文档库 最新最全的文档下载
当前位置:文档库 › 斯托克代尔悖论

斯托克代尔悖论

斯托克代尔悖论
斯托克代尔悖论

威廉·詹姆斯(William James,1842—1910)美国本土第一位哲学家和心理学家,也是教育学家,实用主义的倡导者,美国机能主义心理学派创始人之一,也是美国最早的实验心理学家之一。1875年,建立美国第一个心理学实验室。1904年当选为美国心理学会主席,1906年当选为国家科学院院士。2006年,詹姆斯被美国的权威期刊《大西洋月刊》评为影响美国的100位人物之一(第62位)。

Vicissitude [v??s?s?tju:d] n. 变迁兴衰vicissitudinous [v?s?s?'tju:d?n?s] adj. 有变化的,变迁的

Optimism, passion and hard work 成功三要素。Pretension 抱负

. 斯托克代尔悖论(The Stockdale Paradox )

斯托克代尔是美国的一个海军上将,在越南战争期间,是被俘的美军里级别最高的将领。但他没有得到越南的丝毫优待,被拷打了20多次,关押了长达8年。他说:“我不知道自己能不能活着出去,还能不能见到自己的妻子和小孩。”但是他在监狱中表现得很坚强。

越南人有一次为了表现他们优待俘虏,把他养了一段时间,准备给他拍照。结果斯托克代尔就自己用铁条把自己打得遍体鳞伤,并用刀片把自己的脸割破。越南人拿他没办法,只好放弃了。

他为了鼓励监狱中的同胞,因为是一个人关一间,彼此看不到,就发明了一种密码,通过敲墙用快慢节奏来表达英文字母。有次一位战俘因思念家人掩面痛哭的时候,他们全监狱的战俘都通过敲墙,用代码敲出了“我爱你”,那个战俘非常感动。

斯托克代尔被关押8年后放了出来。吉姆·柯林斯先生去采访他,问:“你为什么能熬过这艰难的8年?”斯托克代尔说:“因为我有一个信念,相信自己一定能出来,一定能够再见到我的妻子和孩子,这个信念一直支撑着我,使我生存了下来。”

吉姆·柯林斯又问:“那你的同伴中最快死去的又是哪些人呢?”他回答说:“是那些太乐观的人。”

吉姆·柯林斯说这不是很矛盾吗?为什么那些乐观的人会死得很快呢?斯托克代尔说:

“他们总想着圣诞节可以被放出去了吧?圣诞节没被放出去;就想复活节可以被放出去,复活节没被放出去;就想着感恩节,而后又是圣诞节,结果一个失望接着一个失望,他们逐渐丧失了信心,再加上生存环境的恶劣,于是,他们郁郁而终。”

斯托克代尔说:“对长远我有一个很强的信念,相信自己一定能够活着出去,一定能再见到我的妻子和小孩;但是我又正视现实的残酷。”

吉姆·柯林斯说:斯托克代尔悖论是持续50年能保持在世界500强的企业全部采用的理论。它们之所以能常青50年,是因为他们对前景充满乐观,相信前途一定是光明的,但是又直面现实的残酷。

其实做人也一样。一个人对自己的前途失去信心,他就没有一点希望。哀莫大于心死。心已死,人也就完了。一定要记住,不管在人生中遭受什么样的打击,不管你处在怎样的逆境,你都要保持一种必胜的信念,对前途充满信心;但是现实生活又是很复杂、很残酷的,你要能够直面它。这就是斯托克代尔悖论。

以下是一些想法:

希望是好事情;不好的是让希望带来害怕最终失望的焦虑。

《肖申克的救赎》上的话:Hope is a good thing, maybe the best of things. 这句话没有说出来的部分是,only if you don’t let the hope brings along anxiety.

规划,但不要担心。

不要在事情还没发生的时候就去担心,因为你的担心很可能会被证明是白费劲。这很容易证明:当你站在一个时间的分岔口上,面对N种未来,其中有M种是你需要担心(不希望发生)的。如果你把你的Time Machine再往未来调一些的话,或许还会发现,这些M种未来所衍生出来的K种未来的未来也是你不希望发生的。这样的话,就像下象棋一样,取决于你所想到的步数,你所担心的未来的可能性也许会呈指数级别上升。然而,最终你只能走向其中的一个未来,你只能选择一种可能性。这就让你对于其余所有可能性的担心全都浪费掉了。更重要的是,焦虑会无止尽地消耗一个人的精力,从而使你走向各种未来中那些糟糕的未来,后者几乎肯定也正是你原本所担心的未来。于是,你的担心终于自己实现了自己(自我实现的预言)——由于担心某种可能性最终导致了某种可能性。

当然,规划还是必要的。宿命论者有两种心态:一种是觉得无论做什么都不能改变人生,命运已经注定,因而便放弃一切努力,随波逐流,消极生活。一种是觉得命运是老天安排好的,于是抱一颗平常心来生活,所谓乐天知命,不以物喜不以己悲,推论是挫折也是注定的,因而往往受到打击之后也不会跳楼。前一种宿命论心态往往是因为遭受多次打击之后用来安慰自己并缩进壳中去的借口。后一种是较为积极的宿命论。为什么扯到宿命论?呃…还是回到规划,规划不等于担心,规划是一种对于未来的可能性的理性分析,预防糟糕的,逼近良好的。规划的重点在于客观看待事物,不否认失败的可能性,也不因此而丧失努力的动力。所谓“谋事在人,成事在天”。

不要因为有可能不会成功就不去做。

这也很容易证明。如果每次都因为有可能失败而望而却步的话,那么永远也不可能成功。相反,如果每次都冲着其中1/N成的胜算而去努力的话,也许一次、两次不会成功,然而在N 次努力中,可以(数学)期望的是总会有一次能成功的。该哲学只有在事件样本空间很大的时候才会呈现出其作用。

为什么人们会觉得因可能失败而止步是一种某种程度上合理的行为呢?

一种可能性是因为人类容易将目光放在孤立的事件上面,当你只看到眼前的这一件事情的时候,可能会这么考虑:“如果失败,那就白白浪费了时间还获得了挫折感。如果成功.. 呃.. 成功固然好,但万一失败呢?”人天生就是更倾向于“避害”而非“趋利”的。当利害并存的时候,除非利非常大而且不需要花费很大的代价或努力,否则一个平常人基本会选择退开,因为退开顶多也就是维持原状,而维持原状某种意义上是好的。但如果把目光放到大样本空间内,就会发现,在多次事件的前提下,两种态度会带来两种截然不同的结果:一是每次都不能成功。二是总可以期望有一些次是成功的。

另一种可能性是因为争取成功需要付出时间,而除了天赋之外,时间是人类唯一真正的财富。持这种态度的人会权衡成功的结果值不值得花费时间去尝试,这是理性的权衡。但实际上,生活中有太多事情不需要你孤注一掷用一辈子时间去尝试一个成功的可能性,多的也许只要一两年就见分晓。只可惜有人更愿意拿一两年去彷徨观望。

不要观望,观望人生比观望股市更加危险!

不要聚焦于眼前的挫折,想想几年之后你是否还会处在同样的境况中。

心理学上有一种效应叫做聚焦效应,是说人容易把目光聚焦在局部的时间段(通常是现在),局部的人或事上。最常见的现象是当一件糟糕的事情发生在自己身上时,觉得自己是天底下最悲惨的人,并且觉得前途一片黑暗,永远都如此悲惨。然而实际上现实中真正悲惨到这样地步的事情是极少的,除非天灾人祸。很多时候,一段时间之后事情也就平息了,烟消云散了,Life goes on.. 但人们偏偏就是不能从这一遍遍相似的事件中吸取一个教训:事情总会过去的。结果就是一遍遍地,当一些小事情发生的时候,为之郁闷、焦虑、恐慌、担心.. 这样的聚焦效应,用一个确切的比方,就仿佛把眼睛盯在白纸上的一个墨点,结果满眼都是黑的。在时间尺度上,盯住当前发生的糟糕事情很容易让人认为以后整个时间轴上都是如此的。但只要退开一些,退远一些,你就会发现,没有什么大惊小怪的。

不要总想着不可改变的是哪些,想想可以改变的是哪些。

当糟糕的事情发生的时候,很多人选择拒绝接受现实。一个典型的问句是:“Why is this happening to me?!”解释其实很简单。有两种可能的解释:1,你自己过往的行为导致了事情的发生。比如得了绝症是因为饮食问题;走路被广告牌砸中了是因为你有靠着墙边走的习惯。这种情况下可怨不得人。2,一些意外的事情总是会发生的,你只不过凑巧是“那个”人罢了。总要有一个人来叫“为什么发生在我身上?!”吧。你只是千千万万可能性中的一种。这跟人择原理是一个道理。后一种情况自然是没得讨价还价的。前一种情况倒是可以吸取一些教训。但无论如何,拒绝接受现实只能进一步浪费时间,甚至恶化后续的事件;一个总是更好的策略是换个角度,想想可以改变的是哪些事情。

另一方面,拒绝接受现实有两种方式:一种最为极端的是销毁自己(delete this)。另一种则是拿后续的时间不断的回忆过去某件痛苦的事情(living in the past)。前一种策略被证明是不成功的,很少有事情真正值得跳楼的。如果一个人觉得一件事情不可承受,呃.. 也许只是他心理上“觉得”不可承受而已,并非真正无法承受。对于碳基生物来说真正无法承受的是高温、缺氧、缺水、缺食物、缺钙铁锌硒…很多时候人们只是因为把自己不能承受的门槛设得太高,所以才总觉得一点小事就不可承受。另一种就是放不下痛苦的经历。实际上这是人的天性之一,因为记住过往不好的经历有生存学意义,它可以触动个体避免未来发生同样的事情。所谓“一朝被蛇咬,十年怕井绳”。只不过人类社会发展到如今,真正威胁到生存的,需要“十年怕井绳“地铭记在心的事情还真不多了。只不过因为这个自然法则是在老早就钉在DNA片段上的,所以到现在还在起作用。但上帝是公平的,人类同样获得了独一无二的理性和自由意志,所以,如果你用理性分析之后觉得一件事情应该放下的话,就动用自由意志将它放下吧,别把亿万年进化赋予你的能力都给浪费了…

选择

选择,很多时候当一个人拒绝接受现实,埋天怨地的时候,并非因为没有选择。而是因为所有的选择都不符合他内心的预期,简单地说就是觉得所有的选择都很糟糕。

这类现实的特点是,它们一般并非某种不可逆转的事实,而只是矛盾。矛盾的解决办法通常只有三种:解决(或妥协)矛盾的A方、解决(或妥协)矛盾的B方、推翻矛盾的前提。第四种方法——Living in the Denial——总是错的。

权衡你仅有的选择,并作出选择。否则你就只能等着承受最差的选择——即不作任何选择。

至少

林忆莲的《至少还有你》充分体现了卡耐基在《人性的优点》里面整本书传达的一个核心意思:底线思考法。当失去一些东西的时候,人天性倾向于痛惜失去的,而不是数数剩下的。这又是一个进化留下来的法则。但同样,也不再适用于现代社会的绝大部分时候。所以当失去一些东西的时候,应该反过来想想还有什么:比如还有命一条,还有几十年的时间,还有一个大脑…所谓“留得青山在,不怕没柴烧”。关于持续后悔带来的后果,请参见倒数第三条。

贝特朗奇论悖论

贝特朗奇论 2 . 1 “贝特朗奇论” 的 数学表示 在单位圆内随机取一条弦,弦 长超过3(单位圆内 接等 边三角形的边长)的概率是多少? 这个问题有三种解法, 答案互相矛盾 。 解法一:设弦AB 的一端A 固定于圆周上,另一端B 任意(图1)。对于等边三角形ACD , 若B 落在劣弧CD 上,则AB > 3 , P = CD 弧长圆周长 = 13 解法二 : 设弦 AB 垂直于直径 EF , C D = DO( 图 2) , 若 AB 的中点落在线段 C D 上 , 则 AB> 3 , 故 P = CD EF = 12 。 解法三 : 作半径为 1/ 2 的 同心圆( 图 3) 。 若 A B 的中 点 落在此圆内 , 则 AB> 3 , 故 P =小圆面积大圆面积 = 14 。 2. 2 “贝特朗奇论” 的数学辨析 同一问题有三种不同的答案, 究其原因, 是在取弦时采用了不同的等可能性的假定。解法一假定端点在圆周上的落点处处等可能 , 解法二假定中点在直径上的落点处处等可能, 解法三假定中点在圆 内的落点处处等可能。三种答案对于各自的假定都是正确的。这样的

解释显得似是而非, 但又找不到反驳的理由, 故名奇论。其实弊病出在概率定义本身。 我们先看看有关概率的三个定义: 概率的统计定义: 在条件相同的n 次试验中事件 A 出现m 次, 如果加大n 时, A 的频率m n逐渐稳定在一个常数附近, 就把这个常数叫做事件 A 的概率。概率的古典定义:如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。这样的试验,成为古典试验。对于古典试验中的事件A,它的概率定义 为:P(A)= m n,n表示该试验中所有可能出现的基本结果的总数目。 m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。概率的几何定义:若试验结果只能出现于区域Ω内的某一点,且出现于每一点的可能性相等,又区域A包含于区域Ω中,那么试验结果出现于区域A的概率,即事件A R 的概率P( A ) =区域A的测度/区域Ω的测度。 概率的统计定义虽然直观, 但据此计算某事件的概率是困难的, 仅能以A的频率作为P( A) 的近似值。然而n要多大,准确到什么程度,都没有确切的说明,在概率的古典定义中,不需要试验即可直接根据公式求出事件的概率, 这是它的最大优点, 但是它也有局限性, 因为它要求试验的全部可能结果的数目是有限的, 而且每个试验结果出现的可能性相等。如果试验的全部可能结果是无限的,古典定义就不适用了。概率的几何定义虽然不要求试验结果有限,但同样强调

悖论的意思是什么

悖论的意思是什么 导读:我根据大家的需要整理了一份关于《悖论的意思是什么》的内容,具体内容:悖论的意思:悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐...悖论的意思: 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 英文解释 [数] antinomy;paradox ; [paradox] 逻辑学和数学中的矛盾命题 定义 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。

性质 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 根源 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 解悖 悖论与解悖只要运用对称逻辑,没有一个悖论无解。悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 用对称逻辑思维层次法解"说谎者悖论" 这个悖论即"我在说谎"这句话中所蕴含的悖论。这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价——前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是

悖论及其科学意义

悖论及其科学意义 西班牙的小镇塞维利亚有一个理发师,他有一条很特别的规定: 只给那些不给自己刮胡子的人刮胡子。 这个拗口的规定看起来似乎没什么不妥,但有一天,一个好事的人跑去问这个理发师一个问题,着实让他很为难,也暴露了这个特别规定的矛盾。那个人的问题是: “理发师先生,您给不给自己刮胡子呢?” 让理发师为难的是: 如果他给自己刮胡子,他就是自己刮胡子的人,按照他的规定,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的规定,他就应该给自己刮胡子。不管怎样的推论,理发师的做法都是自相矛盾的。这真是令人哭笑不得的结果。 这就是悖论。 悖,中文的含义是混乱、违反等。 悖论,在英语里是paradox,来自希腊语“para+ dokein”。意思是“多想一想”。悖论是指一种导致矛盾的命题。 悖论都有这样的特征: 它看上去是合理的,但结果却得出了矛盾——由它的真,可以推出它为假;由它的假,则可以推出它为真。 悖论与谬论不同,谬论是用目前的理论就能够证明、判断其为错误的理论、观点,总体来说,谬论是完全错误的;而悖论则看起来是是非难辨的。但这种“是非难辨”并非是永远不能分辨的,随着人们认识能力的不断提高,随着科学的不断发展,悖论是可以逐步得到消除的,矛盾是可以解决的。

广义上说,凡似是而非或似非而是的论点,都可以叫做悖论,如欲速则不达、大智若愚等都是典型的悖论;还有一些对常识的挑战也可称为悖论。 狭义上说,悖论是从某些公认正确的背景知识中逻辑地推导出来的两个相互矛盾(或相互反对)命题的等价式。通俗地说,如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。这就是悖论。狭义的悖论又可称为严格意义上的悖论或真正的悖论。 “我说的这句话是假的”,这就是典型的悖论,因为从这句话所包含的大前提来看,这是一句假话,其内容必定就是“假”的;既然是假的,则其意必然与其所指相反,所以,这句话应该是“真”的。但如果假设这句话是真的,其本身又恰恰证明它是假的。所以,你无从分辨这句话的真假。 悖论一般可以分为语义悖论和逻辑悖论两种。如果从一命题为真可推出其为假,又从该命题为假可推出其为真,则这个命题就构成语义悖论。前面所说的“我说的这句话是假的”就是如此。 逻辑悖论总是相对于一个公理系统而言,如果在一个公理系统中既可以证明A又可以证明非A,则我们就说在这个公理系统中含有一个悖论。集合论中著名的罗素悖论就是一个逻辑悖论。实际上,自然科学中出现的悖论一般都是逻辑悖论。 自然科学中的悖论一般还被称为佯谬。在英文中,佯谬与悖论是同一词paradox。它们都是由于前提、判断和结论的运用而产生的,具有相同的逻辑本性。如由爱因斯坦等提出的EPR悖论,也可称为EPR佯谬。 悖论有很多种称谓。古希腊的亚里士多德称之为难题;中世纪的经院哲学家们称之为不可解命题;近现代的科学家一般称之为悖论或佯谬,哲学家则称之为二律背反(“悖论”在英文中还有一个词antinomy)。 1979年,美国数学家霍夫斯塔德(D.R.Hofstad—ter)认为悖论是一个“怪 圈”(strange loop,又译为奇异的循环),是由于“自我相关”而导致的。这种怪圈不仅存在于数学和思维中,也存在于绘画和音乐中。埃

关于贝特朗悖论

关于贝特朗悖论 从法国学者贝特朗(JoSePh Bertrand)提出贝特朗悖论"至今,已经过了一个多世纪。在这漫长的一百多年中,贝特朗悖论得到了各层次数学爱好者的热切关注,人们穿越时空,从不同的角度对此悖论进行了争论、辨析及交流…… 首先来看一下贝特朗悖论: 在圆内任作一弦,求其长超过圆内接正三角形边长的概率?此问题可以有三种不同的解答: ⑴由f???可预先指定弦的方向???Sf此方 向的直径,只有交直径f 1/4点与3/4点间的弦J 其长才大于内接正三角形边也所有交点是等可能的 '则所求概率为1/2 * (3)弦被其中点位置唯一确定. 只有当弦的中 (2〕由干对■称性T可预先固定弦 的—端"仅当弦与过此端点的切线的 交角在60°?120°之间,其长才合乎 要求?所有方???可能的,则所求 概率为1/3 * 点落在半径缩小了—半的同心圆(圆内接正三 角形的内切凰)内,其长才合乎要求?设中点 位置都是等可能的'则所求概率为H 面对同一问题的三种不同的答案。人们往往这样 来解释: 得到三种不同的结果,是因为在取弦时采用了 不同的等可能性假设:

在第一种解法中则假定弦 的中点在直径上均匀分布;在第二种解法中假定端点在圆周上均匀分布,而第三种解法中又假定弦的中点在圆内均匀分布。这三种答案是针对三种不同的随机试验,对于各自的随机试验而言,它们都是正确的。 三个结果都正确!一一这就是让老师和学生感到迷惑不解的原因。 显然这样的解释是不正确的。 上述解法看似是用了严密的理论来论述,但有的解法与问题的本质是脱节的,即理论是正确的, 但却不合题意:因为不同的解法所阐述的相应点的均匀分布只是一个必要条件,而此问题的条件是在圆内任作一条弦(或是从圆内任取一条弦),所以只有任取的弦与这些相应的均匀分布的点一一对应时,才能使整个的随机试验过程具有等可能性,否则,运用几何概型思想方法求出的结果一定是错误的。找到了问题的本质,我们就容易分析上面三种解法中,哪种解法是错误的了,实际上,找出错误,只要举出一个反例即可,下面我们把目光指向圆心: 第一种解法中,除了圆心外,圆内的点都和唯一的一条弦(与相应的直径垂直)对应,即一一对应。但是,圆心却与无数条弦(即与直径垂直的任何方向都有过圆心的弦,其长度满足题意)对应。这样,圆心一一这个圆内的点与相应的弦就不是一一对应了,为此,用此种思想所构造的试验过程中的基本事件就不是等可能的了,所以运用几何概型思想方法求出的结果也一定是错误的。 有了这种认识,大家会马上发现第三种解法也是不正确的。 而第二种解法,所构造的均匀分布的点是在圆周上,没有圆心,用此种思想所构造的试验过程 中的基本事件是等可能的,所以结果是正确的。

世界是不确定的,还好,我们有概率论

世界是不确定的,还好,我们有概率论 阅读本文需要耐心(数学好到一定程度的除外),不妨准备一套纸币。如果让你产生想重学概率论的冲动怎么办?去学呀!“概率”这两个字,除了课本以外,最常出现的地方也许就是天气预报中的“降水概率”,也就是未来几天下雨的可能性有多大。在数学中,概率论是专门研究“可能性”的一门分支。它涉及的问题非常广泛,内容远远超出了中学课本里那些刻板的习题。一切随机或者不确定的事件,都是概率论研究的范畴。上至气象下至金融,甚至连“磁铁的磁性怎么来的”这种物理问题,都可以用概率的方法来研究。但这门学科的诞生却有些“不太光彩”。来自赌博的问题在1654年的一天早上,法国数学家布莱兹·帕斯卡收到了他的朋友贡博的一封来信。这位朋友自称“来自梅雷的骑士”,也算是一位业余数学家。他向帕斯卡提出了类似如下的问题:两位贵族A与B正在进行一场赌局,赌注是每人500 法郎,两人轮流掷硬币,得到正面则A得一分,反面则B得一分,每一局两人得分的机会相等,谁先得到6分谁就得到1000法郎。两人激战正酣,比分达到2比4之际,B突然有事需要终止赌局。赌注应该如何分配才最公平。这一类问题被称为点数分配问题,早在16世纪就被研究过,但数学家当时的答案并不令人满意,在一些极端情况下会给出非常不

合理的分配方案。也许这位“梅雷骑士”也见识过现实中这种赌局引起的矛盾,他希望帕斯卡能够解决这个问题。帕斯卡对这个问题也很感兴趣。他向另一位业余数学家皮埃尔·德·费马发去一封信讨论这个问题。作为“业余数学家之王”,费马很快就给出了一个答案。他认为,不能单靠赌局停止时的比分或者各自获胜需要的分数来决定赌注的分配,而是应该考虑所有比赛的可能性中,双方获胜的比例。但列举所有的可能性的计算量非常大,帕斯卡继而提出了一个简化算法,完美地解决了点数分配问题。实际上,他们的解答相当于计算两位玩家胜利概率的大小。在研究中,帕斯卡提出了“数学期望”的概念和著名的“帕斯卡三角形”(杨辉三角)。某个结果为实数的随机事件的数学期望,也就是所有结果按照发生概率加权之后的平均值。数学期望这个概念,掀开了概率论研究的序幕。什么是概率?很多概率问题有着特别的结构。对于某个非常简单的随机事件,比如说掷硬币,我们知道每种结果出现可能性的大小,这样的事件被称为“基本事件”。我们可以多次重复这些基本事件,假定它们发生的可能性不会改变,而且这些重复没有相互影响。如果我们将这些基本事件以合适的形式组合起来,就能得到一个更为复杂而有趣的系统。许多概率问题实际上就是对这些随机系统的各种性质的研究。比如说,在点数分配问题中,基本事件就是硬币的投掷,而系统则是赌局的具体规则,最

悖论的产生和意义

对于悖论存在及其意义的探究 摘要:悖论的存在已有数千年历史,悖论到底如何定义的?是为什么会存在的?历史上人们又是怎么对待悖论的?悖论能够怎样被解决?悖论的存在又有什么意义?这一切问题都需要我们深入思考研究。 关键词:悖论;逻辑哲学;存在;本体论;形而上学 一、什么是悖论? 在人类思想史上,已经提出了各种各样的谜题与悖论,它们对人类理智构成了严重的挑战,许多大家、巨擘以及无名氏前仆后继地对其进行了艰辛的探索。从古希腊、中国先秦时期到现代数学、逻辑学等众多学科中,已经发现了各种各样的悖论或怪论,悖论已经成为数学、逻辑学、哲学、语言学、计算机科学、思维科学等多学科专家共同探讨的课题,谈论“悖论”几乎成为时髦。那么,到底什么是悖论呢?悖论,亦称为吊诡或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语paradoxos,意思是“未预料到的”,“奇怪的”。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 二、悖论与逻辑哲学 说谎者悖论被认为是世界上最早的悖论,由公元前六世纪的哲学家克利特人艾皮米尼地斯提出:“所有克利特人都说谎,他们中间的一个诗人这么说。”这个悖论最简单的表述形式是:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。这类悖论的一个标准形式是:如果事件A 发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。悖论的存在显然是因为某些命题正在逻辑上存在不合理性从而引起了众多学者的探究。 虽然逻辑不能等同于逻辑哲学,但是逻辑哲学基本上是和逻辑同时产生的,任何逻辑学家都在无形中进行着对逻辑哲学的研究。尤其是对于数学这样的极其讲究严密的逻辑性的研究领域,逻辑哲学的研究根本无法避免。著名的“罗素悖论”的出现甚至引起了第三次数学危机。所谓的罗素悖论是罗素针对当时建立不久的集合论体系提出的一个基础上存在的矛盾:“定义两个集合:P={A∣A∈A} ,Q={A∣A?A} 。问题:Q∈P 还是 Q?P?”。显然,无论是指定哪个判断为真,最后都能够推断出与其相反的结论。为了使其更容易被理解,罗素悖论又被称为“理发师悖论”:“有一个理发师说:‘我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸’”。那么这个理发师要不要给自己刮脸呢?无论他怎么做,最后都一定会违背自己当初的话。 悖论的流行引发了世界上的思想风暴。越来越多的人认识到我们现有社会中存在的不完美,思维方式不能再局限于既定逻辑,而要尝试打破规则,因为悖论的存在充分说明了现有的规则有着无法忽视的漏洞,甚至会动摇社会根基。 三、悖论与本体论 西方哲学从古希腊开始一直以研究世界的本原为己任, 形成了西方哲学的本体论传统。本体论的最主要特征就是研究存在问题, 即关于什么样的实体存在, 以及作为实体在资格

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

2019-2020学年天津市武清区新高考高一数学下学期期末联考试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A . 31 44AB AC - B . 13 44AB AC - C .31 44 +AB AC D .1344 +AB AC 2.设等比数列{ }的前n 项和为 ,若=3,则 = A . B .2 C . D .3 3.在ABC ?中,已知222sin sin sin sin sin A B A B C +-=,且满足4ab =,则ABC ?的面积为( ) A .1 B .2 C .2 D .3 4.过曲线的左焦点1F 且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得90ACB ?∠=,则双曲线离心率e 的最小值为( ) A . 31 2 + B .31+ C . 51 2 + D .51+ 5.如图,若长方体1111ABCD A B C D -的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段1BD 的长是( ) A 14 B .27 C .28 D .326.在ABC ?中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C += A .90? B .120? C .135? D .150? 7.已知向量1a b ==,1 2 a b ?=-,则3a b +=( ) A 2 B 3 C 5 D 78.已知函数210 ()21 0x x x f x x x ?++≥=?+

贝特朗概率悖论的解释

贝特朗概率悖论的解释 贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。 我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。 这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下载下来,大家可以自己看:百度百科词条解释 虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。 首先我们看第一种“解法”。 解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。弦与PQ的交点肯定就是落在PQ上的,而NM=1/2PQ,所以此时概率为1/2.

这个解法其实有一个重要前提,那就是弦与PQ的交点在PQ上是均匀分布的。正正是题目中所缺乏的条件,因为圆中任意的弦,这到底怎么个做法?是像这种解法所说的,使其与PQ 交点在PQ上均匀分布么?还是使弦与圆周的交点是任意分布?如果满足后者,就不可能满足前者,满足前者,就不可能满足后者。一个比较明显的说法就是:做几条平行弦,使其在PQ上均匀分布,也就是相互之间的距离相等,我们可以看见,这些弦之间的弧长并不相等,也就是说,在PQ上均匀分布,一定不会在圆周上均匀分布。原题中没有给出这样的条件,解法1加了这么一个条件,显然就有不一样的结果了。 再看解法2. 解法2的思路是,链接OA,在OA两边做弦AM和AN,使其和AO的夹角为30°。在圆中所有的弦中,只有当B点落在弧MN上时,才满足条件,而MN的弧长占据整个弧长的1/3,所以概率为1/3 看了解法1,你就知道这个解法的原因所在了,他正是采用了在圆周上均匀分布这一条件得出的结果。 最后看解法3

悖论

概念 bèilùn (paradox,也称逆论,反论) 逻辑学和数学中的“矛盾命题”,是指一种导致矛盾的命题。 悖论的定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B为前提,亦可推得B。那么命题B就是一个悖论。当然非B也是一个悖论。我们可以按照某些制定或约定的公理规则去判定或证明某一命题的真假,但是我们按照制定或约定的公理规则去判定或证明有些命题的真假时,有时却出现发生了无法解决的悖论问题,这种情况说明了什么问题? 自然在整体上是包含多样性的,而我们却置这些情况于不顾,而专门关注属于我们感兴趣的那一种特殊情况,当特殊情况与其它相反的情况或普遍性存在的一般情况相遇时必然产生某种相悖的结论。不是数学悖论对数学基础产生大的危机影响,而是对逻辑和认识产生重大影响。 无限集合本身就是一个模糊不清的概念规定,有限是可以称为集合,无限是不能称为集合的。集合是指表示在某一个范围内无限则是指范围为无限大的,否则就不应该称为无限而称有限。无限不应该成为一个任意性选择或适用的范围,一个数量当超过人类所能达到或认识的程度便进入无限的范围之中。到现在为止,人类还没有完全清楚地知道我们所能认识到的半径有多大,所以无法准确精确地规定无限与有限它们之间的界限究竟在那里。 集合本身的概念就是一个没有限制性的概念,总的集合可任意分成若干集合,都是集合,确切地说我们不知道究竟是在那种意义前提限制下的集合。 子集合中存在悖论,或与别的集合之间存在悖论,子母集合之间也还存在悖论,因为在每种具体的子集合中都有属于它自身的规定规则,只在自身范围有效。超越范围则失效,这是永远不可避免或取消的。除非取消类的集合层次之间的区别,那么又不符合对待具体事物的态度,无法满足实际应用要求。另外集合的本义与引申义常混合使用,有时与元素意义混同,集合在低层次相当于元素,当上升时为集合,当再次上升时又相当于元素,是累积式的。 罗素悖论在当它们还没有进行相互联系时是有效的,当它们进行相互联系时即它们已经成为一个类或一个整体,那么一个类或一个整体中是不允许或无法执行两种衡量标准或规定的,自我否定是和没说一个样,或等于没有规定一样。 哥德尔关于一阶逻辑完全性定理与不完全性定理的本身就是悖论,已经暴露出逻辑导致发生的问题。哥德尔不完全性定理是缺乏评判,以决定的主导方面为衡量标准,或衡量标准过多而引起的悖论。所谓的标准也是一种规定。失效以后还可以根据实际需要再次进行新的规则规定,反正原来的规则也是规定,为什么出现发生悖论以后不可以再次重新进行规定规则,以满足实际应用的目的的需要呢?明明是自己的规定,可是自己又制造新的规定来破坏原来的规定,如果这样来干活,那么将永远有活干了,永远有干不完的活。 类是人为区分出来的,但类是根据需要人为任意性制造的,若分类,故类有所不同。在整体上却不存在类同与不同,由于类不同,故数也有所不同,有些不同相悖是很正常必然的。然而人们又想进行类与数之间变换,那么又不得不重新再作新的规定。 证明也只是按照预先所设置和认为的规定去操作,必然会符合规定,我们只管按规定操作执行好了,证明又有什么作用或意义呢?类的悖论问题不是通过进行证明就所能解决得了的。 悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明

几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析 数学悖论是数学发展过程中的一个重要的存在形态, 它是数学体系中出现的一种尖锐的矛盾, 对于这一矛盾的处理与研究, 丰富了数学的容, 促进了数学的发展。作为一名数学教师, 学习有关这方面的知识, 并进行研究, 既能提高自己的专业水平, 又能使授课容生动有趣; 作为学生了解这方面的容,不但能扩大知识面, 而且能提高学习兴趣 1 芝诺悖论 在西方的数学史上有一个非常有名的数学悖论——芝诺悖论。芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺本人既不是一位科学家, 更不是一位数学家, 芝诺的老师是埃利亚学派的创始人巴门尼德。巴门尼德是个一神论者, 他认为世界的本原是“不生不灭、完整、唯一和不动的”。但世界显然是丰富多彩、复杂纷繁的,怎么会是“唯一” 的呢?一个完全不动的世界怎么可能呢? 于是引起同时代人的反驳。芝诺为了捍为他老师的学说, 提出了一些论述。其中最有名的有四个, 历史上称为芝诺悖论。作为巴门尼德的继承人, 他力图证明, 如果承认“ 多” 和“ 运动” , 就会招致更加荒谬的结果。限于篇幅, 在此只辑录其二。 二分法: 你不能在有限的时间穿过无穷的点。在你穿过一定的距离的全部之前, 你必须穿过这个距离的一半。这样做下去就会陷入无止境, 所以在任何一定的空间中都有无穷个点, 你不能在有限的时间中一个接一个地接触无穷个点。

阿喀琉斯追不上大乌龟: 阿喀琉斯是古希腊《荷马史诗》中一个跑得最快的大英雄, 他怎么会跑不过大乌龟呢? 假定他的速度是乌 龟的10倍, 阿喀琉斯与乌龟赛跑的路程是1千米, 让乌龟先跑1 10 千 米, 然后让阿喀琉斯去追。于是问题来了。当阿喀琉斯追到1 10 千 米的地方, 乌龟又向前跑了 1 100千米, 当阿喀琉斯又追到 1 100 千米时, 乌龟又向前跑了 1 10000千米, … …, 这样一来, 一直追下 去, 阿喀琉斯会追上大乌龟吗? 之所以说这两个论证是悖论, 是因为我们知道, 无论是谁, 不管身高身低, 只要一迈步, 都可以在有限的时间越过无穷多个点; 无论是谁, 都不会相信大英雄阿喀琉斯竟会跑不过大乌龟。然而在当时的人们的知识围, 却找不出芝诺的论证错在什么地方。 1 . 1 芝诺悖论的数学意义 芝诺的“二分法” 和“ 阿喀琉斯追不上大乌龟”的论证, 本意是要用结论的荒谬性来否定其前提关于时空的可无限分割的观点, 该两个论证与另外两个论证(“ 飞箭” 与“ 运动场” ) 组合得出了时空既是不可无限分割, 又是可以无限分割的矛盾结论。“ 芝诺悖论” 促进了以严格的思维规律为研究对象的逻辑学和以严格的求证思想为基础的数学的发展。芝诺论证问题的方法是我们今天数学中仍在使用的反证法。可以说, 这是对反证法的最早的运用。大家知道, 当一个数学命题无法直接证明时, 我们就求助于反证法。

几何概型

紧扣“等可能”,突破几何概型教学的难点 前一阵在《中学数学教学参考》上看到这样一个例子: 1.等腰RtΔABC中,在斜边AB上任取一点M,求AM小于AC的概率 2.等腰RtΔABC中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC的概率 前者的概率是,后者的概率是 这两个看上去很相近的问题,答案为什么会不同呢?这个问题引起学生的很多的困惑.其实,要解决它,还得回到几何概型的定义. 几何概型的定义是:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域Ω内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件A的发生则理解为恰好取到上述区域内的某个指定区域D中的点,这里的区域可以是线段,平面图形,立体图形等.用这样的方法处理随机试验,称为几何概型. 从几何概型的定义我们可以看出:解决几何概型问题的基本步骤是:(1)找出等可能基本事件;(2)对应几何图形(所有等可能基本事件所在的区域Ω和随机事件中等可能基本事件所在的区域A);(3)由区域确定测度. 第一个事件所对应的等可能基本事件应该是在线段AB上随机取一点,这一点落在这个线段上是等可能的. 第二个事件所对应的等可能基本事件应该是在直角区域内任取一条射线,显然若射线等可能出现在直角区域内,则点M就不可能等可能出现在线段AB上. 如何确定等可能基本事件? 抓住“任意”、“随机”等词,确定等可能的基本事件空间. 贝特朗悖论:

几何概率是十九世纪末新发展起来的一门学科,使很多概率问题的解决变得简单而不用运用微积分的知识.然而,1899年,法国学者贝特朗提出了所谓“贝特朗悖论”,矛头直指几何概率概念本身: 在一个圆内随机地画一条弦,它的长度大于该圆内接等边三角形边长的概率是多少? 从不同方面考虑,可得不同结果: (1)由于对称性,可预先指定弦的方向.作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长.所有交点是等可能的,则所求概率为 1/2 . (2)由于对称性,可预先固定弦的一端.仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求.所有方向是等可能的,则所求概率为1/3 . (3)弦被其中点位置唯一确定.只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求.中点位置都是等可能的,则所求概率为1/4. 这导致同一事件有不同概率,因此为悖论. 得到三种不同的结果,是因为在取弦时采用了不同的等可能性假设:在第一种解法中则假定弦的中点在直径上均匀分布;在第二种解法中假定端点在圆周上均匀分布,而第三种解法中又假定弦的中点在圆内均匀分布.这三种答案是针对三种不同的随机试验,对于各自的随机试验而言,它们都是正确的. 三个结果都正确!——这就是让老师和学生感到迷惑不解的原因. 这一悖论揭示了几何概率在19世纪刚兴盛时期存在着其逻辑基础的脆弱性,也反映出古典概率有着相当的局限.这也推动了20世纪概率论公理化工作的早日到来. 关于这个悖论有很多种讨论,在此不一一赘述.老师们只需明白的是确定“等可能基本事件”的重要性,在解决几何概型问题时,必须找准观察角度、明确随机选择的意义、判断好基本事件的等可能性. 如何对应几何图形? 有的问题,几何特征较为明显,能迅速找到相应的几何图形,计算其测度.但有的问题中,找到相应的几何图形较为困难.如: 例.一家快递公司的投递员承诺在上午9:00—10:00之间将一份文件送到某单位.

对悖论的理解

对悖论的理解 一、什么是悖论 悖论,在物理学中也常称为佯谬。在英语中它们是同一个词paradox,指那些与常识相抵触、自相矛盾的反论,有的“似非而是”,又有的“似是而非”。严格说起来,佯谬只是悖论的一种,而且是其中最主要的一种,现在在自然科学工作者中几乎成了悖论的同义语。所谓佯谬,字面上的意思就是“假的谬误”,这是一些看起来是错的,实际上却是对的,即“似非而是”的那样一些论断。另外还有两种形式的悖论,我们把它总归为第二类。其一是在本来意义上的自相矛盾的反论。悖者,违背,违反之意也。如果对所考虑的某件事情,这样分析会得出一种结论,那样分析又会得出另一种结论,陷入左右为难,自相矛盾的境地,这就构成了悖论。其二则是那些真正错误的论断,可看起来似乎是对的,即“似是而非”,就是我们通常所说的诡辩。这与香港的黄展骥先生在“构成‘说谎者’悖论的两个矛盾———逻辑自身消解不了逻辑矛盾!”一文中把悖论定义为挑战常识的“大是若非”的卓论和“大非若是”的谬论的观点是一致的。 第一类,大是若非者,落实在“是”上,似非而是。数学史上导致三次里程碑式发现的悖论———希帕索斯(或毕达哥拉斯)无理数悖论(有些数不能表示成整数之比)、贝克莱无穷小悖论(无穷小量既等于零又不等于零)、罗素集合论悖论(可构造一个集合A,A∈A当且仅当A∈A)。前两次悖论的消解分别扩展了数的系统并引发了欧几里德几何公理系统和亚里斯多德逻辑体系的建立;将微积分建立在严格的极限理论基础上,发展了严密的数学分析学科;第三次悖论的余波至今未平,它推动了数理逻辑的发展,导致了哥德尔不完全性定理(在包含初等数论的形式公理系统中,至少存在着一个不可判定命题,该命题本身和它的否定命题在这个系统中都是无法证明的)。还有量子力学中的三大佯谬———EPR佯谬、薛定谔的猫、维格纳的朋友,以及导致狭义相对论发轫的光速佯谬(相向传播的两束光,它们的相对速度仍然是光速———或者与其等价的追光佯谬),导致广义相对论诞生的双生子佯谬,导致现代宇宙学诞生的奥尔伯斯夜黑佯谬等。当然,随着理论的发展,它们也都将不再成为悖论了。 第二类大非若是者,落实在“非”上,似是而实非。伊壁尼门德的说谎者悖论(“我说的这句话是谎话”)、罗素的理发师悖论(塞维利亚的男人可分两类,第一类是自己给自己刮脸的,第二类是自己不给自己刮脸的,凡自我刮脸的理发师就不给他刮脸,而不自己给自己刮脸的则理发师给他刮脸。那么理发师是否自己给自己刮脸呢?),芝诺悖论(善跑者追不上乌龟),公孙龙悖论(白马非马,因为马是形体的名称,而白是颜色的名称,形体不是颜色,所以白马不是马),芝诺的飞矢不动悖论等都可归入这类。说谎者悖论和理发师悖论在塔尔斯基指出应区分对象语言(“被谈论”的语言)和元语言(用来“谈论”对象的语言)后,从语义学上得到了澄清。实际上,“我这句话是假的”,这个语句是一个带有自我指涉的复合语

十大数学悖论

… 十大数学悖论 1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 2.说谎者悖论:公元前6世纪,古希腊克里特岛的

哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。:

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 3.跟无限相关的悖论: {1,2,3,4,5,…}

是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗 4.伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB 上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么 5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天

悖论大全

老虎悖论是博弈论中一个著名的逻辑悖论。 故事 国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王 对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老 虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在 第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。” 悖论分析 如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步? 1.主张错在第一步 如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。 首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推

理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即 囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门 里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。 然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理: 由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。 A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在 这个前提下不可能知道。囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。 B.如果相信国王是会错的: 囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢? 所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要 打开第一个门。 因此,国王应且只应放到第一个门中,则国王必胜。 推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。 2.主张错在第二步 故事中的囚犯最后决定相信“没有老虎”。但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。 既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。前提二、老虎如果在第五扇门时,可预料。前提三、老虎不在第五扇门时,就一定在第四扇门。前提四、老虎如果在第四扇门时,可预料。结论:前提互相矛盾。 请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、 或是更多: A.老虎可预料。 B.老虎如果在第五扇门时,不可预料。 C.老虎不在第五扇门时,也不一定在第四扇门。 D.老虎如果在第四扇门时,不可预料。 二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往 前门推是错误的,因为前提中包含“已经开了三扇空门”)。所以可能性只有一个:老虎可预料。但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。 这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于 一个可能性,结果帮国王圆谎罢了。 3.主张错在最后一步 如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。可以列成以下状况:

相关文档
相关文档 最新文档