠在打点计时器附近。 3.接通电源,松开纸带,让重锤自由下落。 4.重复几次,得到3~5条打好点的纸带。 5.在打好点的纸带中挑选第一、二两点间的距离接近2mm ,且点迹清晰的一条纸带, 在起始点标上0,以后各依次标上1,2,3……,用刻度尺测出对应下落高度h 1、h 2、h 3……。 6.应用公式T 2h -h 1 -n 1n n ?= +v 计算各点对应的即时速度v 1、v 2、v 3……。 7.计算各点对应的势能减少量mgh n 和动能的增加量 mv n 2 /2,进行比较。 [注意事项] 图1 图2

1、打点计时器的两限位孔必须在同一竖直线上,以减少摩擦阻力。 2、实验时,需保持提纸带的手不动,待接通电源,让打点计时器工作正常后再松开纸带让重锤下落,以保证第一个点是一个清晰的点. 3、选用纸带时应尽量挑选第一、二点间接运2 mm的纸带. 4、打点计时器必须接50 Hz交流低压电源. 5、测量下落高度时,必须从起始点算起,不能搞错,为了减小测量h值的相对误差,选取的各个计数点要离起始点远一些,纸带也不易过长,有效长度可在60 cm—80 cm之内. 6、实际上重物和纸带下落过中要克服阻力做功,所以动能的增加量要小于势能的减少量。 [数据处理] 连续打两点的时间间隔T=s [误差分析]: [结论]: 例1.在“验证机械能守恒定律”的实验中,需要直接测量的物理量是 A.质量B.下落高度C.下落时间D.瞬时速度

守恒实验实验报告

守恒实验实验报告 This model paper was revised by the Standardization Office on December 10, 2020

摘要主要探讨4-6岁儿童的实验守恒情况。实验一对长度守恒情况的探讨,要求儿童判断眼前的两根线是否是等长的;实验二,三对体积守恒情况的探讨,分别要求对2个大小相同形状不同的橡皮泥做成的求比较是否相等和对2个大小不一但装得水一样多的杯子比较是否相等,然后比较通过率得出体积守恒情况在8岁左右发展。 关键词:前运算阶段守恒概念儿童 1 引言 皮亚杰的心理发展阶段论将儿童从出生后到15岁智力的发展划分为四个发展阶段。⑴感知运动阶段(0-2岁)⑵前运算阶段(2-6岁)⑶具体运算阶段(6、7岁-11、12岁)⑷形式逻辑阶段(11-15岁) 守恒概念是具体运算阶段和形式运算阶段的“分水岭”,掌握守恒概念标志着儿童进入形式运算阶段,是认知发展的一个质的飞跃。守恒概念:是指物体的形式(主要是外部特征)起了变化,但个体认识到物体的量(或内部性质)并未改变。包括有质量守恒、重量守性、面积守恒、体积守恒、长度守恒等。守恒概念是皮亚杰对儿童认知发展阶段论中的核心概念之一。 在第三个阶段,即具体运算阶段,皮亚杰认为在这一阶段儿童智慧发展的最重要表现是获得了守恒性和可逆性的概念。具体运算阶段儿童并不是同时获得这些守恒的,而是随着年龄的增长不断获得的,先是在7-8岁获得质量守恒概念,之后是重量守恒(9-10岁)、体积守恒(11-12岁)。皮亚杰确定质量守恒概念达到时作为儿童具体运算阶段的开始,而将体积守恒达到时作为具体运算阶段的终结或下一个运算阶段(形式运算阶段)的开始。这种守恒概念获得的顺序在许多国家对儿童进行的反复实验中都得到了验证,几乎完全没有例外。 但是,新近的一些研究认为,皮亚杰低估了儿童的能力。如在皮亚杰数量守恒重复试验中,只有少数(16%)4-6岁的儿童理解了数的守恒。然而,不久以后,一些心理学家认为,增加问题的情境性,儿童能表现出更强的守恒掌握能力。

动量守恒定律实验复习题

m1 m2 P M N 0` 姓名 动量守恒实验期末复习 一、实验目的:1、研究碰撞(对心正碰)中的动量守恒;2、培养学生的动手实验能力和探索精神 二、实验器材 斜槽轨道(或J2135-1型碰撞实验器)、入射小球m 1和被碰小球m 2、天平(附砝码一套)、游标卡尺、毫米刻度尺、白纸、复写纸、圆规、小铅锤 注意: ①选球时应保证入射球质量m 1大于被碰小球质量m 2,即m 1>m 2,避免两球落点太近而难找落地点; ②避免入射球反弹的可能,通常入射球选钢球,被碰小球选有机玻璃球或硬胶木球。 ③球的半径要保证r 1=r 2(r 1、r 2为入射球、被碰小球半径),因两球重心等高,使碰撞前后入射钢球能恰好由螺钉支柱顶部掠过而不相碰,以免影响球的运动。 三、实验原理 测质量的工具: 测速度的方案: 由于入射球和被碰小球碰撞前后均由同一高度飞出做平抛运动,飞行时 间相等,若取飞行时间为单位时间,则可用相等时间内的水平位移之比代替 水平速度之比。 注意:如图所示,根据平抛运动性质,入射球碰撞前后的速度分别为 v 1=t OP ,v 1`=t OM ,被碰小球碰后速度为v2`=t N O t OO ON ``=- 被碰小球碰撞前后的时间仅由下落高度决定,两球下落高度相同,时间 相同,所以水平速度可以用水平位移数值表示,如图所示;v 1用OP 表示;v′1 用OM 表示,v′2用O`N 表示,其中O 为入射球抛射点在水平纸面上的投影, (由槽口吊铅锤线确定)O′为被碰小球抛射点在水平纸面上的投影,显然明确上述表示方法是实验成功的关键。 于是,上述动量关系可表示为:m 1·OP= m 1·OM+m 2·(ON-2r),通过实验验证该结论是否成立。 三、实验步骤 (1)将斜槽固定在桌边使末端点的切线水平。 (2)让入射球落地后在地板上合适的位置铺上白纸并在相应的位置铺上复写纸。 (3)用小铅锤把斜槽末端即入射球的重心投影到白纸上O 点。 (4)不放被碰小球时,让入射小球10次都从斜槽同一高度由阻止开始滚下落在复写纸上,用圆规找出 落点的平均位置P 点。 (5)把入射球放在槽口末端露出一半,调节支柱螺柱,使被碰小球与入射球重心等高且接触好,然后 让入射球在同一高度滚下与被碰小球碰10次,用圆规找出入射球和碰小球的平均位置M 、N 。 (6)用天平测出两个球的质量记入下表,游标卡尺测出入射球和被碰小球的半径r 1和r 2,在ON 上取 OO`=2 r ,即为被碰小球抛出点投影,用刻度尺测出其长度,记录入表内。 (7)改变入射球的高度,重复上述实验步骤,再做一次。 注意:①重做实验时,斜槽、地板上白纸的位置要始终保持不变; ②入射球的高度要适宜,过高会使水平速度偏大,致使落地点超越原地白纸;过低会使碰撞前后速度偏小,使落地点彼此靠近分不清,测量两球的水平位移分度不大。

阅读材料:关于质量守恒定律的历史

关于质量守恒定律的历史 质量守恒定律又称物质不灭定律,是自然界最重要的基础定律,该定律几乎构成了大部分物理科学和化学科学的基础,它对化学教学是极端重要的。本文阐述它的发展和形成的历史。 一、守恒定律的序幕 关于物质不灭一般被公认为是古希腊原子论者的思想。留基帕和德模克利特(两人大约生活在公元前450年)认为一切物质都是由最小的、不可分的微粒──原子组成的。德模克利特写道:“宇宙的要素是原子和虚空,其他一切都只是意见。原子不受任何能使之发生改变的外力的影响,……而虚空则是一些空的地方,使原子不断在其中上下运动”。如此说来,他们已经具备物质不灭的思想了。可惜他们的著作除了一些残篇外均已散失。关于原子是否有重量还有争论。我们只能从亚里士多德的著作转引的残篇断句中知道原子或许有重量,但是对这一点有争论,伊壁鸠鲁(公元前约300年)承认原子学说,并肯定地认为原子有重量。既然原子是不灭的,而原子又是有重量的,至此,我们可以认为他们已经有了质量守恒的思想了。但是这只能是我们的推论,并没有见诸于文字的记载,一直到公元前57年左右,与凯撒和西塞罗同时代的罗马诗人路克莱修在他的伟大著作《物性论》中,记载并赞颂了古希腊原子论者们的哲学。他重申:“无物能由无中生,无物能归于无。”这可看作是最早暗示出一个深刻的普遍科学原理,现在的每一事物必定在过去,现在或将来持续存在,虽则它们的形状、面貌和外表确实可以改变。 然而,从路克莱修的颂辞到现代的质量守恒定律之间有着相当大的一段距离。质量守恒定律昭示我们:无论位置、外形、状态和化学组成等如何变化,在一给定的封闭区域内的物质总量永远保持不变。企图从古希腊人的思想中去寻觅现代物理学和化学的科学原理(也许某些天文学的原理除外)是徒劳之举,例如,路克莱修当时所关心的是哲学而不是科学问题。这在《物性论》的第一页中讲得十分清楚: “这个教导我们的定律开始于:没有任何事物按神意从无中生。恐惧所以能统治亿万众生,只是因为人们看见大地环宇,有无数他们不懂其原因的事件,因此以为有神灵操纵其间。而当我们一朝知道,无中不能生有,我们就会更清楚地猜到我们所寻求的:万物由之造成的那些元素,以及万物之造成如何未借神助”。

相关文档