文档库 最新最全的文档下载
当前位置:文档库 › 负染色_核壳型自交联聚丙烯酸酯乳液的成膜性能

负染色_核壳型自交联聚丙烯酸酯乳液的成膜性能

负染色_核壳型自交联聚丙烯酸酯乳液的成膜性能
负染色_核壳型自交联聚丙烯酸酯乳液的成膜性能

 第25卷第1期高分子材料科学与工程

Vol.25,No.1 2009年1月

POL YM ER MA TERIAL S SCIENCE AND EN GIN EERIN G

Jan.2009

核壳型自交联聚丙烯酸酯乳液的成膜性能

张光华1,2,王义伟1,朱军峰1,崔 萌1

(1.陕西科技大学化学与化工学院,陕西西安710021; 2.陕西省轻化工助剂重点实验室,陕西西安710021)

摘要:运用粒子结构设计原理,合成了核壳型自交联聚丙烯酸酯乳液,并对其成膜性能进行了考察,探讨了温度、乳化剂及胶乳结构对成膜性能的影响,研究表明,成膜温度、乳化剂、胶乳结构,包括核壳比例,交联单体比例都对成膜的性能有直接的影响。成膜的最佳条件是成膜温度在80℃,乳化剂用量为4%(质量分数),核壳比1∶1,交联单体的用量10%为

(质量分数)。

关键词:核壳乳液;自交联;丙烯酸酯;成膜性能

中图分类号:TQ316.33+4 文献标识码:A 文章编号:100027555(2009)0120071204

收稿日期:2007211206

基金项目:陕西省教育厅自然科学专项(06J K346)

通讯联系人:张光华,主要从事功能高分子的研究, E 2mail :zhanggh @https://www.wendangku.net/doc/2a16937383.html,

自交联丙烯酸乳液具有成膜性能好、使用方便,活性基团可分布在乳液粒子表面或表面附近,从而自交联反应更容易、成膜强度高。这其中又以含有环氧基团的丙烯酸共聚胶乳更好[1]。核壳型乳液形成的涂膜具有两相的结构,合理的结构组成可提供材料优异的使用性能。相对于均一组成的乳液,核壳型乳液具有更为优良的成膜性能和稳定性。本文根据分子设计原理,运用新的聚合型乳化剂合成了一种核壳型自交联丙烯酸酯乳液,并对其成膜性能进行探讨,考察了核壳型自交联胶乳的成膜及其影响因素,剖析了相结构组成变化对涂膜性能的影响[2]。1 实验部分1.1 药品与设备

甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸羟乙酯、过硫酸钾、亚硫酸氢钠、十二烷基硫酸钠(SL S )、OP 210:均为分析纯试剂;丙烯酸缩水甘油酯(GMA ):DNS 286,进口分装;H 2600透射电镜、聚四氟乙烯成膜板。1.2 乳液制备1.2.1 种子乳液的制备[3]:在装有搅拌的干燥三口烧瓶里,加入甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸缩水甘油酯、蒸馏水、乳化剂,搅拌乳化30min 。将三口烧瓶中的乳液倒出80%在滴液漏斗中并加入亚硫酸氢钠溶液,摇匀。在三口烧瓶中剩下约20%的乳液加入过硫酸钾溶液和碳酸氢钠溶液。水浴加热,将温度

控制在65℃,滴加混有亚硫酸氢钠的预乳液,控制速度,反应大约2h ,滴加完后保温2h 。备用。

1.2.2 核壳乳液的制备:将乳化剂、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸羟乙酯、水混合在一起,搅拌乳化约30min ,并加入亚硫酸氢钠溶液,放入滴液漏斗。向种子乳液中加入过硫酸钾溶液和碳酸氢钠溶液,将壳层预乳液滴加到种子乳液中,将温度控制在65℃,滴加完后保温2h ,即可制得核壳型自交联丙烯酸酯乳液。1.2.3 可聚合表面活性剂DNS 286:

常规表面活性剂以物理的方式附在乳液粒子的表面,形成乳液粒子的弱边界层,使乳液对温度、p H 值和机械剪切和多价阳离子较为敏感,致使储运和后续加工变得艰难。在使用过程中,表面活性剂会不断向表面迁移,从而使制品的耐水性、粘附性、光泽和流平性、耐擦洗性等一系列物化性能明显下降。而可聚合型表面活性剂如DNS 286,分子中含有双键,能够与聚合单体发生聚合反应以

共价键的方式键合到乳液粒子上,不迁移,不形成弱边界层,从而提高了乳液的稳定性,减少了乳胶膜对水的敏感性等[4]。其结构如下:

1.3 性能检测

1.3.1 乳液形态:对目标乳液进行负染色,用H 2600

透射电镜进行观察。

1.3.2 膜吸水率的测定:将膜晾干后称量(m 1),在蒸馏水中浸泡48h ,取出,用滤纸快速揩去表面水,并立即称量(m 2),单位质量的吸水率:ω

ω=(m 2-m 1)/m 11.3.3 力学性能测定:乳液干燥成膜后,将膜在50%

的湿度下平衡48h ,室温下用XWW 220B 万能试验机(承德金建检测仪器公司),按国家标准G B/T1040-1992测量弹性模量和断裂伸长率,拉伸速度50mm/min ,标距30mm 。

1.3.4 交联度测定:取一定质量的膜(m a ),置于索氏

提取器中,用丙酮提取2h ,取出烘干后准确称量(m b ),定义抽提后质量与抽提前质量之比为交联度

G 。

G =m b /m

a

Fig.1 TEM photographs of the core 2shell emulsion

2 结果与讨论2.1 乳液形态

由Fig.1可看出乳液粒子呈球形,并且分为两层,其中比较明亮的部分是核层,外层的暗圈是壳层。Fig.1(a )乳化剂用量3%,放大倍率1×104,其粒径在100nm ~170nm 之间。Fig.1(b )乳化剂用量8%,放大倍率也是1×104,其粒径在80nm ~100nm 之间。可以看出Fig.1(b )乳液要比Fig.1(a )乳液粒径小且分布均匀。从外形上看,Fig.1(b )的形状更接近于球形且规整,核壳结构更加均匀,壳层厚度均匀一致,Fig.1(a )核壳结构厚度不均匀,有的粒子壳层并没有完全包裹核层。要制备结构明显,稳定的核壳乳液,在成核反应过程中,充分控制好乳化剂的用量,可使其能充分地覆盖乳胶粒表面而起稳定作用,在成壳乳液聚合反应中没有多余的乳化剂,没有新的胶束生成,滴加的单体全部参加成核反应,从而保证了胶核的窄分散性;在核壳种子乳液聚合的第2阶段反应中,单体的加

料方式对所形成的核壳乳胶粒子的结构形态也有很大

的影响。为了抑制壳制备过程中产生新的核微粒,必须控制单体的滴加速率,使生成壳的聚合反应处于饥饿状态,这是决定核壳乳液聚合是否成功的关键。若单体的滴加速度过快,反应体系中的单体来不及吸附到核粒子表面上,而在水相中形成新的粒子,导致大量新粒子的产生。2.2 乳液成膜过程

乳液的成膜过程可以分为3个阶段[5],乳液的粒

子相互距离较远,接触机会较少,随着水分的挥发,原先保持分散状态的乳胶粒子逐渐靠拢,但仍可自由移动,随着水分的进一步挥发,乳胶粒子形成不可逆的相互接触,粒子变形,达到最紧密堆积状态。在此阶段聚合物界面分子链相互扩散、渗透、缠绕,形成具有一定力学性能的膜。在这个阶段会发生一系列的化学交联反应

,主要为以下两个:

Fig.2 E ffects of temperature on degree of cross 2linking and w ater ab 2

sorption

2.3 温度对膜性能的影响

成膜温度对乳液成膜及性能有重要影响[6],当乳液涂附于基板时,随着水分的挥发,其可能形成连续胶膜,也可能形成有裂纹的膜或粉末状物质。由Fig.2和Fig.3可以看出,随着成膜温度的升高,膜的交联度增大,吸水率减小,力学性能提高。在不同的温度下,胶乳粒子处于不同的态,玻璃态时,胶乳粒子很难变形,升温可以使胶乳粒子处于高弹态,甚至是粘流态,

27高分子材料科学与工程2009年 

有助于粒子扩散融合,减小膜内空隙和缺陷。另一方面,升温有助于核壳之间发生交联反应,提高交联密度,从而提高膜的性能。因此,随着温度的增加,聚合物粒子间相互融合的程度加强,成膜更加致密,交联度提高。膜的性能也随之提高

Fig.3 E ffects of temperature on elongation at break and

modulus of elas 2

ticity

Fig.4 E ffects of emulsif ier on mech anical properties

Fig.5 E ffects of emulsif ier on w ater absorption

2.4 乳化剂对膜性能的影响

由Fig.5可以看出随着乳化剂用量的增加,乳胶

膜的吸水性增加,这是由于在固化过程中,乳化剂以固体形态存在于乳胶膜中,在浸泡过程中,乳化剂逐渐迁移到表面并溶入水中,水分子则不断进入膜内,所以随着乳化剂的增多,吸水率也不断增大。由Fig.4可以看出膜的断裂伸长率随乳化剂用量增加而增大,并且当乳化剂超过3%时增速变慢。这是因为随着乳化

剂的增多,乳胶粒子变小,扩散速度加快,更利于胶乳的扩散融合,从而提高了膜的韧性。但膜的弹性模量却表现出先增后减的趋势,在4%时达到最大值。考察乳液成膜的耐水性发现DNS 286能降低膜的吸水率。如在SL S/OP 210与DNS 286/OP 210均为1∶1,用量4%的条件下,用SL S 的膜吸水率为21.3%,而用DNS 286的膜吸水率仅为16.7%。

Fig.6 E ffects of function monomer on mech anical properties

T ab.1 Film characteristics of different core 2shell ra 2

tio composite latexes

Core 2shell ratio Forming film Modulus of elasticity (MPa )

Elongation at break (%)1∶1Y 594.1713.265∶4Y 343.7610.255∶3Y brickle

brickle

2∶1

N

2.5 胶乳结构对膜性能的影响

胶乳结构包括核壳比例,交联单体以及软硬单体的比例,这些都对膜性能有直接的影响。核壳型乳液成膜后,其壳层聚合物就像胶粘剂一样把核层聚合物连在一起;如果壳层的量比较多时,核层镶嵌在壳层形成的连续相中,整个膜在常温下处于高弹状态,膜的韧性好,但强度低,核壳比适中时,壳层既能形成连续相,又能使核层粒子比较紧密地排列在一起,强度和韧性都达到一个理想的水平;由Tab.1看出,当核壳比较大时,如核壳比为2∶1时,由于壳层含量很少,形成的核壳乳液壳层很薄,或根本不能完全覆盖核层的表面,粒子相互靠拢聚并时,壳层不能充分的变形融合,而室温下核层硬相又不能变形,所以成膜乳液粒子形成紧密堆积后,变形小,基本保持乳液粒子的球形,粒子都呈规整的圆球;随着壳层的增厚,软相增多,如核壳比为5∶4或1∶1,相互接触的粒子能充分地变形融合且聚合物分子链相互扩散,逐渐形成连续相,而不能变形融合的核层均匀地分散在壳层形成的连续相中。官能

3

7 第1期张光华等:核壳型自交联聚丙烯酸酯乳液的成膜性能

团单体的用量直接影响所得乳胶膜的交联点数目,

而直接影响力学强度,膜的韧性和刚性指标都在随交联单体含量增加而不断上升,如Fig.6所示。实验中发现,交联单体含量达到10%,乳液才具有好的室温成膜性,但大于16%聚合凝胶率则很高。

3 结论

核壳型自交联丙烯酸酯乳液的膜性能,受到多种因素的影响。随着成膜温度的升高,膜的交联度增大,吸水率减小,力学性能提高。乳化剂增多,膜的吸水率升高,韧性增加。胶乳结构的变化,包括核壳比例,交联单体比例都对最终膜的性能有直接的影响。成膜的最佳条件是成膜温度在80℃,乳化剂用量4%,核壳比1∶1,交联单体的用量10%,过高的交联单体用量对乳液的稳定性有破坏作用。

参考文献:

[1] 余樟清,李伯耿,潘祖仁.涂料用可交联聚丙烯酸酯乳液的研究

进展[J].高分子通报,1999,(2):24232.

YU Z Q,L I B G,PAN Z R.Research advance of the crosslinkable acrylate latex using for coatings[J].Polymer Bulletin,1999,(2): 24232.

[2] 张心亚,瞿金清,蓝仁华,等.核壳聚合与核壳结构聚合物乳液

[J].现代化工,2002,22(9):58261.

ZHAN G X Y,ZHAI J Q,LAN R H,et al.Core2shell polymerization and core2shell structure polymeric emulsion[J].Modern Chemical In2 dustry,2002,22(9):58261.

[3] 郭睿岚,赵彬,寇奕,等.多层核壳丙烯酸酯乳液的合成及其性

能的研究[J].高分子材料科学与工程,2003,19(2):1072110.

GUO R L,ZHAO B,KOU Y,et al.The synthesis of core2shell acrylates composit eemulsions and the research of its apecial properties [J].Polym.Mater.Sci.&Eng.,2003,19(2):1072110.

[4] 张洪涛,任天斌.可聚合乳化剂的类型及乳液聚合[J].粘结,

1999,(2):28230.

ZHAN G H T,REN T B.Classification of polymerizable emulsifiers and emulsion polymerization[J].Adhesion in China,1999,(2):282

30.

[5] WINNIK M https://www.wendangku.net/doc/2a16937383.html,tex film formation[J].Curr Opin.Colloid Inter2

face Sci.,1997,2(2):1922199.

[6] 袁显永.核壳胶乳的成膜及涂膜性能研究[D].郑州大学,2006.

Film2Forming Properties of Cross2Linking Acrylate Emulsion with Core2Shell Structure

ZHAN G Guang2hua1,2,WAN G Y i2wei1,ZHU J un2feng1,CU I Meng1

(1.College of Chem ist ry and Chem ical Engi neeri ng,S haanxi U niversity of Science&Technology,Xi’an

710021,Chi na; 2.S haanxi Key L aboratory of Indust rial A dditives,Xi’an710021,Chi na)

ABSTRACT:A cross2linking polyacrylate emulsion with core2shell structure was synthesized based on the principle of designing particle structure in this paper and the film performance was also studied.The influences of emulsifiers, temperature and latex structure on the film performance have been discussed.Study shows there are some directly in2 fluences of film for ming temperature,emulsifiers and latex structure including core/shell ratio and cross2linking monomer ratio on the film performance.The best conditions include,the temperature is80℃,emulsifier ratio is 4%,Core/shell ratio is1∶1and Cross2linking monomer ratio is10%.

K eyw ords:core2shell emulsion;cross2linking;polyacrylate;film properties

47高分子材料科学与工程2009年 

PP材料性能和用途

PP材料性能和用途 聚丙烯成型工艺 PP聚丙烯 典型应用范围 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如剪草机和喷水器等)。 注塑模工艺条件 干燥处理:如果储存适当则不需要干燥处理。熔化温度:220~275C,注意不要超过275C。 模具温度:40~80C,建议使用50C。结晶程度主要由模具温度决定。注射压力:可大到1800bar。 注射速度:通常,使用高速注塑可以使内部压力减小到最小。如果制品表面出现了缺陷,那么应使用较高温度下的低速注塑。 流道和浇口:对于冷流道,典型的流道直径范围是4~7mm。建议使用通体为圆形的注入口和流道。所有类型的浇口都可以使用。典型的浇口直径范围是1~1.5mm,但也可以使用小到0.7mm的浇口。对于边缘浇口,最小的浇口深度应为壁厚的一半;最小的浇口宽度应至少为壁厚的两倍。PP材料完全可以使用热流道系统。 化学和物理特性: PP是一种半结晶性材料。它比PE要更坚硬并且有更高的熔点。由于均聚物型的PP温度高于0C以上时非常脆因此许多商业的PP材料是加入1~4%乙烯的无规则共聚物或更高比率乙烯含量的钳段式共聚物。聚物型的PP材料有较低的热扭曲温度(100C)、低透明度、低光泽度、低刚性,但是有有更强的抗冲击强度。PP的强度随着乙烯含量的增加而增大。PP的维卡软化温度为150C。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。通常,采用加入玻璃纤维、金属添加剂或热塑橡胶的方法对PP进行改性。PP的流动率MFR范围在1~40。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚物型的强度比均聚物型的要高。由于结晶,PP的收缩率相当高,一般为1.8~2.5%。并且收缩率的方向均

材料物理性能及材料测试方法大纲、重难点

《材料物理性能》教学大纲 教学内容: 绪论(1 学时) 《材料物理性能》课程的性质,任务和内容,以及在材料科学与工程技术中的作用. 基本要求: 了解本课程的学习内容,性质和作用. 第一章无机材料的受力形变(3 学时) 1. 应力,应变的基本概念 2. 塑性变形塑性变形的基本理论滑移 3. 高温蠕变高温蠕变的基本概念高温蠕 变的三种理论 第二章基本要求: 了解:应力,应变的基本概念,塑性变形的基本概念,高温蠕变的基本概念. 熟悉:掌握广义的虎克定律,塑性变形的微观机理,滑移的基本形态及与能量的关系.高温蠕变的原因及其基本理论. 重点: 滑移的基本形态,滑移面与材料性能的关系,高温蠕变的基本理论. 难点: 广义的虎克定律,塑性变形的基本理论. 第二章无机材料的脆性断裂与强度(6 学时) 1.理论结合强度理论结合强度的基本概念及其计算 2.实际结合强度实际结合强度的基本概念 3. 理论结合强度与实际结合强度的差别及产生的原因位错的基本概念,位错的运动裂纹的扩展及扩展的基本理论 4.Griffith 微裂纹理论 Griffith 微裂纹理论的基本概 念及基本理论,裂纹扩展的条件 基本要求: 了解:理论结合强度的基本概念及其计算;实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件熟悉:理论结合强度和实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件. 重点: 裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件难点: Griffith 微裂纹理论的 基本概念及基本理论 第三章无机材料的热学性能(7 学时) 1. 晶体的点阵振动一维单原子及双原子的振动的基本理论 2. 热容热容的基本概念热容的经验定律和经典理论热容的爱因斯坦模型热容的德拜模型 3.热膨胀热膨胀的基本概念热膨胀的基

PP塑胶材料特性

PP塑胶材料特性 1.PP化学名称:聚丙烯,英文名称:Polypropylene,又名百折胶;缩水率:0.012至 0.018%; PP相对密度:0.9-0.91克/立方厘米 2.PP外观:未着色时呈白色半透明,蜡状;本色、圆柱状颗粒,颗粒光洁,粒子的尺寸在 任意方向上为2mm~5mm,无臭无毒,无机械杂质 3.PP用途:适于制作一般机械零件,耐腐蚀零件和绝缘零件;常见制品:盆、桶、家具、薄 膜、编织袋、瓶盖、汽车保险杠、电视机、收音机外壳、电器绝缘材料、防腐管道、板材、贮槽、扁丝、纤维、包装薄膜、风管、洗衣机框架及机盖、冰箱门衬垫、剪草机、喷水器。 4.PP成型性能 a.结晶料,吸湿性小,易发生融体破裂,长期与热金属接触易分解. b.流动性好,但收缩范围及收缩值大,易发生缩孔.凹痕,变形,流道可作小些,排气不超过3丝 c.冷却速度快,浇注系统及冷却系统应缓慢散热,并注意控制成型温度.料温低方向方向性明显. 低温高压时尤其明显,模具温度低于50度时,塑件不光滑,易产生熔接不良,留痕,90度以上易发生翘曲变形 d.塑料壁厚须均匀,避免缺胶,尖角,以防应力集中 5.PP的改性:可通过填充、增强、共混、共聚、交联来改性。添加碳酸钙、滑石粉、无机矿物等填料可提高PP(聚丙烯)的刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加热塑性弹性体TPE/TPR或橡胶等可提高冲击性能、透明性等等 6.PP注塑模工艺条件 干燥处理:如果储存适当则不需要干燥处理。预干燥温度在80℃左右。 熔化温度:220-275C,注意不要超过275C。 模具温度:40-80C,建议使用50C。结晶程度主要由模具温度决定。 注塑温度: 180-200℃之间, 注射压力:注塑压力在68.6-137.2MPa,可大到1800bar。 注射速度:使用高速注塑可以使内部压力减小到最小。如果制品表面出现了缺陷,那么 应使用较高温度下的低速注塑。 流道和浇口:对于冷流道,典型的流道直径范围是4~7mm。建议使用通体为圆形的注入 口和流道。所有类型的浇口都可以使用。典型的浇口直径范围是1~1.5mm,但也可以使用 小到0.7mm的浇口。对于边缘浇口,最小的浇口深度应为壁厚的一半;最小的浇口宽度应 至少为壁厚的两倍。PP材料完全可以使用热流道系统。要避免收缩痕,就要用大而圆的注 口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。PP制造的产品,厚度不能超 过3mm,否则会有气泡(厚壁制品只能用共聚PP)。

金属的物理性能测试

金属的物理性能测试 金属材料的性能一般可分为使用性能和工艺性能两大类。使用性能是指材料在工作条件下所必须具备的性能,它包括物理性能、化学性能和力学性能。物理性能是指金属材料在各种物理条件任用下所表现出的性能。包括:密度、熔点、导热性、导电性、热膨胀性和磁性等。化学性能是指金属在室温或高温条件下抵抗外界介质化学侵蚀的能力。包括:耐蚀性和抗氧化性。力学性能是金属材料最主要的使用性能,所谓金属力学性能是指金属在力学作用下所显示与弹性和非弹性反应相关或涉及应力—应变关系的性能。它包括:强度、塑性、硬度、韧性及疲劳强度等。 1密度:密度就是某种物质单位体积的质量。 2热性能:熔点:金属材料固态转变为液态时的熔化温度。 比热容:单位质量的某种物质,在温度升高1℃时吸收的热量或温度降低1℃时所放出的热量。 热导率:在单位时间内,当沿着热流方向的单位长度上温度降低1℃时,单位面积容许导过的热量。 热胀系数:金属温度每升高1℃所增加的长度与原来长度的比值。 3电性能: 电阻率:是表示物体导电性能的一个参数。它等于1m长,横截面积为1mm2的导线两端间的电阻。也可用一个单位立方体的两平行端面间的电阻表示。 电阻温度系数:温度每升降1℃,材料电阻的改变量与原电阻率之比,称为电阻温度系数。 电导率:电阻率的倒数叫电导率。在数值上它等于导体维持单位电位梯度时,流过单位面积的电流。

4磁性能: 磁导率:是衡量磁性材料磁化难易程度的性能指标,它是磁性材料中的磁感应 强度(B)和磁场强度(H)的比值。磁性材料通常分为:软磁材料(μ值甚高,可达数万)和硬磁材料(μ值在1左右)两大类。 磁感应强度:在磁介质中的磁化过程,可以看作在原先的磁场强度(H)上再 加上一个由磁化强度(J)所决定的,数量等于4πJ的新磁场,因而在磁介质中的磁场B=H+4πJ的新磁场,叫做磁感应强度。 磁场强度:导体中通过电流,其周围就产生磁场。磁场对原磁矩或电流产生作 用力的大小为磁场强度的表征。 矫顽力:样品磁化到饱和后,由于有磁滞现象,欲使磁感应强度减为零,须施 加一定的负磁场Hc,Hc就称为矫顽力。 铁损:铁磁材料在动态磁化条件下,由于磁滞和涡流效应所消耗的能量。 其它如力学性能,工艺性能,使用性能等。

渗透测试方案

渗透测试方案

四川品胜安全性渗透测试 测 试 方 案 成都国信安信息产业基地有限公司 二〇一五年十二月

目录 目录 (1) 1.引言 (3) 1.1.项目概述 (3) 2.测试概述 (3) 2.1.测试简介 (3) 2.2.测试依据 (3) 2.3.测试思路 (4) 2.3.1.工作思路 4 2.3.2.管理和技术要求 4 2.4.人员及设备计划 (5) 2.4.1.人员分配 5 2.4.2.测试设备 5 3.测试范围 (6) 4.测试内容 (9) 5.测试方法 (11) 5.1.渗透测试原理 (11) 5.2.渗透测试的流程 (11) 5.3.渗透测试的风险规避 (12) 5.4.渗透测试的收益 (13) 5.5.渗透测试工具介绍 (13) 6.我公司渗透测试优势 (15) 6.1.专业化团队优势 (15) 6.2.深入化的测试需求分析 (15) 6.3.规范化的渗透测试流程 (15) 6.4.全面化的渗透测试内容 (15)

7.后期服务 (17)

1. 引言 1.1. 项目概述 四川品胜品牌管理有限公司,是广东品胜电子股份有限公司的全资子公司。依托遍布全国的5000家加盟专卖店,四川品牌管理有限公司打造了线上线下结合的O2O购物平台——“品胜?当日达”,建立了“线上线下同价”、“千城当日达”、“向日葵随身服务”三大服务体系,为消费者带来便捷的O2O购物体验。 2011年,品胜在成都温江科技工业园建立起国内首座终端客户体验馆,以人性化的互动设计让消费者亲身感受移动电源、数码配件与生活的智能互联,为追求高品质产品性能的用户带来便捷、现代化的操作体验。 伴随业务的发展,原有的网站、系统、APP等都进行了不同程度的功能更新和系统投产,同时,系统安全要求越来越高,可能受到的恶意攻击包括:信息篡改与重放、信息销毁、信息欺诈与抵赖、非授权访问、网络间谍、“黑客”入侵、病毒传播、特洛伊木马、蠕虫程序、逻辑炸弹、APT攻击等。这些攻击完全能造成信息系统瘫痪、重要信息流失。 2. 测试概述 2.1. 测试简介 本次测试内容为渗透测试。 渗透测试:是为了证明网络防御按照预期计划正常运行而提供的一种机制。 2.2. 测试依据 ※G B/T 25000.51-2010《软件工程软件产品质量要与评价(SQuaRE) 商业现货(COTS)软件产品的质量要求和测试细则》 ※G B/T 16260-2006《软件工程产品质量》

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

渗透测试方案讲解

四川品胜安全性渗透测试 测 试 方 案 成都国信安信息产业基地有限公司 二〇一五年十二月

目录 目录 (1) 1. 引言 (2) 1.1. 项目概述 (2) 2. 测试概述 (2) 2.1. 测试简介 (2) 2.2. 测试依据 (2) 2.3. 测试思路 (3) 2.3.1. 工作思路 (3) 2.3.2. 管理和技术要求 (3) 2.4. 人员及设备计划 (4) 2.4.1. 人员分配 (4) 2.4.2. 测试设备 (4) 3. 测试范围 (5) 4. 测试内容 (8) 5. 测试方法 (10) 5.1. 渗透测试原理 (10) 5.2. 渗透测试的流程 (10) 5.3. 渗透测试的风险规避 (11) 5.4. 渗透测试的收益 (12) 5.5. 渗透测试工具介绍 (12) 6. 我公司渗透测试优势 (14) 6.1. 专业化团队优势 (14) 6.2. 深入化的测试需求分析 (14) 6.3. 规范化的渗透测试流程 (14) 6.4. 全面化的渗透测试内容 (14) 7. 后期服务 (16)

1. 引言 1.1. 项目概述 四川品胜品牌管理有限公司,是广东品胜电子股份有限公司的全资子公司。依托遍布全国的5000家加盟专卖店,四川品牌管理有限公司打造了线上线下结合的O2O购物平台——“品胜?当日达”,建立了“线上线下同价”、“千城当日达”、“向日葵随身服务”三大服务体系,为消费者带来便捷的O2O购物体验。 2011年,品胜在成都温江科技工业园建立起国内首座终端客户体验馆,以人性化的互动设计让消费者亲身感受移动电源、数码配件与生活的智能互联,为追求高品质产品性能的用户带来便捷、现代化的操作体验。 伴随业务的发展,原有的网站、系统、APP等都进行了不同程度的功能更新和系统投产,同时,系统安全要求越来越高,可能受到的恶意攻击包括:信息篡改与重放、信息销毁、信息欺诈与抵赖、非授权访问、网络间谍、“黑客”入侵、病毒传播、特洛伊木马、蠕虫程序、逻辑炸弹、APT攻击等。这些攻击完全能造成信息系统瘫痪、重要信息流失。 2. 测试概述 2.1. 测试简介 本次测试内容为渗透测试。 渗透测试:是为了证明网络防御按照预期计划正常运行而提供的一种机制。 2.2. 测试依据 ※GB/T 25000.51-2010《软件工程软件产品质量要与评价(SQuaRE) 商业现货(COTS)软件产品的质量要求和测试细则》 ※GB/T 16260-2006《软件工程产品质量》

聚丙烯的材料性能资料

中英名称 中文名称 (聚丙烯)[1] 英文名称 Polypropylene 性能特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。 它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。 (2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下, 由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性, 如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。 (5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。(6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 PP聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。PP聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。

水泥物理性能检验方法

水泥物理性能检验方法 1、目的 根据国家标准检验水泥标准稠度用水量、凝结时间、安定性是否符合国家的标准要求。 2、检验范围 a)通用硅酸盐水泥; 3、引用国家标准 a)GBl75-2007 通用硅酸盐水泥 b)GB/Tl346-2011水泥标准稠度用水量、凝洁时间、安定性检验方法 c) GB/T1345-2005水泥细度检验方法 d) GB/T8074-2008比表面积测定方法 4、仪器设备 a)、标准稠度与凝结时间测定仪。 b),水泥净浆搅拌机(NJ-160) c)沸煮箱(FZ-3lA) d)雷氏夹 e)量筒(50ml,100m1) f)天平(DJ-10002 0.01g/1000g) g) 负压筛析仪(FSY-150G) 通用作业指导书文件代号HBYS/QC01— 2012

第2页共15页 主题:水泥物理性能检验方 法版次/修改1/0 发布日期:2012年2月18日 h) 所用仪器设备应保证经过相关部门的检定,且应检定合格达到相应的精度,并在有效期内使用。 5、人员和实验条件 检验人员应是通过省级或省级以上部门培训合格且取得相应上岗证书的技术人员,应了解本站的《质量手册》及相关程序文件的质量要求,能熟练操作检验仪器设备并能处理一般例外情况的发生。试验室的温度(20±2)℃相对温度大于50%;水泥试样,拌和水、仪器和用具温度应与试验一致;湿气养护箱温度为20℃±1℃,相 对湿度不低于90%。 6、样品 试验前应按照程序文件《样品收发管理制度》检查试验样品的来源、性质、规格等技术指标和处置程序是否符合国家的要求。若 不符合应退回样品登记室,联系委托方重新取样,若符合进入检验环节。 7、标准稠度用水量的测定:(标准法)GB/Tl346-2011 7.1标准稠度用水量用符合JC/T727按修改后维卡仪标尺刻度进行测定,此时仪器试棒下端应为空心试锥,装净浆

塑料力学性能测试标准大全-

塑料力学性能测试标准 GB/T 1039-1992塑料力学性能试验方法总则 plastics--General rules for the test method of mechannlcal properties GB1040 塑料拉伸试验方法 Plastics--Determination of tensile properties GB/T_1041-1992 塑料压缩性能试验方法 Plastics--Determination of compressive properties GB/T 1043-93 硬质塑料简支梁冲击试验方法 Plastics--Determination of charpy impact strength of rigid matericals GB/T 14153-1993硬质塑料落锤冲击试验方法通则 General test method for impact resistance of rigid plastics by means of falling weight GB/T 14484-1993 塑料承载强度试验方法 Test method for bearing strength of plastics GB/T 14485-1993 工程塑料硬质塑料板材及塑料件耐冲击性能试验方法、落球法Standard methods of testing for impact resistance of plats and pats made from englneering plastics by a ball(falling ball GB/T 15047-1994 塑料扭转刚性试验方法 Test method for stiffness proporties in tirsion of plastics GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法 Cellular plastics,rigid--Determination of compressive creep GB/T 12027-2004 塑料-薄膜和薄片-加热尺寸变化率试验方法 Plastics--film and sheeting-Determination of dimensional change on heating GB/T 2013525-1992 塑料拉伸冲击性能试验方法 Test method for tensile-impact property of plastics GB/T 11999-1989塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法 Plastics--Film and sheeting--Determination of tear resistance--Elmendorf method GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法 Cellular plastics--Tear resistance test for flexible materials

聚丙烯工艺参数

PP的注塑成型参数PP通称聚丙烯,因其抗折断性能好,也称“百折胶”。PP是一种半透明、半晶体的热塑性塑料,具有高强度、绝缘性好、吸水率低、热就形温度高、密度小、结晶度高等特点。改性填充物通常有玻璃纤维、矿物填料、热塑性橡胶等。 不同用途的PP其流动性差异较大,一般使用的PP流动速率介于ABS与PC之间。 1、塑料的处理 纯PP是半透明的象牙白色,可以染成各种颜色。PP的染色在一般注塑机上只能用色母料。在华美达机上有加强混炼作用的独立塑化元件,也可以用色粉染色。户外使用的制品,一般使用UV稳定剂和碳黑填充。再生料的使用比例不要超过15%,否则会引起强度下降和分解变色。PP注塑加工前一般不需特别的干燥处理。 2、注塑机选用 对注塑机的选用没有特殊要求。由于PP具有高结晶性。需采用注射压力较高及可多段控制的电脑注塑机。锁模力一般按3800t/m2来确定,注射量20%-85%即可。 3、模具及浇口设计 模具温度50-90℃,对于尺寸要求较高的用高模温。型芯温度比型腔温度低5℃以上,流道直径4-7mm,针形浇口长度,直径可小至。边形浇口长度越短越好,约为,深度为壁厚的一半,宽度为壁厚的两倍,并随模腔内的熔流长度逐肯增加。模具必须有良好的排气性,排气孔深,厚,要避免收缩痕,就要用大而圆的注口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。均聚PP制造的产品,厚度不能超过3mm,否则会有气泡(厚壁制品只能用共聚PP)。 4、熔胶温度 PP的熔点为160-175℃,分解温度为350℃,但在注射加工时温度设定不能超过275℃。熔融段温度最好在240℃。 5、注射速度 为减少内应力及变形,应选择高速注射,但有些等级的PP和模具不适用(人地幔现气泡、气纹)。如刻有花纹的表面出现由浇口扩散的明暗相间条纹,则要用低速注射和较高模温。 6、熔胶背压 可用5bar熔胶背压,色粉料的背压可适当调高。 7、注射及保压 采用较高注射压力(1500-1800bar)和保压压力(约为注射压力的80%)。大概在全行程的95%时转保压,用较长的保压时间。 8、制品的后处理 为防止后结晶产生的收缩变形,制品一般需经热水浸泡处理。 聚丙烯(PP) 料筒温度喂料区 30~50℃(50℃) 区 1 160~250℃(200℃) 区 2 200~300℃(220℃) 区 3 220~300℃(240℃) 区

环氧树脂胶的物理特性及测试方法

环氧树脂胶的物理特性及测试方法 1. 粘度 粘度为流体(液体或气体)在流动中所产生的内部磨擦阻力,其大小由物质种类、温度、浓度等因素决定。按GB2794-81《胶粘剂测定法(旋转粘度计法)》之规定,采用NOJ-79型旋转粘度计进行测定。其测试方法如下:先将恒温水浴加热到40℃,打开循环水加热粘度计夹套至40℃,确认40℃恒温后将搅拌均匀的A+B混合料倒入粘度计筒中(选取中筒转子)进行测定。 2. 密度 密度是指物质单位体积内所含的质量,简言之是质量与体积之比。按GB4472之规定采用比重瓶测定。相对密度又称比重,比重为某一体积的固体或液体在一定温度下的质量与相同体积在相同温度下水的质量之比值。测试方法: 用分析天平称取清洁干净的比重瓶的重量精确到0.001g,称量数为m1,将搅拌均匀的混合料小心倒入(或抽入)比重瓶内,倒入量至刻度线后,用分析天平称其重量,精确到0.001g,称量数为m2。 密度g/ml=(m2- m1)/V (V:比重瓶的ml数) 3. 沉淀试验:80℃/6h<1mm 测试方法:用500ml烧杯取0.8kgA料放入恒温80℃热古风干燥箱内烘6小时,观其沉淀量。 4. 可操作时间(可使用时间)测定方法: 取35g搅拌均匀的混合料,测其40℃时的粘度(方法同1粘度的测定)记录粘度值、温度时间、间隔0.5小时后,再进行测试。依次反复测若干次观其粘度变化情况。测试时料筒必须恒温40℃,达到起始粘度值一倍的时间,即为可操作时间(可使用时间)。 5. 凝胶时间的测定方法: 采用HG-1A凝胶时间测定仪进行测定。取1g左右的均匀混合料,使其均匀分布在预先加热到150±1℃的不锈钢板中心园槽中开动秒表,同时用不锈钢小勺不断搅拌,搅拌时要保持料在圆槽内,小勺顺时针方向搅拌,直到不成丝时记录时间,即为树脂的凝胶时间,测定两次,两次测定之差不超过5秒,取其平均值。 6. 热变形温度

马来酸酐等离子体聚合改性聚丙烯多孔膜的表面结构与亲水性

第25卷第1期高分子材料科学与工程 Vol.25,No.1 2009年1月 POL YM ER MA TERIAL S SCIENCE AND EN GIN EERIN G Jan.2009 马来酸酐等离子体聚合改性聚丙烯多孔膜的表面结构与亲水性 马 骏1,王 伟1,黄 健1,王晓琳2 (1.南京工业大学材料学院,江苏南京210009; 2.清华大学化学工程系,北京100084) 摘要:以马来酸酐为单体,采用低温等离子体聚合的方法对聚丙烯(PP )多孔膜的表面进行改性。红外光谱(FT 2IR )和扫描电镜(SEM )等结果表明,马来酸酐以双键聚合,同时伴随着酸酐的开环。低处理功率时以表面聚合为主,酸酐结构破坏较轻,延长聚合时间可以提高聚合量;高处理功率时以气相聚合为主,酸酐结构的破坏加剧,易产生交联结构。马来酸酐等离子体聚合物水解后可产生羧基,但水解作用并不完全,膜表面的亲水性与等离子体聚合条件及聚合物结构紧密相关。 关键词:等离子体聚合;马来酸酐;聚丙烯多孔膜;亲水化改性 中图分类号:TB383 文献标识码:A 文章编号:100027555(2009)0120016203 收稿日期:2007212212 基金项目:973资助项目(2003CB615701);国家自然科学基金资助项目(20476045)通讯联系人:黄 健,主要从事功能高分子材料研究, E 2mail :jhuang @https://www.wendangku.net/doc/2a16937383.html, 对于疏水性的聚合物多孔膜,水不容易通过膜的微孔通道,同时膜表面还易受到有机物的污染,这些因素限制了膜在水体系中的应用,因此有必要对其表面进行亲水化改性[1]。低温等离子体表面处理技术操作简便、经济、环保,只在材料的表面几个纳米至100nm 的区域产生物理或化学变化[2]。近年来发现等离子体处理作用能够深入多孔膜的膜孔[3],等离子体技术已成为聚合物多孔膜表面改性的重要手段。马来酸酐富含极性基团,适合于材料表面的亲水化处理[4]。本文以马来酸酐为单体,用低温等离子体聚合的方法,对聚丙烯多孔膜进行了表面改性。研究了等离子体聚合的时间、功率等工艺参数对改性表面的化学结构、形态结构及表面亲水性能的影响。1 实验部分 1.1 实验原料 聚丙烯(PP )中空纤维膜:浙江大学,外径290μm , 内径240μm ,孔隙率40%~50%,平均孔径0107μm ; 马来酸酐(MAH ):分析纯,上海凌峰化学试剂有限公司,减压蒸馏精制。1.2 膜表面的马来酸酐等离子体聚合 采用自制的低温等离子体发生器,频率13156MHz ,电容偶合式。反应器长15cm ,内径215cm 。在反应器底部放置固体的马来酸酐单体,中部放置聚丙 烯多孔膜,间断抽真空,将反应器置换为马来酸酐气氛。在3Pa 条件下对聚丙烯多孔膜进行表面改性。1.3 改性膜的表面分析 在美国Nicolet 公司的N EXUS670型红外光谱仪(F T 2IR )上,用表面衰减全反射(A TR )技术对改性膜表面进行红外分析,分辨率4cm -1,波数范围4000cm -1~400cm -1。改性膜表面经喷金处理,在日本电子公司的J SM 25900型扫描电镜仪(SEM )上观察改性膜的表面形态。聚丙烯多孔膜经热熔压片后进行类似的等离子体表面处理,在美国Ram é2Hart 公司的100200230型接触角仪上测试水接触角,结果取5次平均值。 2 结果与讨论 2.1 改性膜表面的FT 2IR 分析 Fig.1为马来酸酐等离子体处理条件对改性表面 化学结构的影响。与谱图1的原始膜比较,改性膜在1850cm -1、1780cm -1、1730cm -1、1290cm -1、1240cm -1和1060cm -1等处出现了新峰。对比谱图7的马来酸酐单体红外谱图,1850cm -1为酸酐不对称C =O 的伸缩振动峰,1780cm -1为酸酐对称C =O 的伸缩振动峰,1290cm -1为酸酐C -O 的伸缩振动峰,1240cm -1和1060cm -1为酸酐C 2H 的变形振动峰[5],表明膜表面沉积了马来酸酐聚合物。另外马来酸酐单体在

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍(精)

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

橡胶物理性能测试标准

1.未硫化橡胶门尼粘度 GB/T 1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法2.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001) 橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

聚丙烯表面改性技术及应用

聚丙烯表面改性技术与应用 0. 引言 聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,表面与极性聚合物、无机填料及增强材料等相容性差,导致其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广和应用。 聚丙烯的表面改性和功能化处理技术是一种重要的改性方法,研究主要集中在接枝极性单体,如马来酸酐和丙烯酸等,以及带有第二官能团单体,如甲基丙烯酸缩水甘油脂等;是改善PP表面性状性的主要手段,可以提高PP材料与其他极性的界面作用力,增强其亲水性、染色性能、黏结性能和共混高聚物之间的相容性等。本文主要就聚丙烯材料的表面处理方法以及改性聚丙烯的应用作简单地介绍。 1. 高能辐照表面处理法 辐照接枝法是用高能射线照射产生自由基,自由基再与活性单体反应生成接枝共聚物。与其它接枝法比较,辐照接枝法的优点在于适合各种化学、物理性质稳定的树脂,能够快速且均一地产生活性自由基,而且不需加化学引发剂,不过该方法成本较高。根据利用辐照获得接枝活性点的方式可以将其分为同时辐照和预辐照两种方法,同时辐照法是将反应单体和PP接枝基体同时放置在辐照环境中,这样在基体上形成活性点的同时就可以进行接枝反应。预辐照法就是首先辐照PP,使其表面带有活性点,然后再和单体反应。比较两种方法,预辐照技术更能减少单体均聚物的生成。辐照接枝法在改善膜或纤维的表面极性方面应用广泛[1]。 除了对基材进行辐照引发接枝反应外,通过异相引发接枝[2]还有学者研究出利用预辐照对聚乙烯进行处理,再使用经过辐照处理的聚乙烯作为聚丙烯的熔融接枝反应的引发剂来引发聚丙烯接枝丙烯酸,经反应挤出制备出高性能的聚丙烯接枝丙烯酸共聚物。这种异相引发接枝反应很好的控制了聚丙烯在熔融接枝中的降解副反应,极大的保存了基材优异的力学性能。

相关文档