文档库 最新最全的文档下载
当前位置:文档库 › 高中数学第二章平面向量2.6平面向量数量积的坐标表示课后导练

高中数学第二章平面向量2.6平面向量数量积的坐标表示课后导练

高中数学第二章平面向量2.6平面向量数量积的坐标表示课后导练
高中数学第二章平面向量2.6平面向量数量积的坐标表示课后导练

小学+初中+高中+努力=大学2.6 平面向量数量积的坐标表示

课后导练

基础达标

1.设向量a=(-1,2),b=(2,-1),则(a ·b)(a+b)等于( )

A.(1,1)

B.

(-4,-4)C.-4 D.

(-2,-2)解析:a ·b=-2-2=-4,

a+b=(1,1), ∴(a ·b)(a+b)=(-4,-4). 答案:B

2.若向量a=(3,2),b=(0,-1),则向量2b-a 的坐标是( )

A.(3,-4)

B.

(-3,4)C.(3,4) D.

(-3,-4)解析:依向量的坐标运算解答此题

. 2b-a=(0,-2)-(3,2)=(-3,-4). 答案:D

3.已知|a|=8,e 为单位向量,当它们之间的夹角为

3时,a 在e 方向上的投影为()A.34 B.4 C.24 D.8+2

3

解析:a 在e 方向上的投影为|a|·cos 3=8×2

1=4. 答案:B

4.以A (-1,2),B (3,1),C (2,-3)为顶点的三角形一定是

( )

A.直角三角形

B.

等腰直角三角形C.锐角三角形 D.钝角三角形解析:由已知可得AB =(4,-1),AC =(3,-5),BC =(-1,-4),∴|AB |=|BC |=17,且由AB ·BC =-4+4=0得AB ⊥BC ,

故△ABC 为等腰直角三角形

. 答案:B

5.设向量a=(3,m ),b=(2,-1),且a-3b 与a-b 垂直,则实数

m 的值是()A.m=0 B.m=-4

C.m=0或m=-4

D.m=0

或m=4 解析:a-3b=(3,m)-3(2,-1)

=(-3,m+3),

a-b=(3,m)-(2,-1)=(1,m+1),

∴(a-3b)·(a-b )=(-3,m+3)·(1,m+1)

=-3+(m+3)(m+1)

=m 2+4m=0,

解得m=0或m=-4.

答案:C

6.在△ABC 中,∠A=90°,AB =(k,1),

AC =(2,3),则k 的值是________.

小学+初中+高中+努力=大学解析:由AB 与AC 垂直,列出关于k 的方程,解方程即可得到答案. ∵∠A=90°,∴AB ⊥AC .

∴AB ·AC =2k+3=0.

∴k=-23

.

答案:-2

3

7.已知|a|=132,b=(-2,3)且a ⊥b ,则a 的坐标为_______.

解析:设a=(x,y),则x 2+y 2=52,①

由a ⊥b,得-2x+3y=0.②

由①②得.

4,

64,6y x

y x 或答案:(6,4)或(-6,-4)

8.判断a 与b 是否垂直:

(1)a=(0,-2),b=(-1,3);

(2)a=(-1,3),b=(-3,-1)

解析:(1)a ·b=0·(-1)+(-2)·3=-6≠0,

∴a 与b 不垂直.

(2)a ·b=(-1)·(-3)+3·(-1)=3-3=0,

∴a ⊥b.

9.已知四点:A (-1,3),B (1,1),C (4,4),D (3,5),求证:四边形ABCD 为直角梯形. 证明:AB =(2,-2),DC =(1,-1),BC =(3,3),

∴AB =2DC .∴AB ∥DC .

又AB ·BC =2×3+(-2)×3=0,

∴AB ⊥BC .

又|AB |=8,|DC |=2,|AB |≠|DC |,

∴四边形ABCD 为直角梯形.

10.Rt △ABC 中,AB =(2,3),AC =(1,k ),求实数k 的值. 解析:(1)当∠A=90°时,易知AB ·AC =0,

即2+3k=0,k=-32

.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

【2019年整理】03第三节数量积向量积混合积

第三节 数量积 向量积 混合积 分布图示 ★两向量的数量积 ★例1 ★例4 ★向量积概念的引入 ★向量积的运算 ★例6 ★例9 ★向量的混合积 ★例11 ★内容小结 ★习题8-3 内容要点 一、两向量的数量积 定义1设有向量 示b ,它们的夹角为0 ,乘积| a ||b | cose 称为向量a 与b 的数量积(或 称为内积、 点积),记为a b,即 a b 却 a || b | cos . 根据数量积的定义,可以推得: (1) a b =|b |Pr j b a =|a |Pr j a b ; I — - 2 (2) a a a | ; (3) 设a*、b 为两非零向量,贝U a_L b 的充分必要条件是 a , b = 数量积满足下列运算规律: (1)交换律 a b = b a; (2)分配律 (a b) c = a c b c; (3)结合律 人(』b)=(杯b =a ,(Lb),( &为实数) 二、两向量的向量积 定义2若由向量a 与b 所确定的一个向量 c 满足下列条件: ★数量积的运算 ★例2 ★例3 ★例5 ★向量积的定义 ★例7 ★例8 ★例10 ★混合积的几何意义 ★例12 ★例13 ★课堂练习 ★返回

(1) c的方向既垂直于a又垂直于b, c的指向按右手规则从a转向b来确定(图

8-3-4); (2) C的模| C|=|a〔|b | sin6 ,(其中8为a与b的夹角), 则称向量c为向量a与b的向量积(或称外积、叉积),记为 c = a b . 根据向量积的定义,即可推得 (1) a 3 =0 ; (2) 设a、b为两非零向量,贝U a//b的充分必要条件是』xb = 0. 向量积满足下列运算规律: (1) a b = -b a; (2) 分配律(a b) c = a c b c; (3) 结合律u£xb) = (?a)Xb = ax(7_b),(岛为实数). 三、向量的混合积 例题选讲 两向量的数量积 例1(E01)已知a={1,1,~4}, b={1,—2,2},求 (1)a b; (2) a与b的夹角0 ; (3) a与b上的投影. 解(1) a b =1 1 1 (-2) (-4) 2 = -9. a x b x a y b y a z b z 1 . 3■: (2) cos@=j2 2;j 2 2 2 =_了,」.nr a x a y a z , b x b y b z 2 4 a b (3) a b =|b|PrRa, . Pr j b a = ------------- = -3. |a| 例2证明向量c与向量(£ d)b —(b 3)£垂直. 证[(a c)b - (b c)a] c =[(a c)b c - (b c)a c] =(b c)[a c - a c] =0,

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四)

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合M ={m ∈Z|?3b >c B.b >c >a C.a >c >b D.c >b >a

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

数列高中数学组卷

SM数列高中数学组卷1 一.选择题(共1小题) 1.已知定义在R上的函数f(x)对任意的实数x1,x2满足f(x1+x2)=f(x1)+f (x2)+2,数列{a n}满足a1=0,且对任意n∈N*,a n=f(n),则f(2010)=()A.4012 B.4018 C.2009 D.2010 二.填空题(共4小题) 2.记集合P={ 0,2,4,6,8 },Q={ m|m=100a1+10a2+a3,且a1,a2,a3∈P },将集合Q中的所有元素排成一个递增的数列,则此数列的第68项是.3.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,. (Ⅰ)求a n与b n; (Ⅱ)求数列{c n}满足,求{c n}的前n项和T n. 4.已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为. 5.已知数列{a n}满足a1=1,a n+1=,则a n= 三.解答题(共25小题) 6.已知f(x)=(x﹣1)2,g(x)=4(x﹣1).数列{a n}中,对任何正整数n,﹣a n)g(a n)+f(a n)=0都成立,且a1=2,当n≥2时,a n≠1;设b n=a n 等式(a n +1 ﹣1. (Ⅰ)求数列{b n}的通项公式; (Ⅱ)设S n为数列{nb n}的前n项和,,求的值.7.设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;

(Ⅱ)求{nS n}的前n项和T n. 8.已知{a n}是等差数列,{b n}是等比数列,其中n∈N*. (1)若a1=b1=2,a3﹣b3=9,a5=b5,试分别求数列{a n}和{b n}的通项公式;(2)设A={k|a k=b k,k∈N*},当数列{b n}的公比q<﹣1时,求集合A的元素个数的最大值. 9.已知数列{a n}是公差为d(d≠0)的等差数列,数列{b n}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d﹣1),a5=f(2d﹣1),b1=f(q﹣2),b3=f(q). (1)求数列{a n}和{b n}的通项公式; (2)设数列{c n}的前n项和为S n,对一切n∈N*,都有 成立,求S n. 10.已知函数f(x)=x2+2x. (Ⅰ)数列a n满足:a1=1,a n+1=f'(a n),求数列a n的通项公式; (Ⅱ)已知数列b n满足b1=t>0,b n+1=f(b n)(n∈N*),求数列b n的通项公式;(Ⅲ)设的前n项和为S n,若不等式λ<S n对所有的正整数n恒成立,求λ的取值范围. 11.设等比数列{a n}的前n项和为S n=2n+1﹣2;数列{b n}满足6n2﹣(t+3b n)n+2b n=0(t∈R,n∈N*). (1)求数列{a n}的通项公式; (2)①试确定t的值,使得数列{b n}为等差数列; ②在①结论下,若对每个正整数k,在a k与a k+1之间插入b k个2,符到一个数列{c n}.设T n是数列{c n}的前n项和,试求满足T m=2c m+1的所有正整数m.12.已知函数f (x)=log a x (a>0且a≠1),若数列:2,f (a1),f (a2),…,f (a n),2n+4 (n∈N﹡)为等差数列. (1)求数列{a n}的通项公式a n; (2)若a=2,b n=a n?f (a n),求数列{b n}前n项和S n; (3)在(2)的条件下对任意的n∈N﹡,都有b n>f ﹣1(t),求实数t的取值范

高中数学必修四之知识讲解_平面向量的数量积_基础

平面向量的数量积 【学习目标】 1.理解平面向量数量积的含义及其物理意义; 2.了解平面向量的数量积与向量投影的关系; 3.掌握数量积的坐标表示,会进行平面向量数量积的运算; 4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系; 【要点梳理】 要点一: 平面向量的数量积 1. 平面向量数量积(内积)的定义 已知两个非零向量a 与b ,它们的夹角是θ,则数量cos a b θ叫a 与b 的数量积,记作a b ?,即有 ()cos 0a b a b θθπ?=≤≤.并规定0与任何向量的数量积为0. 2.一向量在另一向量方向上的投影:cos b θ叫做向量b 在a 方向上的投影. 要点诠释: 1. 两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定. (2)两个向量的数量积称为内积,写成a b ?;今后要学到两个向量的外积a b ?,而a b ?是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若0a ≠,且0a b ?=,则0b =;但是在数量积中,若0a ≠,且0a b ?=,不能推出 0b =.因为其中cos θ有可能为0. 2. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0?时投影为b ;当θ=180?时投影为b -. 要点二:平面向量数量积的几何意义 数量积a b ?表示a 的长度||a 与b 在a 方向上的投影cos b θ的乘积,这是a b ?的几何意义.图(1)(2)(3)所示分别是两向量,a b 夹角为锐角、钝角、直角时向量b 在向量a 方向上的投影的情形,其中 1||cos OB b θ=,它的意义是,向量b 在向量a 方向上的投影是向量1OB 的数量,即11|| a OB OB a =? . 事实上,当θ为锐角时,由于cos 0θ>,所以10OB >;当θ为钝角时,由于cos 0θ<,所以10OB <; 当090θ=时,由于cos 0θ=,所以10OB =,此时O 与1B 重合;当0 0θ=时,由于cos 1θ=,所以

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

排列组合高中数学组卷

排列组合高中数学组卷 一.选择题(共9小题) 1.(2016?衡阳校级一模)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有() A.90种B.180种C.270种D.540种 2.(2016?黄冈校级自主招生)方程3x2+y2=3x﹣2y的非负整数解(x,y)的组数为()A.0 B.1 C.2 D.3 3.(2016?新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480 4.(2016?内江四模)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有() A.24种B.36种C.48种D.60种 5.(2016?邯郸一模)现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是() A.90 B.115 C.210 D.385 6.(2016?成都校级模拟)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有()个. A.324 B.216 C.180 D.384 7.(2016?湖南校级模拟)某中学拟安排6名实习老师到高一年级的3个班实习,每班2人,则甲在一班、乙不在一班的不同分配方案共有() A.12种B.24种C.36种D.48种 8.(2016?陕西模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有() A.3种B.6种C.9种D.18种 9.(2016?福建模拟)四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是() A.72 B.96 C.144 D.240 二.填空题(共3小题) 10.(2016?黄冈校级自主招生)若p和q为质数,且5p+3q=91,则p=, q=. 11.(2016?黄冈校级自主招生)设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是. 12.(2016?绵阳模拟)从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有个.(用数字作答) 三.解答题(共4小题) 13.(2016?新余三模)如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点. (1)证明:EF∥平面PCD;

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线. 1.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做

数量积向量积混合积

第三节 数量积 向量积 混合积 分布图示 ★ 两向量的数量积 ★ 数量积的运算 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 向量积概念的引入 ★ 向量积的定义 ★ 向量积的运算 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 向量的混合积 ★ 混合积的几何意义 ★ 例11 ★ 例12 ★ 例13 ★ 内容小结 ★ 课堂练习 ★ 习题8-3 ★ 返回 内容要点 一、两向量的数量积 定义1设有向量a 、b ,它们的夹角为θ,乘积θcos ||||b a 称为向量a 与b 的数量积(或称为内积、点积),记为b a ?,即 θcos ||||b a b a =?. 根据数量积的定义,可以推得: (1) b j a a j b b a a b Pr ||Pr ||==?; (2) 2 ||a a a =?; (3) 设a 、b 为两非零向量,则 b a ⊥的充分必要条件是 0=?b a . 数量积满足下列运算规律: (1)交换律 ;a b b a ?=? (2)分配律 ;)(c b c a c b a ?+?=?+ (3)结合律 )()()(b a b a b a λλλ?=?=?,(λ为实数). 二、两向量的向量积 定义2 若由向量a 与b 所确定的一个向量c 满足下列条件: (1)c 的方向既垂直于a 又垂直于b , c 的指向按右手规则从a 转向b 来确定(图

8-3-4); (2)c 的模 θsin ||||||b a c =,(其中θ为a 与b 的夹角), 则称向量c 为向量a 与b 的向量积(或称外积、叉积),记为 b a c ?=. 根据向量积的定义,即可推得 (1)0 =?a a ; (2)设a 、b 为两非零向量,则 b a //的充分必要条件是 0=?b a . 向量积满足下列运算规律: (1);a b b a ?-=? (2)分配律 ;)(c b c a c b a ?+?=?+ (3)结合律 )()()(b a b a b a λλλ?=?=?,(λ为实数). 三、向量的混合积 例题选讲 两向量的数量积 例1(E01) 已知},2,2,1{},4,1,1{-=-=b a 求 (1) ;b a ? (2) a 与b 的夹角θ; (3) a 与b 上的投影. 解 (1) b a ?2)4()2(111?-+-?+?=.9-= (2) 222222cos z y x z y x z z y y x x b b b a a a b a b a b a ++++++= θ,2 1- = ∴.4 3π θ= (3) ,Pr ||a j b b a b =?.3| |Pr -=?=∴a b a a j b 例2 证明向量c 与向量a c b b c a )()(?-?垂直. 证 c a c b b c a ??-?])()[(])()[(c a c b c b c a ??-??=])[(c a c a c b ?-??=,0= ∴.])()[(c a c b b c a ⊥?-?

求解平面向量数量积的三种方法

龙源期刊网 https://www.wendangku.net/doc/2616730650.html, 求解平面向量数量积的三种方法 作者:谢伟杰 来源:《读写算》2018年第34期 摘要梅州市高一数学质量抽测题第11题是一道关于平面向量数量积的考题,这道考题引起了笔者的注意。此题很好地考察了学生对数量积概念的理解,也能很好地考察学生对求解平面向量数量积的方法是否掌握到位。 关键词平面向量数量积;解法 中图分类号:O241.7 文献标识码:A 文章编号:1002-7661(2018) 34-0211-01 做题中的“少运算”是建立在对基本概念理解的基础之上的,学生只有对相关的概念、性质有深刻的理解,而不是纯粹的记公式或套方法,才能在做题中真正实现“多思考,少运算”。教师在教学中,要帮助学生去认识相关知识点的核心及实质,而不是认为学生只要能记住相关的公式或会套用某类方法解题就行,否则,在具体的问题情境中,学生极容易在公式与计算中迷失,从而找不到解决问题的有效途径。 一、原题呈现 已知是边长为的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则 的值为() 二、解法展示与对比 解法一:如图1, 解法二:如图2,以点为坐标原点,为轴正方向,建立如图所示的直角坐标系。则,, 解法三:如图3,点在上的投影为点,作點在上的投影,则在是的投影为,由向量数量积的含义可知,易得与相似,所以,又,所以,即 . 故 作为选择题,解法三有明显的优点,即我们只需将在上的投影作出,对图中线段的长度作大致估计,就可迅速判断只有选项才是合理的。笔者认为这样并不是投机取巧,恰恰相 反,在考场上会做这样的思考,并采取此策略的学生,说明该生对数量积的概念有更深刻的理解,并有更好的思维能力。这与高考命题中所提倡的“多思考,少运算”的理念也是一致的。

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

高中数学经典高考难题集锦(解析版)

2015年10月18日杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程. 2.(2010?模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

相关文档
相关文档 最新文档