文档库 最新最全的文档下载
当前位置:文档库 › 粉体综合流动性实验

粉体综合流动性实验

粉体综合流动性实验
粉体综合流动性实验

实验1 粉体综合流动性实验

一、目的意义

粉体是由不连续的微粒构成,是固体的特殊形态。它具有一些特殊的物理性质,如巨大的比表面积和很小的松密度,以及凝聚性和流动性等。在分体的许多单元操作过程中涉及粉体的流动性能,例如粉体的生产工艺、传输、贮存、装填以及工业中的粉末冶金、医药中不同组分的混合等。粉体的流动性能随产地、生产工艺、粒度、水分含量、颗粒形状、压实力大小和压实时间长短等因素的不同而有明显的变化,所以测定粉体的流动性和对粉体工程具有重要的意义。而Carr指数法是工业上评价粉体流动性最常用的方法,由于这种方法快速、准确、适用范围广、易操作等一系列优点而被广泛应用于粉体特性的综合评判和粉体系统的设计开发中。

本实验的目的:

(1)了解粉体流动性测定的意义;

(2)掌握粉体流动性的测定方法;

(3)了解粒度和水分对粉体流动性的影响。

二、基本原理

Carr指数法是卡尔教授通过大量实验,在综合研究了影响粉体流动性和喷流性的几个单项粉体物性值得基础上,将其每个特征指数化并累加以指数方式来表征流动性的方法。Carr指数分为流动性指数和喷流性指数。流动性指数是由测量结果参照Carr流动性指数表得到与其相对应得单项Carr指数值(安息角、压缩率、平板角和粘附度/均齐度),将其数值累加,计算出流动性指数合计,用取得的总分值来综合评价粉体的流动性质;喷流性指数是单项检测项目(流动性指数、崩溃角、差角、分散度)指数化后的累积和。卡尔流动性指数表见表1-1。

安息角:粉体堆积层的自由表面在平衡状态下,与水平面形成的最大角度叫做安息角。它是通过特定方式使粉体自然下落到特定平台上形成的。安息角对粉体的流动性影响最大,安息角越小,粉体流动性越好。安息角也称休止角、自然坡度角等。安息角的理想状态与实际状态示意图如图示。

崩溃角:给测量安息角的堆积粉体上以一定的冲击,使其表面崩溃后圆锥体的底角成为崩溃角。

平板角:将埋在分体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与收到振动之后的夹角的平均值称为平板角。在实际测量过程中,平板角是以平板提起后的角度和平板收到冲击后除掉不稳定粉体角度的平均值来表示的。平板角越小粉体的流动性越强。一般情况下,平板角大于安息角。

分散度:粉体在空气中分散的难易程度称为分散度。测量方法是将10g试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。分散度与试样的分散性、漂浮性和飞溅性有关。如果分散度超过50%,说明该样品具有很强的飞溅倾向。

差角:安息角与崩溃角之差称为差角。差角越大,粉体的流动性与喷流性越强。

压缩度:同一个试样的振实密度与松装密度之差与振实密度之比为压缩度。压缩度也称为压缩率。压缩度越小,粉体的流动性越好。

空隙率:孔隙率是指粉体中的空隙占整个粉体体积百分比。空隙率因粉体的粒子形状、排列结构、粒径等因素的不同而变化。颗粒为球形时,粉体孔隙率为40%左右;颗粒为超细或不规则形状时,粉体空隙率为40%左右;颗粒为超细或不规则形状时,粉体空隙率为70%~80%或更高。

表1-1 卡尔流动性指数表

三、实验器材

(1)BT-1000型粉体综合特性测试仪(图1-2)

(2)电子天平

(3)干燥箱

图1-2 BT-1000型粉体特性测试仪结构示意图

四、实验步骤

1.休止角(θr)、崩溃角(θr)和差角(θd)的测定

A.休止角(θr)的测定

1)按要求准备一定质量的试样并烘干。

2)放置休止角器具:将减震器放到仪器中央的定位孔中、再放上接料盘和休止角式样台。如果发现休止角式样台不平,请调整减震器上的三个螺丝的高度,使休止角式样台的水平面处于水平状态。

3)加料:关上将仪器前门,准备好试样,将定时器调到3分钟左右,开振动筛盖,打开仪器的电源开关和振动筛开关,用小勺在加料口徐徐加料,物料通过筛网、出料口洒落到试样台上,形成锥体。

4)当试样落满试样台并成对称的圆锥体后,停止加料,关闭振动筛电源,将测角器置于试样托盘左侧并靠近料堆,与圆锥形料堆的斜面平齐,测定休止角。测量休止角时应从三个不同位置测定休止角,然后取平均值,该平均值为这个样品的休止角(θr)。

休止角θr=(θr1+θr2+θr3)/3

B.崩溃角(θf)的测定

测完安息角后用两个手指轻轻提起试验台中轴上的崩溃角振子,高度为距

离顶部大约10mm,然后张开手指使振子自由落下,使试样台上堆积的试样收

到振动,圆锥体的边缘崩塌落下。如此振动三次,然后再用测角器测定三个不同位置的安息角,其平均值即为崩溃角(θf)

崩溃角θf=(θf1+θf2+θf3)/ 2

C.差角(θd)的测定

即安息角与崩溃角之差:

θd=θr-θf

2.平板角(θs)的测定

1)将升降台上放好托盘,平板伸入托盘中,将带测样品徐徐撒落在托盘中,直到埋没平板为止。加料时也可以先将样品加到1mm的筛子上,然后将样品筛到试样盘中。

2)加完料以后,轻轻扭动升降台旋钮使升降台的高度缓缓降低,平板与试样盘完全分离,这时用测角器测定三处留在平板上粉体所成的角度,取平均值θs1。

3)用锤下落一次,冲击平板,再用测角器测定三处留在平板上粉体所成的角度,取平均值θs2。

平板角θs=(θs1+θs2)/ 2

3.分散度D s的测定

1)将分散度卸料控制器拉倒右端并卡住,关闭料斗。

2)用天平取样10g,通过漏斗把试样均匀地加到仪器顶部的分散度入料料斗中。

3)将小接料盘(φ100mm)置于分散度测定筒正下方的分散度测定室内的定位圈中,关上抽屉。然后瞬间开启卸料阀,使试样通过分散度筒自由落下。

4)这样试验两次,取出接料盘,称量残留于接料盘的粉末,娶妻平均值,再下式求分散度D s。

D s=(10-m)×100%/10

其中:m为落在接料盘中粉体的质量,g

4.松装密度ρa测定

称取约100g(精确至0.1%)的样品置250-mL的量筒,小心地夷平样品粉末不要压实,读取样品的体积V0,用下列公式计算松密度:

ρa= M/ V0 (g/mL)

重复测量3次,取其平均值

5.振实密度ρp测定的方法

1)将量筒举起10mm,然后让量筒自由落下,每分钟落下100-300次,取250次。

2)振动次数:先振动500次(2分钟),测量振实后的体积,V1。再振动750次(3分钟),测量振实后的体积,V2。如果2次测量的体积的差异小于2%,则用下列公式计算振实密度:

ρp=M/V2 ( g/mL)

3)重复测量3次,取其平均值

6.压缩度C p计算

C p= (ρp-ρa)/ρp * 100%

7.均齐度的测定与计算

1)对于比较粗的粉体:

均齐度=60%粉料通过的粒度/10%粉料通过的粒度

2)对于颗粒比较细的粉体,可用激光粒度仪分别测出D60和D10

均齐度=D60/D10

五、实验数据与处理

将实验的有关数据依次计入表1-2~表1-6中

1.粉料的安息角、崩溃角和差角

表1-2粉料的安息角、崩溃角和差角

2.平板角

表1-3 平板角记录与计算表

3.粉料的松装密度和振实密度及压缩率

4.粘附度及均齐度

5.分散度

6.流动指数计算

流动指数=安息角指数+压缩率指数+平板角指数+均齐度指数(或粘附度指数)

注:粘附性强的粉体,采用粘附度指数计算;一般的粉体采用均齐度指数计算。

7.喷流性指数计算

喷流指数=流动性指数+崩溃角指数+差角指数+分散度指数

思考题

1.影响粉体流动性的因素有哪些?

2.为什么说粉体颗粒的大小和形状影响粉体的流动性?

3.压缩度在粉体流动性研究中是非常重要的,当压缩率大于20%时,在料

仓里有结拱的倾向(易产生空洞),尤其压缩率达40%~50%时,一旦这种粉末被贮存在料仓里,此粉料是难卸出还是易卸出?

4.当粉末具有较高的粘附度(单位为%)时,其流动性较小,在设计给料

装置、料仓和其他装置时应考虑什么?

参考文献

[1] 三轮茂雄,日高重助.粉体工程实验手册. 杨伦译. 北京:中国建筑工业

出版社,1987.

[2] 伍洪标. 无机非金属实验. 北京:化学工业出版社,2002.

关于导电性粉末电阻率测试仪详情介绍

关于导电性粉末电阻率测试仪详情介绍 标准满足standard: 1.YST 587.6-2006 炭阳极用煅后石油焦检测方法第6部分粉末电阻率 的测定; 概述Overview: 1.四端测量法. 2.采用4.3吋大液晶屏幕显示. 3.显示电阻值、电阻率、电导率值、温度、压强值、单位自动换算. 4.液压动力(手动). 5.薄膜按键开关面板,操作简单. 6.中文或英文两种语言操作界. 原理: Principle: 一定量的粉体,在液压动力下压缩体积至设定压力值或压强,无需取出,在线测量粉体电阻、电阻率、电导率,并记录数据. 解决粉体难压片成型或压片取出测量误差.

适用范围:Scope of application 适用于锂电池材料、石墨烯、石墨类、碳素粉末、焦化、石化、粉末冶金、高等院校、科研部门,是检验和分析导电粉末样品质量的一种重要的工具。 型号及技术指标Models and technical indicators:

步骤及流程 1.运行高度清零. 2.将称重样品装入模腔. 3.固定上电极旋钮. 4.在显示器上设置好参数. 5.达到设定压力或压强值. 6.读取样品压缩高度数据并输入.

7.获得电阻、电阻率、电导率数据. 8.记录数据. 9. 样品脱模 7. 测试结束. 优势描述: 1.高性价比机型.数据稳定. 2.可读取粉末高度数据,无需人工测量. 3.可选购PC软件. 4.高精度电阻率测量系统. 5.配置粉体废料收集盘. 6.操作简单. 自动计算出所需数据. 7.经济实惠,功能突出. 8.获得压实后电阻、电阻率、电导率、高度、直径、压强等数据. 整机示意图

粉体流动性测试方法

粉体的流动性 2012-01-16 12:01:04 粉体的流动性与粒子的形状、大小、表面状态、密度、空隙率等有关 粉体的流动性(flowability)与粒子的形状、大小、表面状态、密度、空隙率等有关,加上颗粒之间的内摩擦力和粘附力等的复杂关系,粉体的流动性无法用单一的物性值来表达。然而粉体的流动性对颗粒剂、胶囊剂、片剂等制剂的重量差异影响较大,是保证产品质量的重要环节。粉体的流动形式很多,如重力流动、振动流动、压缩流动、流态化流动等,相对应的流动性的评价方法也有所不同,当定量地测量粉体的流动性时最好采用与处理过程相对应的方法,表12-7列出了流动形式与相应流动性的评价方法。 流动形式与其相对应的流动性评价方法 种类 现象或操作流动性的评价方法 重力流动 瓶或加料斗中的流出 旋转容器型混合器,充填 流出速度,壁面摩擦角 休止角,流出界限孔径 振动流动振动加料,振动筛 充填,流出 休止角,流出速度, 压缩度,表观密度 压缩流动压缩成形(压片)压缩度,壁面摩擦角内部摩擦角 流态化流动流化层干燥,流化层造粒 颗粒或片剂的空气输送 休止角,最小流化速度 (一)流动性的评价与测定方法 1.休止角 休止角(angle of repose)是粉体堆积层的自由斜面与水平面形成的最大角。常用的测定方法有注入法,排出法,倾斜角法等,如图12-10所示。休止角不仅可以直接测定,而且可以测定粉体层的高度和圆盘半径后计算而得。即tanθ=高度/半径。 休止角是粒子在粉体堆体积层的自由斜面上滑动时所受重力和粒子间摩擦力达到平衡而处于静止状态下测得,是检验粉体流动性的好坏的最简便的方法。休止角越小,摩擦力越小,流动性越好,一般认为θ≤40°时可以满足生产流动性的需要。粘附性粉体 (sticky powder)或粒子径小于100~200μm以下粉体的粒子间相互作用力较大而流动性差,相应地所测休止角较大。值得注意的是,测量方法不同所得数据有所不同,重现性差,所以不能把它看作粉体的一个物理常数。 2.流出速度 流出速度(flow velocity)是将物料加入于漏斗中测定全部物料流出所需的时间来描述,测定装置如图12-11所示。如果粉体的流动性很差而不能流出时加入100μm的玻璃球助流,测定自由流动所需玻璃球的量(w%),以表示流动性。加入量越多流动性越差。 3.压缩度 压缩度(compressibility)将一定量的粉体轻轻装入量筒后测量最初松体积;采用轻敲法(tapping method)使粉体处于最紧状态,测量最终的体积;计算最松密度ρ0与最紧密度ρf;根据公式12-31计算压缩度c。

检测粉末流动性的方法有哪些

检测粉末的流动的方法有那些 对于这个疑问困扰着很多做粉末的客户,一些食品、药品、生物制 药行业粉末各行各业都有这样的一些疑问,今天呢,针对这些疑问,我写了一篇我自己的感想和经验在里面,如果有兴趣的话也可以添 加我的微信了解更多哦。 关于粉体流动特性主要用于评价粉体流动特性,我们厂用的检测方 法是休止角、崩溃角、平板角、分散度、松装密度、振实密度等参数。我把这些相关的定义发给你们了解下,这样的话对于粉末的研 究是很有帮助的。 振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏 粉体中的空隙,使粉体处于紧密填充状态后的密度。通过测量振实 密度可以知 道粉体的流动性和空隙率等数据。(注:金属粉等特殊粉体的振实密 度按相应的 标准执行)。 松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的 密度。该指 标对存储容器和包装袋的设计很重要。(注:金属粉等特殊粉体的松 装密度按相 应的标准执行)。 休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的 最大角度叫 做休止角。它是通过特定方式使粉体自然下落到特定平台上形成的。休止角对 粉体的流动性影响最大,休止角越小,粉体的流动性越好。休止角 也称安息角、 自然坡度角等。 崩溃角:给测量

休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底 角称为崩溃角。 平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面) 和平板之间的夹角与受到震动后的夹角的平均值称为平板角。在实际测量过程 中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的 平均值来表示的。平板角越小粉体的流动性越强。一般地,平板角大于休止角。 分散度:粉体在空气中分散的难易程度称为分散度。测量方法是将10 克试样从 一定高度落下后,测量接料盘外试样占试样总量的百分数。分散度与试样的分 散性、漂浮性和飞溅性有关。如果分散度超过 50%,说明该样品具有很强的飞溅 倾向。 说了这么多的定义之后,小伙伴们你们有什么感触呢,是不是感觉到一下子就懂得了粉末流动性意义呢?

超细粉体表征

超微粉体的表征 超微粉体表征主要包括以下几个方面:超微粉体的粒度分析(粒径、粒度分布),超微粉体的化学成分,形貌/结构分析(形状、表面、晶体结构等)等。 超微粉体的测试技术有以下几种: (1)定性分析。对粉体组成的定性分析,包括材料是由哪些元素组成、每种元素含量。(2)颗粒分析。对粉体颗粒的分析包括颗粒形状、粒度、粒分布、颗粒结晶结构等 (3)结构分析。对粉体结构分析包括晶态结构、物相组成、组分之间的界面、物相形态等。(4)性能分析。物理性能分析包括纳米材料电、磁、声、光和其他新性能的分析,化学性能分析包括化学反应性、反应能力、在气体和其他介质中的化学性质等。 3.1粒度的测试方法及仪器 粉体颗粒大小称粒度。由于颗粒形状通常很复杂难以用一个尺度来表示,所以常用等效度的概念不同原理的粒度仪器依据不同颗粒的特性做等效对比。 目前粒度分析主要有几种典型的方法分别为:电镜统计观测法、高速离心沉降法、激光粒度分析法和电超声粒度分析法。常用于测量纳米颗粒的方法有以下几种。 3.1.1电镜观察 一次颗粒的粒度分析主要采用电镜观测法,可以采用扫描电镜(SEM)和透射电镜(TEM)两种方式进行观测。可以直接观测颗粒的大小和形状,但又可能有统计误差。由于电镜法是对样品局部区域的观测,所以在进行粒度分布分析时需要多幅照片的观测,通过软件分析得到统计的粒度分布。电镜法得到的一次粒度分布结构一般很难代表实际样品颗粒的分布状态,对一些强电子束轰击下不稳定甚至分解的超微粉体样品很难得到准确的结构,因此,电镜法一次颗粒检测结果通常作为其他分析方法的对比。 3.1.2激光粒度分析 目前,在颗粒粒度测量仪器中,激光衍射式粒度测量仪得到广泛应用。其特点是测量精度高、测量速度快、重复性好、可测粒径范围广、可进行非接触测量等,可用于测量超微粉体的粒径等。还可以结合BET法测定超微粉体的比表面积和团聚颗粒的尺寸及团聚度等,并进行对比、分析。 激光粒度分析原理:激光是一种电磁波,它可以绕过障碍物,并形成新的光场分布,称为衍射现象。例如,平行激光束照在直径为D的球形颗粒上,在颗粒后得到一个圆斑,称为Airy斑,Airy斑直径d=2.44λf/D ,λ为激光波长,f为透镜焦距。由此公式计算颗粒大小D 。 3.1.3沉降法 沉降法是通过颗粒在液体中沉降速度来测量粒度分布的方法。主要有重力沉降式和离心沉降式两种光透沉降粒度分析方式,适合纳米颗粒的分析主要是离心沉降式分析方法。 颗粒在分散介质中,会由于重力或离心力的作用发生沉降,其沉降速度与颗粒大小和质量有关,颗粒大的沉降速度快,颗粒小的沉降速度慢,在介质中形成一种分布。颗粒的沉降速度与颗粒粒径之间的关系服从Stokes定律,即在一定条件下颗粒在液体中的沉降速度与粒径的平方成正比,与液体的粘度成反比。沉降式粒度仪所测的粒径也是一种等效粒径,叫做Stokes直径。 3.1.4电超声粒度分析 电超声粒度分析是最新出现的粒度分析方法,,当声波在样品内部传导时,仪器能在一个宽范围超声波频率内分析声波的衰减值,通过测得的声波衰减谱计算出衰减值与粒度的关系。分析中需要粒子和液体的密度、液体的粘度、粒子的质量分数的参数,对乳液

ZC-1001型粉体综合特性简介

ZC-1001型粉体纵使特性测试仪简介及报价 ZC-1001型粉体综合特性测试仪一种用于评价粉体综合物理特性的测试仪器。由于粉体无论是处于静止状态还是流动状态,都是一种两相存在的体系。颗粒本身的特性以及颗粒之间相互摩擦将会产生一些特殊流动特性,研究这些特性对粉体加工、输送、包装、存储等方面的工作具有重要意义。该仪器的特点是一机多用、测定条件灵活多样、操作简便、重复性好、适合多种标准等。该仪器的研制成功,为科研、工业生产等领域评价粉体综合特性测试工作的普遍开展提供了一个新的手段。 该仪器测试项目包括振实密度、松装密度、休止角、崩溃角、平板角、分散度等参数,通过上述测试数据可得到差角、压缩度、空隙率、均齐度等指标,还能通过卡尔指数得到流动性指数、喷流性指数等参数。 一、仪器结构 分散度入料斗 分散度卸料控制器 入料口、震动筛 图2:ZC-1001型粉体综合特性测试仪顶面图 定时器开关 定 时 器 振动筛开关 振动电机开关 分 散 度 筒 角 度 尺 分散度料仓 照明灯开关 照 明 灯 休止角试样平板角试样接 料 盘 减 振 台 电源开关

二、测定与计算项目及其定义: 1、测定项目与定义: 1)、振实密度:振实密度是指粉体装填在特定容器后,在一定条件下对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度,一般情况下粉体的振实密度小于粉体中单颗颗粒的真密度。 2)、松装密度:松装密度是指粉体在规定条件下自然充满特定容器后的密度,测试松装密度时,不可施加额外的振动等外力。该指标对存储容器和包装袋的设计很重要。 3)、休止角:粉体堆积层的自由表面,在静平衡状态下,与水平面形成的最大角度叫做休止角。它是通过特定方式使粉体自然下落到特定平台上形成的。休止角对粉体的流动性影响最大,休止角越小,粉体的流动性越好。休止角也称安息角、自然坡度角等。 4)、崩溃角:给测量休止角的堆积粉体以一定的冲击力,使其表面崩溃后,剩余粉体圆锥体的底角称为崩溃角。 5)、平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与受到震动后的夹角的平均值称为平板角。 在实际测量过程中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的平均值来表示的。平板角越小,粉体的流动性越强。 一般地,平板角大于休止角。 6)、分散度:粉体在空气中分散的难易程度称为分散度。测量方法是将10克试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。分散度与试样的分散性、漂浮性和飞溅性有关。如果分散度超过50%,说明该样品具有很强的飞溅倾向。 2、计算项目与定义: 1)、差角:休止角与崩溃角之差称为差角。差角越大,粉体的流动性与喷流性越强。 2)、压缩度:同一个试样的振实密度与松装密度之差与振实密度之比为压缩度。压缩度也称为压缩率。压缩度越小,粉体的流动性越好。 3)、空隙率:空隙率是指粉体中的空隙占整个粉体体积的百分比。空隙率因粉体的粒子形状、排列结构、粒径等因素的不同而变化。颗粒为球形时,粉体空隙率为40%左右;颗粒为超细或不规则形状时,粉体空隙率为70-80%或更高。 三、ZC-1001型粉体综合特性测试仪附属配件 1.减振台1个; 2.安息角、崩溃角试样台1个;

粉体颗粒状态与流动性的关系

摘要 本文以粉体颗粒状态与流动性的关系为研究重点,采用粉体特性综合测试仪,分别测试了8个粉体样品的休止角、平板角、松装密度、振实密度、分散度等参数,得到样品的Carr流动性指数,评价了8个样品的流动性;通过激光粒度分析仪测了粉体的平均径、中位径、峰值径以及累积百分率处粒子的粒径以及粒径分布;用图形图像分析仪测试分析了样品的粒形。对样品的流动性与粉体粒形、粒径及其颗粒分布的关系进行了分析。分析结果表明,8个样品流动性好坏依次为:2号>1号>4号>5号>3号>6号>8号>7号。粉体的流动性与颗粒的球形度成正比,球形度越大,流动性越好。8个样品中2号球形度最大、流动性最好,7号球形度最小,流动性最差。 关键词:粉体流动性Carr指数粒形粒径

abstract This paper focuses on the research of the relationship between the powder particles state and liquidity, and respectively tests the angle of repose, flat angle, apparent density, tap density and dispersion and other parameters of eight samples. Carr index table is referred and Carr indexes are obtained. The liquidity performance of the eight samples in sequence is: No.2 > No.1 >No.4 > No.5 > No.3 >No.6 > No.8 > No. 7. The median diameter, the number average diameter and the cumulative percentage of the particle size and size distribution of particles of the powder are measured by laser particle size analyzer. Besides, the particle shape of the sample is tested by image analyzer and analyzed. The results show that the liquidity of powder is in direct proportion to the spherical degree of particle, namely, the greater the spherical degree is, and the better liquidity is. In the eight samples, spherical degree of No. 2 is the largest and its liquidity is the best; spherical degree of No. 7 is the smallest and its liquidity is the worst. Keywords: Powder; Liquidity; Carr Index; Particle Shape; Particle Size

粉料特性常见指标

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 粉料特性常见指标 粉料特性常见指标一.目数目数越大,说明物料粒度越细;目数越小,说明物料粒度越大。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以 1 英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为目数。 各国标准筛的规格不尽相同,常用的泰勒制是以每英寸长的孔数为筛号,称为目。 例如 100 目的筛子表示每英寸筛网上有 100 个筛孔。 二.粒度颗粒的大小。 通常球体颗粒的粒度用直径表示,立方体颗粒的粒度用边长表示。 对不规则的矿物颗粒,可将与矿物颗粒有相同行为的某一球体直径作为该颗粒的等效直径。 实验室常用的测定物料粒度组成的方法有筛析法、水析法和显微镜法。 ①筛析法,用于测定 250~0.038mm 的物料粒度。 实验室标准套筛的测定范围为 6~0.038mm;②水析法,以颗粒在水中的沉降速度确定颗粒的粒度,用于测定小于 0.074mm 物料的粒度;③显微镜法,能逐个测定颗粒的投影面积,以确定颗粒的粒度,光学显微镜的测定范围为 150~0.4m,电子显微镜的测定下限粒度可达 0.001m 或更小。 1 / 11

常用的粒度分析仪有激光粒度分析仪、超声粒度分析仪、消光法光学沉积仪及 X 射线沉积仪等。 三.差角休止角与崩溃角之差称为差角。 差角越大,粉体的流动性与喷流性越强。 d=休止角 r-崩溃角 f 四.均齐度用粒度测试仪测出 D60和 D10,用下式计算均齐度: 均齐度=D60/D10 五.压缩度同一试样的振实密度与松装密度之差与振实密度之比为压缩率。 压缩度越小,粉料流动性越好。 Cp=(pp-pa) /pp*100% 式中, Pp:振实密度 Pa: 松装密度六.休止角粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。 它是通过特定方式使粉体自然下落到特定平台上形成的。 休止角对粉料的流动性影响最大,休止角越小,粉料的流动性越好。 休止角也称安息角、自然坡度角等。 测定方法: (1)注入法: 微粒物料由漏斗流出落于平面上形成圆锥体,铝底角即为休止角。 (2)排出法:

上海师范大学综合实验复习

综合实验2复习资料整理 实验一:电解聚合法合成导电高分子及性能研究 实验原理:聚苯胺随氧化程度的不同呈现出不同的颜色。完全还原的聚苯胺,不导电,为白色;经部分氧化掺杂,得到Emeraldine 碱,蓝色,不导电;再经酸掺杂,得到Emeraldine 盐,绿色,导电;如果Emeraldine 碱完全氧化,则得到Pernigraniline 碱,不能导电。 一般认为当p ??为55/n 至65/n mV 时,该电极反应是可逆过程。可逆电流峰的p ?与电 压扫描速率ν无关,且1/2pc pa i i ν=∝。对于部分可逆(也称准可逆)电极过程来说, 59/p n ??> mV ,且随ν的增大而变大, /pc pa i i 可能大于1,也可能小于或等于1,pc i 、pa i 仍正比于1/2ν。 思考题: 1. 为什么恒电位聚合后的绿色聚苯胺具有导电性? 答:聚苯胺随氧化程度不同呈现出不同的颜色。经部分氧化掺杂,再经酸掺杂后,得聚苯胺盐,呈绿色。聚苯胺的形成是通过阳极偶合机理完成的,在酸性条件下,聚苯胺链具有导电性,保证了电子能通过聚苯胺链传导至阳极,使链增长继续,最后生成聚合物。 2. 为什么说聚苯胺电极过程是电化学可逆的? 答:因为实验中得到的循环伏安极化曲线中有氧化峰和还原峰,而且两者图形大致对称,所以可以判断聚苯胺电极过程是电化学可逆的。

实验二:纳米氧化铝粉体的制备及使用激光粒度仪进行粒度测定(上) 思考题: 1.聚乙二醇(PEG)的作用?其聚合度对纳米氧化铝粒径的影响? 答:聚乙二醇在溶液中易与氢氧化铝胶粒表面形成氢键,所以聚乙二醇比较容易的吸附于胶粒表面,形成一层保护膜,包围胶体粒子。保护膜具有一定厚度,会存在空间位阻效应,故可以有效的抑制胶体粒子的团聚,使胶粒能稳定的分散在溶液中。聚乙二醇的聚合度越小,说明链长越短,得到的胶粒半径较小。聚合度越大,链长越长,得到的胶粒半径越大,但过长的链长容易互相缠绕,不利于胶粒的分散。 2.写出煅烧前样品制备的离子反应式,并说明氨水的作用,能否用氢氧化钠溶液代替氨水? Al3+ + 3NH3.H2O Al(OH)3+ 3NH4+ 答: 氨水的作用是使铝离子完全沉淀生成氢氧化铝。不能用氢氧化钠代替氨水。因为氢氧化铝是两性化合物,他能和强碱反应生成偏铝酸根,若用氢氧化钠溶液最后得不到氢氧化铝。 实验二:纳米氧化铝粉体的制备及使用激光粒度仪进行粒度测定(下) 结果与讨论: 1.采用不同聚合度的PEG作分散剂,测氧化铝粉体的粒径分布曲线,曲线的峰宽反映体系中所含颗粒尺寸的均匀程度,峰的宽窄代表什么? 答:峰的宽度代表体系中所含颗粒大小的均匀程度,峰越宽,表示粒径围大,颗粒大小不一;峰越窄,表示粒径围小,颗粒大小越均匀。 2.什么是最频值和平均径? 最频值是频率曲线的最高点。平均径为颗粒平均大小的数据,通常用D[4,3]表示。 思考题: 1.激光粒度仪测试的基本原理是什么?

材料科学与工程专业实验教学大纲

材料科学与工程专业实验教学大纲

《材料现代测试方法》实验教学大纲 课程名称:材料现代测试方法 英文名:Advanced Analysis Methods for Materials 课程编码: 课程总学时:48 实验总学时:12 课程总学分:3 实验课学分: 开课对象:材料科学与工程学院本科生 开课学期:6 本大纲主撰人:刘云飞 一、课程目的和任务 本课程是材料学院各专业一门必修的实验课。目的在于使学生了解和掌握现代分析仪器的分析原理、使用方法和在材料研究方面的应用。 二、课程基本内容和要求 了解和掌握X射线衍射分析、电子显微分析、热分析和傅立叶红外变换光谱的仪器结构、操作、试样制备及结果分析方法。

三、实验项目的设置及学时分配 1、实验过程中对每位学生预习、出勤及实验完成情况、动手能力、分析解决问题能力进行考察,占总成绩的50%; 2、对实验报告(包括实验结果、思考题回答等)进行综合评分,占总成绩

的50%; 3、对上述实验成绩综合后作为本课程实验成绩按照20%计入总成绩。 五、实验教材 《材料科学与工程专业实验指导书》

《材料科学与工程实验-1》实验教学大纲 课程名称:材料科学与工程实验-1 英文名:Experiments on Material Science and Engineering:Part 1 课程编码: 课程总学时:32 实验总学时:32 课程总学分:2 实验课学分:2 开课对象:材料科学与工程专业本科生 开课学期:5 本大纲主撰人:兰祥辉 一、课程目的和任务 本课程是材料科学与工程专业本科生的专业基础实验课程,包括了晶体结构、材料科学基础与材料表面与界面等方面的知识,是学生学习专业课和从事本专业的科研、生产等必备的专业基础。通过本实验课程的学习,培养学生的动手能力和独立分析问题、解决问题的能力,使学生进一步巩固已学的专业基础理论知识。 二、课程基本内容和要求

粉体综合特性测试方法及其特点:

粉体综合特性测试方法及其特点: 1.Jenike剪切法: 分析和测试如下数据:莫尔应力圆、内摩擦角、主应力、剪切力、屈服轨迹、稳态流、流动函数、开放屈服强度(无侧限屈服强度)、内摩擦时间角、时效屈服轨迹、堆积密度、密度轨迹、壁摩擦角、附着力、壁剪切力、壁应力、壁轨迹、运动摩擦角、静态摩擦角、料仓设计的料斗 半顶角、卸料口径、流与不流判定、流动因子、初始抗剪强度(内聚力)等. 举例: 2. 卡尔Carr指数法:

1. 松装(自然堆积)密度bulk density 2. 振实密度 tap density 3. 安息角(休止角)Angel of repose 4. 质量流速mass flow velocity 5. 体积流速volume flow rate 6. 崩溃角 Angle of collapse 7. 平板角Flat Angle 8. 空隙率Voidage 9. 时间 time 10. 差角angle of difference 11. 分散性dispersibility 12.流动指数(卡尔指数和豪斯纳比)Flow index 13.压缩度 14.凝集度 15.均齐度 16.筛分粒度

3.旋转圆筒法, 转鼓法即将粉体颗粒填充转鼓中让其缓慢转动,测定固定转速下每旋转一圈颗粒发生坍塌的次数,次数越大,流动性越好;反之越小,流动性越差。此方法反映了颗粒流动的稳定性、临界转变及坍塌规模.和质量流率.满足欧洲药典要求. 转鼓中颗粒表面因流速不同从上到下可分为 3个区域:即稀疏流动区、致密流动区和蠕变区;剪切率的变化对颗粒流动特征和运动状态具有决定性影响;颗粒在转鼓中的运动有一个显著特点,即可以大致分为流动表层和静止底层两个区域,将颗粒物质从静止状态发展到流动、再由

粉体综合特性测试 (1)

粉体综合特性测试 一、实验目的 1、了解粉体基本特性。 2、掌握BT-1000粉体综合特性测试仪的使用方法。 二、实验仪器设备 BT-1000型离心沉降式粒度分布仪 三、实验原理 1)振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度。通过测量振实密度可以知道粉体的流动性和空隙率等数据。(注:金属粉等特殊粉体的振实密度按相应的标准执行)。 2)松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的密度。该指标对存储容器和包装袋的设计很重要。(注:金属粉等特殊粉体的松装密度按相应的标准执行)。 3)休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。它是通过特定方式使粉体自然下落到特定平台上形成的。休止角对分体的流动性影响最大,休止角越小,粉体的流动性越好。休止角也称休止角、自然坡度角等。 4)崩溃角:给测量休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底角称为崩溃角。 5)平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与受到震动后的夹角的平均值称为平板角。在实际测量过程中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的平均值来表示的。平板角越小,粉体的流动性越强。一般地,平板角大于休止角。 6)分散度:粉体在空气中分散的难易程度称为分散度。测量方法是将10克试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。分散度与试样的分散性、漂浮性和飞溅性有关。如果分散度超过50%,说明该样品具有很强的飞溅倾向。 BT-1000型粉体特性测试仪测试项目包括粉体的振实密度、松装密度、休

粉体综合特性测试仪中振实密度的设定依据标准及测定方法

粉体综合特性测试仪中振实密度的设定依据标准及测定方法振实密度是涉及到粉末特性的很多工厂高校及其科研单位所必测的项目之一。 粉体密度是指单位体积的粉体所对应的质量。由于粉体中颗粒与颗粒之间或颗粒内部存在空隙(或孔隙),其粉体的密度通常小于所对应物质的真密度。粉体密度按其测试方式的不同可以分为松装密度(又称堆积密度)和振实密度。松装密度是指粉体试样以松散状态,均匀、连续的充满已知容积的量杯,称出量杯和粉体试样的质量,便可算出粉体试样的松装密度。振实密度:振实密度是指粉体装填在特定容器后,在一定条件下对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度,一般情况下粉体的振实密度小于粉体中单颗颗粒的真密度。 型粉体综合特性测试仪提供了美国标准(卡尔指数)中规定的振实密度测定方法和国家标准(金属粉末振实密度的测定)中规定的振实密度测定方法。并参照美国药典针对非金属粉末,粉体密度测试仪扩展了部分功能,如:“振动幅度”由国标中规定的扩展到~整数可调;“振动频率”由国标中规定得~次分钟可调,扩展到~次分钟可调。“振动次数”由国标中规定次扩展到~次任意设定(注:当设定为次时结果输出为“松装密度”)。 操作流程具体如下: 、设定振幅:本仪器振动组件的最大振幅为,仪器出厂时振幅已调整为。国标(金属粉末振实密度的测定)中规定振幅为,美国药典规定振幅为。您可以依据需要将附件中的、或启振垫适量加入到振实组件顶针与直线轴承间既可(如右图)。 振幅启振垫总高度 、振动组件的安装:型粉体综合特性测试仪配备了、、三种不同规格的量筒(见附件)。为了提高测试的精度,请依据被测粉体的重量()和松装密度(ρ)选择合适的量筒。

实验-粉体流动性的测定

粉体流动性的测定 一、实验目的 1. 掌握测定休止角的方法以评价颖粒的流动性。 2. 熟悉润滑剂或助流剂及其用量对颗粒流动性的影响。 二、实验原理 药物粉末或颗粒的流动性是固体制剂制备中的一项重要物理性质,无论原辅料的混匀、沸腾制粒、分装、压片工艺过程都与流动性有关。特别是在压片工艺过程中,为了使颗粒能自由连续流入冲模,保证均匀填充,减少压片时对冲模壁的摩擦和黏附,降低片重差异,必须设法使颗粒具有良好的流动性。 影响流动性的因素比较复杂,除了颗粒间的摩擦力、附着力外,颗粒的粒径、形态、松密度等,对流动性也有影响。目前在改善颗粒流动性方面的措施,主要从改变粒径和形态,添加润滑剂或助流剂等方面着手。本实验首先制成颗粒,使粒径变大,然后添加润滑剂或助流剂以改善流动性。 表示流动性的参数,主要有休止角、滑角、摩擦系数和流动速度等。其中以休止角比较常用,根据休止角的大小,可以间接反映流动性的大小。一般认为粒径越小,或粒度分布越大的颗粒,其休止角越大;而粒径大且均匀的颗粒,颗粒间摩擦力小,休止角小,易于流动。所以休止角可以作为选择润滑剂或助流剂的参考指标。一般认为休止角小于30℃者流动性好,大于40℃者流动性不好。 休止角是指粉末或颗粒堆积成最陡堆的斜边与水平面之间的夹角。图1为本实验测定休止角的装置。具体测定方法,将粉末或颗粒放在固定于圆形器皿的中心点上面的漏斗中,圆形器皿为浅而已知半径为r(5cm左右)的培养平皿。粉末或城粒从漏斗中流出,直至粉末或颗粒堆积至从平皿上缘溢出为止。测出圆锥陡堆的顶点到平皿上缘的高h,休止角即为下式

中的φ值: tanφ=h/r 在使用上述方法测定时,为了使颗粒从漏斗中流出的速度均匀稳定,使测定的结果重现性好,可将2~3个漏斗错位串联起来,即上一个漏斗出口不对准下一个漏斗出口,使粉末或颗粒尽可能堆成陡的圆锥体(堆)。 三、实验内容 (一)测定粉末的休止角 取淀粉、糊精各15g混合均匀,测定混合粉末的休止角(三次)。 (二)制备空白颗粒 1.处方 淀粉15g 糊精15g 10%淀粉浆适量 2.操作将淀粉与糊精混匀后,用适量10%淀粉浆制成适宜的软材,过18目筛,制湿颗粒,60℃烘干,过16目筛整粒备用。 (三)测定颗粒的休止角 取颗粒,用60目筛筛去细粉,不加助流剂,测定休止角(三次); 分别以不同量的滑石粉(1%、3%、6%、10%)作为助流剂,与颗粒混匀后,测定休止角(各三次),作图,找出滑石粉起最好助流作用的用量。 最后将以上实验结果进行比较。 3. 操作注意 空白颗粒宜紧密整齐。制备软材时,粘合剂的量须加至制得的软材在过筛后不出现明显细粉,也不呈条状为宜。整粒后,以60-80目筛筛去细粉,以减少影响测定流动性的因素。 四、结果与讨论 1. 将测得锥体高、底半径并计算得休止角,φ=arc tan(h/r) 2. 最佳用量的确定:以休止角(φ)为纵座标,助流剂用量为横座标作图,找出峰值。 3. 讨论本实验粉末与颗粒的流动性以及在颗粒中加入润滑剂或助流剂后,改善顺粒流动性的情况。

实验十九粉体流动性的测定(精)

图1 固定漏斗法测定休止角 实验十九 粉体流动性的测定 一、 实验目的 1. 熟悉测定粉体流动性的测定方法及影响流动性的因素 2. 寻找改善流动性的方法 二、 实验指导 粉体是由无数个固体粒子组成的集合体。在制药行业中常用的粉体的粒子大小范围为1μm~10 mm 。由于组成粉体的每个粒子的形状与大小、颗粒之间的摩擦力和粘聚力不同等复杂原因,表现出的粉体性质也大不相同。粉体性质分为两大类: 粉体的第一性质:组成粉体的单一粒子的性质,如粒子的形状、大小、粒度分布、粒密度等; 粉体的第二性质:粉体集合体的性质,如粉体的流动性、填充性、堆密度、压缩成形性等。 粉体的流动性是固体制剂制备过程中必须考虑的重要性质,流动性不仅影响正常的生产过程,而且影响制剂质量,如重量差异和含量均匀度等。本实验重点考察粉体的流动性及其影响流动性的因素。 根据粉体流动的推动力不同,将粉体的流动现象分类为重力流动、振动流动、 压缩流动、流态化流动。休止角与流出 速度表示粉体重力流动时的流动性,可 评价粉体物料从料斗中的流出的能力、 旋转混合器内物料的运动行为、充填物 料的难易程度等。 休止角是粉体堆积层的自由斜面在 静止的平衡状态下,与水平面所形成的 最大角。休止角的测定方法有:固定漏斗法、固定圆锥法、排除法、倾斜箱法、 转动圆筒法等,常用的方法是固定圆锥 法(亦称残留圆锥法),如图1所示。固定圆锥法将粉体注入到某一有限直径的圆盘中心上,直到粉体堆积层斜边的物料沿圆盘边缘自动流出为止,停止注入,测定休止角。

流出速度是将一定量的粉体装入漏斗中,然后测定其全部流出所需的时间来计算。如果粉体的流动性很差而不能流出时,加入100μm的玻璃球助流,测定自由流动所需玻璃球的最少加入量(Wt%),加入量越多流动性越差。测定装置如图2所示。 压缩度表示振动流动时粉体的流动性,可评价振动加料、振动筛、振动填充与振动流动等。压缩度的表示方法如下: 式中,ρf—振动最紧密度,ρ0—最松密度。实践证明,压缩度在20%以下时流动性较好,当压缩度达到40~50%时粉体很难从容器中流出。 本实验要求测定以下内容: 1.休止角 2.流出速度 3.压缩度 4.考察影响流动性的因素 (1)观察粒子大小与形状 (2)助流剂的种类 (3)助流剂的量 % 100 0? - =f C ρ ρ 图2 流出速度的测定装置 图3 轻敲测定仪

详解粉体综合特性测试仪测定项目及计算项目

详解粉体综合特性测试仪测定项目及计算项目 GJ03-09粉体综合特性测试仪测试项目包括粉体的振实密度、松装密度、安息角、抹刀角、崩溃角、差角、分散度、凝集度、流动度等项目。其特点是一机多用、操作简便、重复性好、测定条件容易改变、配套完整等。粉体综合特性分析仪研制成功为粉体特性测试的普遍开展提供了一个新的测试手段。对于大专院校、科研机构的材料科学研究领域,在与粉体流动特性相关的生产领域也将有广泛的应用前景。 1.标准测定项目: 1)振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度。通过测量振实密度可以知道粉体的流动性和空隙率等数据。(注:金属粉等特殊粉体的振实密度按相应的标准执行)。 2)松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的密度。该指标对存储容器和包装袋的设计很重要。(注:金属粉等特殊粉体的松装密度按相应的标准执行)。 3)休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。它是通过特定方式使粉体自然下落到特定平台上形成的。休止角对分体的流动性影响最大,休止角越小,粉体的流动性越好。休止角也称安息角、自然坡度角等。 4)崩溃角:给测量休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底角称为崩溃角。 5)平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与受到震动后的夹角的平均值称为平板角。在实际测量过程中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的平均值来表示的。平板角越小,粉体的流动性越强。一般地,平板角大于休止角。 6)分散度:粉体在空气中分散的难易程度称为分散度。测量方法是将10克试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。分散度与试样的分散性、漂浮性和飞溅性有关。如果分散度超过50%,说明该样品具有很强的飞溅倾向。 2.标准计算项目: 1)差角:休止角与崩溃角之差称为差角。差角越大,粉体的流动性与喷流性越强。 2)压缩度:同一个试样的振实密度与松装密度之差与振实密度之比为压缩度。压缩度也称为压缩率。压缩度越小,粉体的流动性越好。 3)空隙率:空隙率是指粉体中的空隙占整个粉体体积的百分比。空隙率因粉体的粒子形状、排列结构、粒径等因素的不同而变化。颗粒为球形时,粉体空隙率为40%左右;颗粒为超细或不规则形状时,粉体空隙率为70-80%或更高。

粉体干燥技术的现状及未来发展

《粉体干燥技术的现状及未来发展》 --《粉体工程与设备》 谭笑 装备10110403422 2013-06-18

粉体干燥技术的现状及未来发展 谭笑1刘雪东2 (1:常州大学怀德学院2:常州大学常州213100) 摘要:总结1975年以来,近40年我国粉体干燥技术的现状,以及在现有基础上的未来发展方向,着重介绍该技术在药品和食品领域的应用,以及市场上重要的干燥设备。 关键词:粉体干燥趋势 Abstract:This is an article about powder drying technology and equipment.From1975to now,what the development is during the 40years.And the way to advance for powder drying.The application of the powder drying in Medical and Food is the focus point in this article,and we also introduce the device in the market. Key Word:Powder drying Trend 0.中国干燥技术的发展 中国的现代干燥技术是从20世纪50年代逐渐发展起来的,迄今对于常用的干燥设备,如气流干燥、喷雾干燥、流化床干燥、旋转闪蒸干燥、红外干燥、微波干燥、冷冻干燥等设备,我国均能生产供应市场,对于一些较新型的干燥技术如冲击干燥、对撞流干燥、过热干燥、脉动燃烧干燥、热泵干燥等也都已开发研究,有的已工业化应用。而粉体干燥正是干燥技术中重要的一个分支,现在发展正旺的纳米干燥技术,亦是粉体干燥的子类。 我国于1975年6月23日在南京召开了第一届干燥会议,标志着我国干燥研究进入正轨。而从那一天到现在,已经40多年。40多年来,我国干燥技术研究队伍不断壮大。目前我国从事干燥技术研究的大专院校、科研院所、研究单位大约有50多家,领域涉及化工、医药、染料、轻工、林业、食品、粮食、造纸、硅酸盐、水产业、渔业等行业,全国共有设备制造厂600多家,已形成了一支强有力的干燥科研

粉体流动性概念及粉体流动性检测方法

粉 * 体 * 圈 粉体流动性概念及粉体流动性检测方法 一、粉体流动性基本概念 粉体的流动性与粒子的形状、大小、表面状态、密度、空隙率等有关。对颗粒制备的重量差异以及正常的操作影响很大。粉体的流动包括重力流动、压缩流动、流态化流动等多种形式。 粉体之所以流动,其本质是粉体中粒子受力的不平衡,对粒子受力分析可知,粒子的作用力有重力、颗粒间的黏附力、摩擦力、静电力等,对粉体流动影响最大的是重力和颗粒间的黏附力。 影响粉体流动性的因素非常复杂,粒径分布和颗粒形状对粉体的流动性具有重要影响。此外,温度、含水量、静电电压、空隙率、堆密度、粘结指数、内部摩擦系数、空气中的湿度等因素也对粉体的流动性产生影响。 二、影响粉体流动性的主要因素 1、粉体的粒度分布:随着粉体粒度的减小,粉体之间分子引力、静电引力作用逐渐增大,降低粉体颗粒的流动性;其次,粉体粒度越小,粒子间越容易吸附、聚集成团,黏结性增大,导致休止角增大,流动性变差;再次,粉体粒度减小,颗粒间容易形成紧密堆积,使得透气率下降,压缩率增加,粉体的流动性下降。 2、粉体颗粒形貌形:除了颗粒粒径意外,颗粒形态对流动性的影响也非常显著。粒径大小相等,形状不同的粉末其流动性也不同。显而易见,球形粒子相互间的接触面积最小,其流动性最好。针片状的粒子表面有大量的平面接触点,以及不规则粒子间的剪切力,故流动性差 3、粉体温度:热处理可使粉末的松装密度和振实密度会增加。因为,温度升高后粉末颗粒的致密度提高。但是当温度升高到一定程度后,粉体的流动性会下降,因在高温下粉体的黏附性明显增加,粉粒与粉体之间或者粉体与器壁之间发生黏附,使得粉体流动性降低。如果温度超过粉体熔点时,粉体会变成液体,使黏附作用更强

粉体材料成型性能综合实验大纲

粉体材料成型性能综合 实验大纲 Document number:BGCG-0857-BTDO-0089-2022

粉体材料成型性能综合实验大纲 实现从粉体材料的制备、性能测试、烧结成形及成型的性能测试完整的体现学科交叉的实验项目。让学生自己动手,用新方法制备新材料,并采用先进的材料测试和分析手段对粉体材料和块体材料进行分析。深刻体会粉体材料的制备及性能的实质,感受材料无论在宏观还是微观方面的千变万化,激发学生对材料研究的热情。 该综合实验共包括7个子实验,分别为:1. 粉体制备实验(球磨机);2. 粉体形貌分析实验(扫描电镜);3. 粉体粒度分析实验(激光粒度仪);4. 纳米粉体三维形貌分析实验(原子力显微镜);5. 粉体拉曼光谱分析实验(拉曼光谱仪);6. 粉体热压烧结实验(热压烧结炉);7. 粉末烧结性能测试实验。结构如下 1. 粉体制备实验:

采用滚压振动研磨法制备陶瓷粉体,熟悉振动研磨制粉法的原理和操作。球磨是粉体制备的一种方法,是将粉体与球磨介质(也称为磨球)装入专用的球磨筒(罐)中,在球磨机上使球磨筒以一定转速(低于临界转速)转动,依靠磨球的冲击、磨剥作用,对粉体颗粒产生粉碎作用。转速、球磨时间、粉-球比例、磨球尺寸、机配、形状和种类都会影响球磨效果。球磨后材料的形貌可以进行下一步的分析,并用于热压、烧结等试验。 2. 粉体性能分析实验: 采用激光粒度分析仪、扫描电镜、原子力显微镜和拉曼光谱测量研磨制备的粉体材料的粒度、粒度分布、形貌及光谱性能,掌握不同测量粉体性能的方法、原理及所使用仪器的操作。 粉体形貌分析实验(扫描电镜) 粉体材料的形貌是粉体材料分析的重要组成部分,材料的很多重要物理化学性能是由其形貌特征所决定的。例如,颗粒状纳米材料与纳米线和纳米管的物理化学性能有很大的差异。形貌分析的主要内容是分析材料的几何形貌,材料的颗粒度,及颗粒度的分布以及形貌微区的成份和物相结构等方面。扫描电镜(SEM)是一种常见的广泛使用的表面形貌分析仪器,材料的表面微观形貌的高倍数照片是通过能量高度集中的电子扫描光束扫描材料表面而产生的。对通过研磨制备的粉体样品可以直接进行形貌观察及投影粒度分析,微米的粉体材料,可继续使用粒度分析仪进行粒度测量,得到粒度分布曲线;而对于小于20nm的粉体材料则可以在原子力显微镜上进行三维形貌的分析。

相关文档
相关文档 最新文档