文档库 最新最全的文档下载
当前位置:文档库 › (Multisim数电仿真)与非门逻辑功能测试及组成其它门电路

(Multisim数电仿真)与非门逻辑功能测试及组成其它门电路

(Multisim数电仿真)与非门逻辑功能测试及组成其它门电路
(Multisim数电仿真)与非门逻辑功能测试及组成其它门电路

实验3.2 与非门逻辑功能测试及组成其它门电路

一、实验目的:

1.熟悉THD-1型(或Dais-2B型)数电实验箱的使用方法。

2. 了解基本门电路逻辑功能测试方法。

3.学会用与非门组成其它逻辑门的方法。

二、实验准备:

1. 集成逻辑门有许多种,如:与门、或门、非门、与非门、或非门、与或非门、异或门、OC门、TS门等等。但其中与非门用途最广,用与非门可以组成其它许多逻辑门。

要实现其它逻辑门的功能,只要将该门的逻辑函数表达式化成与非-与非表达式,然后用多个与非门连接起来就可以达到目的。例如,要实现或门Y=A+B,

A ,可用三个与非门连根据摩根定律,或门的逻辑函数表达式可以写成:Y=B

接实现。

集成逻辑门还可以组成许多应用电路,比如利用与非门组成时钟脉冲源电路就是其中一例,它电路简单、频率范围宽、频率稳定。

2. 集成电路与非门简介:

74LS00是“TTL系列”中的与非门,CD4011是“CMOS系列”中的与非门。它们都是四-2输入与非门电路,即在一块集成电路内含有四个独立的与非门。每个与非门有2个输入端。74LS00芯片逻辑框图、符号及引脚排列如图

与非门的逻辑功能是:当输入端中有一个或一个以上是低电平时,输出端为高电平;只有当输入端全部为高电平时,输出才是低电平(即有“0”得“1”,全

“1”得“0”)。其逻辑函数表达式为:B

=。

Y?

A

TTL电路对电源电压要求比较严,电源电压Vcc只允许在+5V±10%的范围内工作,超过5.5V将损坏器件;低于4.5V器件的逻辑功能将不正常。

CMOS集成电路是将N沟道MOS晶体管和P沟道MOS晶体管同时用于一个集成电路中,成为组合两种沟道MOS管性能的更优良的集成电路。CMOS电路的主要优点是:

(1). 功耗低,其静态工作电流在10-9A数量级,是目前所有数字集成电路中最低的,而TTL器件的功耗则大得多。

(2).高输入阻抗,通常大于1010Ω,远高于TTL器件的输入阻抗。

(3). 接近理想的传输特性,输出高电平可达电源电压的99.9%以上,低电平可达电源电压的0.1%以下,因此输出逻辑电平的摆幅很大,噪声容限很高。

(4).电源电压范围广,可在+5V~+18V范围内正常运行。

3.集成电路芯片简介:

数字电路实验中所用到的集成电路芯片都是双列直插式的,其引脚排列规则如图3.2.3所示。识别方法是:正对集成电路型号(如74LS00)或看标记(左边的缺口或小圆点标记),从左下角开始按逆时针方向数1、2、3...依次数到最后一脚(在左上角)。在标准型TTL集成电路中,电源端Vcc一般排在左上角,接地端GND 一般排在右下角。如74LS00为14脚芯片,14脚为Vcc,7脚为GND。若芯片

集成电路使用注意事项:

(1). 接插集成电路时,要认清定位标记,不得插反。

(2). TTL集成电路电源电压严格控制在+4.5V~+5.5V之间,实验中一般用Vcc= +5V。电源极性绝对不允许接反。CMOS集成电路电源电压允许在+5V~+18V范围内选择,实验中一般也用+5V。

(3).为使门电路工作稳定,多余闲置的输入端一律不准悬空,闲置的输入端处理方法:与非门接Vcc,或非门接GND。

(4). 在连接电路和插拔集成电路时,应先切断电源,严禁带电操作!

三、计算机仿真实验内容:

1. 测与非门的逻辑功能:

(1). 单击电子仿真软件Multisim7基本界面左侧左列真实元件工具条的“TTL”按钮,从弹出的对话框中选取一个与非门74LS00N,将它放置在电子平台上;单击真实元件工具条的“Source”按钮,将电源Vcc和地线调出放置在电子平台上;单击真实元件工具条的“Basic”按钮,将单刀双掷开关“1J”和“2

J”调出放置在电子平台上,并分别双击“1J”和“2

J”图标,将弹出的对话框的“Key for Switch”栏设置成“A”和“B”,最后点击对话框下方“OK”按钮退出。

(2). 单击电子仿真软件Multisim7基本界面右侧虚拟仪器工具条“Multimeter”按钮,如图3.2.4左图所示,调出虚拟万用表“XMM1”放置在电子平台上,如图3.2.4右图所示。

图3.2.4

(3). 将所有元件和仪器连成仿真电路如图3.2 5所示。

图3.2 5

(4). 双击虚拟万用表图标“XMM1”,将出现它的放大面板,按下放大面板上的“电压”和“直流”两个按钮,将它用来测量直流电压如图3.2.6所示。

图3.2.6

(5). 打开仿真开关,按表3.2.1所示,分别按动“A”和“B”键,使与非门的两个输入端为表中 4 种情况,从虚拟万用表的放大面板上读出各种情况的直流电位,将它们填入表内,并将电位转换成逻辑状态填入表内。

表3.2.1:

2.用与非门组成其它功能门电路: (1). 用与非门组成或门:

1). 根据摩根定律,或门的逻辑函数表达式B A Q +=可以写成:B A Q ?=,因此,可以用三个与非门构成或门。

2). 从电子仿真软件Multisim7基本界面左侧左列真实元件工具条的“TTL ”按钮中调出3个与非门74LS00N ;从真实元件工具条的“Basic ” 按钮中调出2个单刀双掷开关,并分别将它们设置成Key=A 和Key=B ;从真实元件工具条的“Source ”按钮中调出电源和地线;红色指示灯从虚拟元件工具条中调出。 3). 连成或门仿真电路如图3.2.7所示。

图3.2.7

4). 打开仿真开关,按表3.2.2要求,分别按动“A ”和“B ”,观察并记录指示灯的发光情况,将结果填入表3.2.2中,根据表3.2.2分析是否就是或门电路的真值表。

(2). 用与非门组成异或门:

1). 按图3.2.8所示调出元件并组成异或门仿真电路。

2). 打开仿真开关,按表3.2.3要求,分别按动“A ”和“B ”,观察并记录指示灯的发光情况,将结果填入表3.2.3中。

3). 写出图3.2.8中各个与非门输出端的逻辑函数式,最终是否与异或门的逻辑函数式相符。

图3.2.8

表3.2.3:

(3). 用与非门组成同或门:

1). 按图3.2.9所示调出元件并组成同或门仿真电路。

2). 打开仿真开关,按表3.2.4要求,分别按动“A”和“B”,观察并记录指示灯的发光情况,将结果填入表3.2.4中。

3). 写出图3.2.9中各个与非门输出端的逻辑函数式,最终是否与同或门的逻辑函数式相符。

图3.2.9

表3.2.4:

四、实验室操作实验内容:

1.THD-1型数字电路实验箱使用介绍(参阅图3.2.9):

1).THD-1型数字电路实验箱面板左上角白色船型开关为主电源开关,主电源开关控制交流电压通断;在面板下方还有一个直流电源“DC Soures”方框,其中有两个白色钮子开关,一般实验中用左边那只控制总+5V电源,打开后一盏红色指示灯亮。实验时应先接好线,检查无误后再打开电路电源,严禁带电接线!

2).THD-1型数字电路实验箱面板右上角第一排15只红色发光二极管和对应的15个接线孔为输出显示接线孔,门电路输出端连此处,红灯亮,表示输出高电平;红灯不亮,表示输出低电平。第二排15只红色发光二极管和对应的15个接线孔及15只钮子开关为逻辑电平控制开关和指示灯,供门电路输入端接线,钮子开关向上扳为高电平,红色指示灯亮,向下扳为低电平,红色指示灯不亮。注意:在两排发光二极管的右下角有一处的一个插孔旁边标有“+5V”,需用一根导线将它与面板下方直流电源“DC Soures”方框+5V主电源插孔相连,供发光二极管正常发光。

3).THD-1型数字电路实验箱面板左下方有一个脉冲信号源“Pulse Soures”方框,能产生方波信号,频率波段分1Hz、1kHz和20kHz,每段可由电位器微调频率。同样,在方框的右下角也有一处插孔,旁边标有“+5V”,也需用一根导线将它与面板下方直流电源“DC Soures”方框+5V主电源插孔相连,供方波信号发生器工作。

脉冲信号源的电源接上后有两种脉冲信号输出,一种是连续脉冲,在“Pulse output”下方连续脉冲波形右边一盏红色指示灯亮,左边是连续脉冲信号输出孔。脉冲信号源方框右上角为单次脉冲信号“Single pulse”,有一只按钮开关,按下按钮时红灯亮,其上方输出孔输出正单次脉冲(即上升沿);另一只按钮按下时绿灯亮,其上方输出孔输出负单次脉冲(即下升沿)。

4).THD-1型数字电路实验箱面板上凡标有“⊥”符号处,表示公共接地端,且它们都已连通,可就近选择任一处接地。

5). THD-1型数字电路实验箱面板中间区域有许多集成电路插座,供插集成电路。围绕每一片集成电路四周是它们的对应管脚接线孔和管脚号,供实验连线。

6). THD-1型数字电路实验箱有电源短路报警声响功能,实验中一旦听到蜂鸣器响,应立即关闭电源!排除短路故障后可重新打开电源开关进行实验。

图3.2.9

2. Dais-2B型数字电路实验箱使用介绍:

(1). Dais-2B型数字电路实验箱分箱盖和箱体两部分,箱体为主箱,包括电源,逻辑电平输入、输出指示,脉冲信号源等。箱体右上角电源开关打开后,开关下方有+5V电压输出。箱体左侧第二个方框内各有16盏红、绿指示灯L1~L16,指示灯L1~L16下方对应有16 个插孔,供电路输出端指示逻辑状态,其中红灯亮表高电平;绿灯亮表示低电平。箱体左侧第三个方框内各有16个插孔和对应的16个推、拉开关K1~K16,开关向上推为高电平,向下推为低电平,供电路输入端选择逻辑电平。箱体左侧最下方方框内为脉冲信号源,右边插孔输出连续方波,从1Hz到1MHz共7 种;左边有三个按钮开关,对应上方各有两个插孔,一个输出正脉冲,另一个输出负脉冲。

(2). Dais-2B型数字电路实验箱盖部分为实验区,有许多集成电路插座,围绕每一片集成电路四周是它们的管脚接线孔和管脚号,供实验连线。注意:大部分集成电路插座管脚的电源和接地脚已连好,不需再连。

(3). 箱盖部分的电源和地线必需用导线从箱体右上角“+5V”和“GND”连到箱盖的左下角对应孔,这样箱盖部分才有“+5V”供做实验。

(4). Dais-2B型数字电路实验箱也有电源短路报警声响功能,实验中一旦听到蜂鸣器响,应立即关闭电源!排除短路故障后可重新打开电源开关进行实验。

3.测与非门的逻辑功能:

(1). 从插在实验箱上的集成电路74LS00中任选一个与非门,将两个输入端分别与实验箱逻辑开关输入插孔连接,每个插孔下方都对应一个钮子开关,上方对应一盏指示灯,钮子开关向上扳为“H ”电平,灯亮,向下扳为“L ”电平,

(2). Q 的电

平,并转换成逻辑状态,用“0”、“1”表示。将测试结果填入表3.2.5中。

表3.2.5:

4.用与非门组成其它功能门电路: (1). 用与非门组成或门:

1). 根据摩根定律,或门的逻辑函数表达式B A Q +=可以写成:B A Q ?=,因此,可以用三个与非门构成或门。

2). 自拟实验电路和实验步骤,并在实验箱上连好实验电路,利用输入端的钮子开关和万用表检测电路的输入和输出结果,将它们填入表3.2.6中。

表3.2.6:

5.用与非门组成异或门电路:

(1). 在实验箱上用4个与非组成如图3.2.11所示电路。其中A、B两个输入端分别接入两个钮子开关;输出端接到实验箱右上角第一排红色发光二极管对

6. 用与非门组成同或门:

(1). 在实验箱上用5个与非组成如图3.2.12所示电路。其中A、B两个输入

端分别接入两个钮子开关;输出端接到实验箱右上角第一排红色发光二极管对应

五、实验报告要求:

1. 整理并填写仿真实验各内容,并能写出图3.

2.7、图

3.2.8和图3.2.9电路中各级与非门的输出逻辑表达式。

2. 整理实验室操作实验各表格数据,并能写出图

3.2.11和图3.2.12电路中各级与非门的输出逻辑表达式。

六、实验设备及材料:

1. 仿真计算机及软件Multisim7。

2. THD-1型(或Dais-2B型)数电实验箱。

3. DF4321型双踪示波器。

4. MF-10型万用表。

5.集成电路:74LS00两片。

实验一 常用基本逻辑门电路功能测试

实验一常用基本逻辑门电路功能测试 一、实验目的 1.验证常用门电路的逻辑功能。 2.了解常用74LS系列门电路的引脚分布。 3.根据所学常用集成逻辑门电路设计一组合逻辑电路。 二、实验原理 集成逻辑门电路是最简单、最基本的数字集成元件。任何复杂的组合电路和时序电路都可用逻辑门通过适当的组合连接而成。目前已有门类齐全的集成门电路,例如“与门”、“或门”、“非门”、“与非门”等。虽然,中、大规模集成电路相继问世,但组成某一系统时,仍少不了各种门电路。因此,掌握逻辑门的工作原理,熟练、灵活地使用逻辑门是数字技术工作者所必备的基本功之一。 TTL门电路 TTL集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对学生进行实验论证,选用TTL电路比较合适。因此,本书大多采用74LS(或74)系列TTL 集成电路。它的工作电源电压为5V土0.5V,逻辑高电平1时≥2.4V,低电平0时≤0.4V。2输入“与门”,2输入“或门”,2输入、4输入“与非门”和反相器的型号分别是:74LS08:2输入端四“与门”,74LS32:2输入端四“或门”,74LS00:2输入端四“与非门”,74LS20:4输入端二“与非门”和74LS04六反相器(“反相器”即“非门”)。各自的逻辑表达式分别为:与门Q=A?B,或门Q=A+B,与非门Q=A.B,Q=A.B.C.D,反相器Q=A。

TTL集成门电路集成片管脚分别对应逻辑符号图中的输入、输出端,电源和地一般为集成片的两端,如14管脚集成片,则7脚为电源地(GND),14脚为电源正(V cc),其余管脚为输入和输出,如图1所示。 管脚的识别方法是:将集成块正面(有字的一面)对准使用者,以左边凹口或小标志点“ ? ”为起始脚,从下往上按逆时针方向向前数1、2、3、…… n脚。使用时,查找IC 手册即可知各管脚功能。 图1 74LS08集成电路管脚排列图 三、实验内容与步骤 TTL门电路逻辑功能验证 (1)与门功能测试:将74LS08集成片(管脚排列图1)插入IC空插座中,输入端接逻辑开关,输出端接LED发光二极管,管脚14接+5V电源,管脚7接地,即可进行实验。将结果用逻辑“0”或“1”来表示并填入表1中。

数字电路实验:基本逻辑门

数字电路实验:基本逻辑门 一、实验目的 研究TTL 门电路的性能及测试方法。 二、实验仪器 (1) 双线示波器 (2)数字万用表 (3) TES-1电子技术学习机 三、实验内容 实验10.1 TTL 与非门7400逻辑功能的测试 1. 将输出Y 接发光二极管(Y=1时二极管亮;否则灭),改变A 、B 的电平值,记录实验结果,并将该结果列成真值表形式。 2. 在A 端加入连续脉冲(频率f=1Hz ),将输出Y 接发光二极管。当B 端分别接+5伏和0伏时,观察Y 端的输出变化,验证逻辑“0”对与非门的封锁作用。 A B Y 图10.1 实验10.2 TTL 与非门7400传输延迟时间的测量 按图10.2接线,输入端接1MHz 连续脉冲,通过用示波器观察其输入、输出波形相位差的办法,测量出四个与非门的累计传输延迟时间。 实验10.3 TTL 与非门7400电压传输特性的测定 按图10.3接线。 U i 接直流稳压电源,调节U i 使之在0~5V 范围内变化(注意:U i 值不能≥6V ,否则将损坏芯片),测出U o 随U i 变化的值,将它们填入表10.1中,并用曲线表示之,试粗糙确定U T 值。 u i u o 图10.2 +5V Uo

实验10.4 TTL 与非门7400输入端特性测试 按图10.4接线。 改变B 端所接的电阻值,分别测量并纪录相应的电压U B 及U o ,将结果填入表10.2中。 四、总结要求 (1) 根据表21.1,画出与非门7400的电压传输曲线。 (2) 根据表21.2,总结与非门7400的输入端特性。 表10.1 表10.2 +5V Uo 图10.4

实验一基本门电路的逻辑功能测试

实验一基本门电路的逻辑功能测试 一、实验目的 1、测试与门、或门、非门、与非门、或非门与异或门的逻辑功能。 2、了解测试的方法与测试的原理。 二、实验原理 实验中用到的基本门电路的符号为: 在要测试芯片的输入端用逻辑电平输出单元输入高低电平,然后使用逻辑电平显示单元显示其逻辑功能。 三、实验设备与器件 1、数字逻辑电路用PROTEUS 2、显示可用发光二极管。 3、相应74LS系列、CC4000系列或74HC系列芯片若干。 四、实验内容 1.测试TTL门电路的逻辑功能: a)测试74LS08的逻辑功能。(与门)000 010 100 111 b)测试74LS32的逻辑功能。(或门)000 011 101 111 c)测试74LS04的逻辑功能。(非门)01 10 d)测试74LS00的逻辑功能。(两个都弄得时候不亮,其他都亮)(与非门)(如果只接一个的话,就是非门)001 011 101 110 e)测试74LS02(或非门)的逻辑功能。(两个都不弄得时候亮,其他不亮)001 010 100 110 f)测试74LS86(异或门)的逻辑功能。 2.测试CMOS门电路的逻辑功能:在CMOS 4000分类中查询 a)测试CC4081(74HC08)的逻辑功能。(与门) b)测试CC4071(74HC32)的逻辑功能。(或门) c)测试CC4069(74HC04)的逻辑功能。(非门) d)测试CC4011(74HC00)的逻辑功能。(与非门)(如果只接一个的话,就是非门)

e)测试CC4001(74HC02)(或非门)的逻辑功能。 f) 测试CC4030(74HC86)(异或门)的逻辑功能。 五、实验报告要求 1.画好各门电路的真值表表格,将实验结果填写到表中。 2.根据实验结果,写出各逻辑门的逻辑表达式,并分析如何判断逻辑门的好坏。 3.比较一下两类门电路输入端接入电阻或空置时的情况。 4.查询各种集成门的管脚分配,并注明各个管脚的作用与功能。 例:74LS00 与门 Y=AB

数字电路实验计数器的设计

数字电路与逻辑设计实验报告实验七计数器的设计 :黄文轩 学号:17310031 班级:光电一班

一、实验目的 熟悉J-K触发器的逻辑功能,掌握J-K触发器构成异步计数器和同步计数器。 二、实验器件 1.数字电路实验箱、数字万用表、示波器。 2.虚拟器件: 74LS73,74LS00, 74LS08, 74LS20 三、实验预习 1. 复习时序逻辑电路设计方法 ①根据设计要求获得真值表 ②画出卡诺图或使用其他方式确定状态转换的规律 ③求出各触发器的驱动方程 ④根据已有方程画出电路图。 2. 按实验内容设计逻辑电路画出逻辑图 Ⅰ、16进制异步计数器的设计 异步计数器的设计思路是将上一级触发器的Q输出作为下一级触发器的时钟信号,置所有触发器的J-K为1,这样每次到达时钟下降沿都发生一次计数,每次前一级 触发器从1变化到0都使得后一级触发器反转,即引发进位操作。 画出由J-K触发器组成的异步计数器电路如下图所示:

使用Multisim仿真验证电路正确性,仿真图中波形从上到下依次是从低位到高位 触发器的输出,以及时钟信号。: 可以看出电路正常执行16进制计数器的功能。 Ⅱ、16进制同步计数器的设计 较异步计数器而言,同步计数器要求电路的每一位信号的变化都发生在相同的时间点。

因此同步计数器各触发器的时钟脉冲必须是同一个时钟信号,这样进位信息就要放置在J-K 输入端,我们可以把J-K端口接在一起,当时钟下降沿到来时,如果满足进位条件(前几位触发器输出都为1)则使JK为1,发生反转实现进位。 画出由J-K触发器和门电路组成的同步计数器电路如下图所示 使用Multisim仿真验证电路正确性,仿真图中波形从上到下依次是从低位到高位触发器的输出,计数器进位输出,以及时钟信号。:

数字电路仿真实验报告

数字逻辑与CPU 仿真实验报告 姓名: 班级: 学号:

仿真实验 摘要:Multisim是Interactive Image Technologies公司推出的以Windows为基础的仿真工具,具有丰富的仿真分析能力。本次仿真实验便是基于Multisim软件平台对数字逻辑电路的深入研究,包括了对组合逻辑电路、时序逻辑电路中各集成元件的功能仿真与验证、对各电路的功能分析以及自行设计等等。 一、组合逻辑电路的分析与设计 1、实验目的 (1)掌握用逻辑转换器进行逻辑电路分析与设计的方法。 (2)熟悉数字逻辑功能的显示方法以及单刀双掷开关的应用。 (3)熟悉字信号发生器、逻辑分析仪的使用方法。 2、实验内容和步骤 (1)采用逻辑分析仪进行四舍五入电路的设计 ①运行Multisim,新建一个电路文件,保存为四舍五入电路设计。 ②在仪表工具栏中跳出逻辑变换器XLC1。 图1-1 逻辑变换器以及其面板 ③双击图标XLC1,其出现面板如图1-1所示 ④依次点击输入变量,并分别列出实现四舍五入功能所对应的输出状态(点击输出依 次得到0、1、x状态)。 ⑤点击右侧不同的按钮,得到输出变量与输入变量之间的函数关系式、简化的表达式、 电路图及非门实现的逻辑电路。 ⑥记录不同的转换结果。

(2)分析图1-2所示代码转换电路的逻辑功能 ①运行Multisim,新建一个电路文件,保存为代码转换电路。 ②从元器件库中选取所需元器件,放置在电路工作区。 ?从TTL工具栏选取74LS83D放置在电路图编辑窗口中。 ?从Source库取电源Vcc和数字地。 ?从Indictors库选取字符显示器。 ?从Basic库Switch按钮选取单刀双掷开关SPD1,双击开关,开关的键盘控制设 置改为A。后面同理,分别改为B、C、D。 图1-2 代码转换电路 ③将元件连接成图1-2所示的电路。 ④闭合仿真开关,分别按键盘A、B、C、D改变输入变量状态,将显示器件的结果填 入表1-1中。 ⑤说明该电路的逻辑功能。 表1-1 代码转换电路输入输出对应表

Multisim三相电路仿真实验

实验六 三相电路仿真实验 一、实验目的 1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真; 2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结; 3、 加深对三相四线制供电系统中性线作用的理解。 4、 掌握示波器的连接及仿真使用方法。 5、 进一步提高分析、判断和查找故障的能力。 二、实验仪器 1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求 1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。 3.仿真分析三相电路的相关内容。 4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明 1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。这种联接方式的 特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。 2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。 3、电流、电压的“线量”与“相量”关系 测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。画仿真图时要注意。 负载对称星形联接时,线量与相量的关系为: (1) P L U U 3= (2)P L I I = 负载对称三角形联接时,线量与相量的关系为: (1)P L U U = (2)P L I I 3= 4、星形联接时中性线的作用 三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。 五、实验内容及参考实验步骤 (一)、建立三相测试电路如下: 图1 三相负载星形联接实验电路图 1.接入示波器:测量ABC三相电压波形。并在下表中绘出图形。 Timebase:_________/DIV 三相电压相位差:φ=__________。 (二)、三相对称星形负载的电压、电流测量 (1)使用Multisim软件绘制电路图1,图中相电压有效值为220V。 (2)正确接入电压表和电流表,J1打开,J2 、J3闭合,测量对称星形负载在三相四线制(有中性线)时各线电压、相电压、相(线)电流和中性线电流、中性点位移电压。记入表1中。 (3)打开开关J2,测量对称星形负载在三相三线制(无中性线)时电压、相电压、相(线)电流、中性线电流和中性点位移电压,记入表1中。 表1 三相对称星形负载的电压、电流 (4)根据测量数据分析三相对称星形负载联接时电压、电流“线量”与“相量”的关系。 结论: (三)、三相不对称星形负载的电压、电流测量 (1)正确接入电压表和电流表,J1闭合,J2 、J3闭合,测量不对称星形负载在三相

实验三 CMOS集成逻辑门的逻辑功能与参数测试

实验三CMOS集成逻辑门的逻辑功能与参数测试 一、实验目的 1、掌握CMOS集成门电路的逻辑功能和器件的使用规则 2、学会CMOS集成门电路主要参数的测试方法 二、实验原理 1、CMOS集成电路是将N沟道MOS晶体管和P沟道 MOS晶体管同时用于 一个集成电路中,成为组合二种沟道MOS管性能的更优良的集成电路。CMOS集成电路的主要优点是: (1)功耗低,其静态工作电流在10-9A数量级,是目前所有数字集成电路中最低的,而TTL器件的功耗则大得多。 (2)高输入阻抗,通常大于1010Ω,远高于TTL器件的输入阻抗。 (3)接近理想的传输特性,输出高电平可达电源电压的 99.9%以上,低电平可达电源电压的0.1%以下,因此输出逻辑电平的摆幅很大,噪声容限很高。 (4)电源电压范围广,可在+3V~+18V范围内正常运行。 (5)由于有很高的输入阻抗,要求驱动电流很小,约0.1μA,输出电流在+5V电源下约为 500μA,远小于TTL电路,如以此电流来驱动同类门电路,其扇出系数将非常大。在一般低频率时,无需考虑扇出系数,但在高频时,后级门的输入电容将成为主要负载,使其扇出能力下降,所以在较高频率工作时,CMOS电路的扇出系数一般取10~20。 2、CMOS门电路逻辑功能 尽管CMOS与TTL电路内部结构不同,但它们的逻辑功能完全一样。本实验将测定与门CC4081,或门CC4071,与非门CC4011,或非门CC4001的逻辑功能。各集成块的逻辑功能与真值表参阅教材及有关资料。 3、CMOS与非门的主要参数 CMOS与非门主要参数的定义及测试方法与TTL电路相仿,从略。

4、CMOS 电路的使用规则 由于CMOS 电路有很高的输入阻抗,这给使用者带来一定的麻烦,即外来的干扰信号很容易在一些悬空的输入端上感应出很高的电压,以至损坏器件。CMOS 电路的使用规则如下: (1) V DD 接电源正极,V SS 接电源负极(通常接地⊥),不得接反。CC4000系列的电源允许电压在+3~+18V 范围内选择,实验中一般要求使用+5~+15V 。 (2) 所有输入端一律不准悬空 闲置输入端的处理方法: a) 按照逻辑要求,直接接V DD (与非门)或V SS (或非门)。 b) 在工作频率不高的电路中,允许输入端并联使用。 (3) 输出端不允许直接与V DD 或V SS 连接,否则将导致器件损坏。 (4) 在装接电路,改变电路连接或插、拔电路时,均应切断电源,严禁带电操作。 (5) 焊接、测试和储存时的注意事项: a 、电路应存放在导电的容器内,有良好的静电屏蔽; b 、焊接时必须切断电源,电烙铁外壳必须良好接地,或拔下烙铁,靠其余热焊接; c 、所有的测试仪器必须良好接地; 三、实验设备与器件 1、+5V 直流电源 2、双踪示波器 3、连续脉冲源 4、逻辑电平开关 5、逻辑电平显示器 6、直流数字电压表 7、直流毫安表 8、直流微安表 9、CC4011、CC4001、CC4071、CC4081、电位器 100K 、电阻 1K 四、实验内容 1、CMOS 与非门CC4011参数测试(方法与TTL 电路相同)

数电设计性实验报告

福州大学电气工程与自动化10级 设计性实验报告 姓名__________ 学号_______ 班级_______ 指导老师______姜海燕________ 实验时间_____2012.6.1______ 实验题目____彩灯控制器的设计_ (这是一页是首页)

实验目的: 1.掌握电路板焊接技术; 2.学习调试系统电路,提高实验技能; 3.了解彩灯控制器的工作原理及其结构。 实验所用原件清单: 74LS194 2片、74LS161 1片、74LS112 1片、555定时器、 电容1μF 1个、电阻300?8个、电阻500? 1个、电阻5k? 1个、发光二级管8个、导线、电路板 原理(包括主要公式、电路图): 1、设计任务:节目的彩灯五彩缤纷,彩灯的控制电路种类繁多。用移位寄存器 为核心元件设计制作一个8路彩灯控制器。 2、设计要求: ①彩灯控制电路要求控制8个彩灯; ②要求彩灯组成以下两种花型,每种花型连续循环两次,两种花型轮流交替。 节拍脉冲编码Q A Q B Q C Q D Q E Q F Q G Q H 花型Ⅰ花型Ⅱ 1 00000000 00000000 2 00011000 10001000 3 00111100 11001100 4 01111110 11101110 5 11111111 11111111 6 11100111 01110111 7 11000011 00110011 8 10000001 00010001 9 00000000 00000000 3、设计要点 ①编码发生器:编码发生器要求根据花型按节拍送出8位状态编码信号,以 控制彩灯按规律亮灭。因为彩灯路数少,花型要求不多,该题宜选用移位 寄存器输出8路数字信号控制彩灯发光。编码发生器建议采用两片4位通 用移位寄存器74194来实现。74194具有异步清零和同步置数、左移、右 移、保持等多种功能,控制方便灵活。移位寄存器的8个输出信号送至LED 发光二极管,编码器中数据输入端和控制端的接法由花型决定; 控制电路:控制电路为编码器提供所需的节拍脉冲和驱动信号,控制整个系统工作。控制电路的功能有两个:一是按所需产生节拍脉冲;二是产生移位寄存器所需的各种驱动信号。

数电仿真实验报告

数电仿真Multisim 实 验 报 告 班级: 学号:

姓名: 学院: 实验一组合逻辑电路设计与分析 一、实验目的 1、掌握组合逻辑电路的特点 2、利用逻辑转换仪对组合逻辑电路进行分析与设计 二、实验原理 组合逻辑电路是一种重要的数字逻辑电路:特点是任何时候的输出仅仅取决于同一时刻的输入信号的取值组合。 根据电路确定功能,是分析组合逻辑电路的过程,其步骤如下:组合逻辑电路→推导→逻辑表达式→化简→最简表达式→列表→真值表→分析→确定电路功能。 根据要求求解电路,是设计组合逻辑电路的过程,其步骤如下:问题提出→分析→真值表→归纳→逻辑表达式→化简变换→逻辑图。 逻辑转换仪是Multisim中常用的数字逻辑电路分析和设计仪器。 三、仿真例题 1、利用逻辑转换仪对已知逻辑电路进行分析 电路图如下: 图待分析逻辑电路 分析结果如下:

图逻辑分析仪输出结果 2、根据要求利用逻辑转换仪进行逻辑电路设计 问题:有一火灾报警系统,设有烟感、温感和紫外线三种类型的火灾探测器。为了防止误报警,只有当其中的两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。 利用逻辑分析仪分析: 图经分析得到的真值表和表达式 则可以得到如下电路图:

A B C 14 13 10 912 11 8 图 最终得到的逻辑电路图 四、思考题 1、设计一个四人表决电路,即如果3人或3人以上同意,则通过;否则被否决。用与非门实现。 解:用ABCD 分别表示四人的表决结果,1表示同意,0表示不同意。则利用逻辑分析仪可以输入如下真值表,并得到如下表达式: L=ACD+ABD+ABC+BCD 图 逻辑分析仪得到的真值表和表达式 得到如下电路图:

数字电路及设计实验

常用数字仪表的使用 实验内容: 1.参考“仪器操作指南”之“DS1000操作演示”,熟悉示数字波器的使用。 2.测试示波器校正信号如下参数:(请注意该信号测试时将耦合方式设置为直流耦合。 峰峰值(Vpp),最大值(Vmax),最小值(Vmin), 幅值(Vamp),周期(Prd),频率(Freq) 顶端值(Vtop),底端值(Vbase),过冲(Overshoot), 预冲(Preshoot),平均值(Average),均方根值(Vrms),即有效值 上升时间(RiseTime),下降时间(FallTime),正脉宽(+Width), 负脉宽(-Width),正占空比(+Duty),负占空比(-Duty)等参数。 3.TTL输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低 电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V。 请采用函数信号发生器输出一个TTL信号,要求满足如下条件: ①输出高电平为3.5V,低电平为0V的一个方波信号; ②信号频率1000Hz; 在示波器上观测该信号并记录波形数据。

集成逻辑门测试(含4个实验项目) (本实验内容选作) 一、实验目的 (1)深刻理解集成逻辑门主要参数的含义和功能。 (2)熟悉TTL 与非门和CMOS 或非门主要参数的测试方法,并通过功能测试判断器件好坏。 二、实验设备与器件 本实验设备与器件分别是: 实验设备:自制数字实验平台、双踪示波器、直流稳压电源、数字频率计、数字万用表及工具; 实验器件:74LS20两片,CC4001一片,500Ω左右电阻和10k Ω左右电阻各一只。 三、实验项目 1.TTL 与非门逻辑功能测试 按表1-1的要求测74LS20逻辑功能,将测试结果填入与非门功能测试表中(测试F=1、0时,V OH 与V OL 的值)。 2.TTL 与非门直流参数的测试 测试时取电源电压V CC =5V ;注意电流表档次,所选量程应大于器件电参数规范值。 (1)导通电源电流I CCL 。测试条件:输入端均悬空,输出端空载。测试电路按图1-1(a )连接。 (2)低电平输入电流I iL 。测试条件:被测输入端通过电流表接地,其余输入端悬空,输出空载。测试电路按图1-1(b )连接。 (3)高电平输入电流I iH 。测试条件:被测输入端通过电流表接电源(电压V CC ),其余输入端均接地,输出空载。测试电路按图1-1(c )连接。 (4)电压传输特性。测试电路按图1-2连接。按表1-2所列各输入电压值逐点进行测量,各输入电压值通过调节电位器W 取得。将测试结果在表1-2中记录,并根据实测数据,做出电压传输特性曲线。然后,从曲线上读出V OH ,V OL ,V on ,V off 和V T ,并计算V NH ,V NL 等参数。 表1-1 与非门功能测试表

实验一 逻辑门电路的基本参数及逻辑功能测试

实验一逻辑门电路的基本参数及逻辑功能测试 一、实验目的 1、了解TTL与非门各参数的意义。 2、掌握TTL与非门的主要参数的测试方法。 3、掌握基本逻辑门的功能及验证方法。 4、学习TTL基本门电路的实际应用。 5、了解CMOS基本门电路的功能。 6、掌握逻辑门多余输入端的处理方法。 二、实验仪器 三、实验原理 (一) 逻辑门电路的基本参数 用万用表鉴别门电路质量的方法:利用门的逻辑功能判断,根据有关资料掌握电路组件管脚排列,尤其是电源的两个脚。按资料规定的电源电压值接好(5V±10%)。在对TTL与 非门判断时,输入端全悬空,即全“1”,则输出端用万用表测 应为0.4V以下,即逻辑“0”。若将其中一输入端接地,输出 端应在3.6V左右(逻辑“1”),此门为合格门。按国家标准 的数据手册所示电参数进行测试:现以手册中74LS20二-4输 入与非门电参数规范为例,说明参数规范值和测试条件。 TTL与非门的主要参数 空载导通电源电流I CCL (或对应的空载导通功耗P ON )与非门处于不同的工作状态,电 源提供的电流是不同的。I CCL 是指输入端全部悬空(相当于输入全1),与非门处于导通状态,

输出端空载时,电源提供的电流。将空载导通电源电流I CCL 乘以电源电压就得到空载导通功 耗P ON ,即 P ON = I CCL ×V CC 。 测试条件:输入端悬空,输出空载,V CC =5V。 通常对典型与非门要求P ON <50mW,其典型值为三十几毫瓦。 2、空载截止电源电流I CCh (或对应的空载截止功耗P OFF ) I CCh 是指输入端接低电平,输出端开路时电源提供的电流。空载截止功耗POFF为空载 截止电源电流I CCH 与电源电压之积,即 P OFF = I CCh ×V CC 。注意该片的另外一个门的输入也要 接地。 测试条件: V CC =5V,V in =0,空载。 对典型与非门要求P OFF <25mW。 通常人们希望器件的功耗越小越好,速度越快越好,但往往速度高的门电路功耗也较大。 3、输出高电平V OH 输出高电平是指与非门有一个以上输入端接地或接低电平的输出电平。空载时,输出 高电平必须大于标准高电压(V SH =2.4V);接有拉电流负载时,输出高电平将下降。 4、输出低电平V OL 输出低电平是指与非门所有输入端接高电平时的输出电平。空载时,输出低电平必须低于标准低电压(VSL=0.4V);接有灌电流负载时,输出低电平将上升。 5、低电平输入电流I IS (I IL ) I IS 是指输入端接地输出端空载时,由被测输入端流出的电流值,又称低电平输入短路 电流,它是与非门的一个重要参数,因为入端电流就是前级门电路的负载电流,其大小直 接影响前级电路带动的负载个数,因此,希望I IS 小些。 测试条件: VCC=5V,被测某个输入端通过电流表接地,其余各输入端悬空,输出空载。

数电仿真实验报告

数字电子技术仿真 实验报告 班级: 姓名: 学号:

实验一组合逻辑电路设计与分析 一、实验目的 1.掌握组合逻辑电路的特点; 2.利用逻辑转换仪对组合逻辑电路进行分析与设计。 二、实验原理 组合逻辑电路是一种重要的、也是基本的数字逻辑电路,其特点是:任意时刻电路的输出仅取决于同一时刻输入信号的取值组合。 对于给定的逻辑电路图,我们可以先由此推导出逻辑表达式,化简后,由所得最简表达式列出真值表,在此基础上分析确定电路的功能,这也即是逻辑电路的分析过程。 对于组合逻辑电路的设计,一般遵循下面原则,由所给题目抽象出便于分析设计的问题,通过这些问题,分析推导出真值表,由此归纳出其逻辑表达式,再对其化简变换,最终得到所需逻辑图,完成了组合逻辑电路的设计过程。 逻辑转换仪是在Multisim软件中常用的数字逻辑电路设计和分析的仪器,使用方便、简洁。 三、实验电路及步骤 1.利用逻辑转换仪对已知逻辑电路进行分析。 (1)按图1-1连接电路。 图1-1 待分析的逻辑电路 (2)通过逻辑转换仪,得到下图1-2所示结果。 由图可看到,所得表达式为:输出为Y, D'+ABCD CD'+ABC' AB' + D C' BCD'+AB' A' + D BC' A'+ CD B' D'+A' C' B' A' Y

图1-5 经分析得到的真值表和表达式 (3)分析电路。观察真值表,我们发现:当输入变量A、B、C、D中1的个数为奇数时,输出为0;当其为偶数时,输出为1。因此,我们说,这是一个四输入的奇偶校验电路。 2.根据要求,利用逻辑转换仪进行逻辑电路的设计。 问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾推测器。为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才会产生报警控制信号,试设计报警控制信号的电路。 具体步骤如下: (1)分析问题:探测器发出的火灾探测信号有两种情况,一是有火灾报警(可用“1”表示),一是没有火灾报警(可用“0”来表示),当有两种或两种以上报警器发出报警时,我们定义此时确有警报情况(用“1”表示),其余以“0”表示。由此,借助于逻辑转换仪面板,我们绘出如图1-3所示真值表。 图1-3 经分析得到的真值表

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

实验一基本门电路的逻辑功能测试

实验一基本门电路得逻辑功能测试 一、实验目得 1、测试与门、或门、非门、与非门、或非门与异或门得逻辑功能。 2、了解测试得方法与测试得原理。 二、实验原理 实验中用到得基本门电路得符号为: 在要测试芯片得输入端用逻辑电平输出单元输入高低电平,然后使用逻辑电平显示单元显示其逻辑功能。 三、实验设备与器件 1、数字逻辑电路用PROTEUS 2、显示可用发光二极管。 3、相应74LS系列、CC4000系列或74HC系列芯片若干. 四、实验内容 1.测试TTL门电路得逻辑功能: a)测试74LS08得逻辑功能.(与门)000 010100111 b)测试74LS32得逻辑功能.(或门)000 011 101 111 c)测试74LS04得逻辑功能.(非门)0110 d)测试74LS00得逻辑功能。(两个都弄得时候不亮,其她都亮)(与非门)(如果只接一个得话,就就是非门)001011 101 110 e)测试74LS02(或非门)得逻辑功能。(两个都不弄得时候亮,其她不亮)001010100 110 f)测试74LS86(异或门)得逻辑功能。 2.测试CMOS门电路得逻辑功能:在CMOS 4000分类中查询 a)测试CC4081(74HC08)得逻辑功能。(与门) b)测试CC4071(74HC32)得逻辑功能。(或门) c)测试CC4069(74HC04)得逻辑功能。(非门) d)测试CC4011(74HC00)得逻辑功能。(与非门)(如果只接一个得话,就就是非门) e)测试CC4001(74HC02)(或非门)得逻辑功能。 f) 测试CC4030(74HC86)(异或门)得逻辑功能。

供配电设计性实验

实验三电磁型三相一次重合闸实验 一、实验目的 1.熟悉电磁型三相一次自动重合闸装置的组成及原理接线图。 2.观察重合闸装置在各种情况下的工作情况。 3.了解自动重合闸与继电保护之间如何配合工作。 二、基本原理 1.DCH-1重合闸继电器构成部件及作用 运行经验表明,在电力系统中,输电线路是发生故障最多的元件,并且它的故障大都属于暂时性的,这些故障当被继电保护迅速断电后,故障点绝缘可恢复,故障可自行消除。若重合闸将断路器重新合上电源,往往能很快恢复供电,因此自动重合闸在输电线路中得到极其广泛的应用。 在我国电力系统中,由电阻电容放电原理组成的重合闸继电器所构成的三相一次重合闸装置应用十分普遍。图4-1为DCH-1重合闸继电器的内部接线图。 图4-1 DCH-1型重合闸继电器内部接线图 1

继电器内各元件的作用如下: (1)时间元件KT 用来整定重合闸装置的动作时间。 (2)中间继电器KAM 装置的出口元件,用于发出接通断路器合闸回路的脉冲,继电器有两个线圈,电压线圈(用字母V表示)靠电容放电时起动,电流线圈(用字母I表示)与断路器合闸回路串联,起自保持作用,直到断路器合闸完毕,继电器才失磁复归。 (3)其他用于保证重合闸装置只动作一次的电容器C。 用于限制电容器C的充电速度,防止一次重合闸不成功时而发生多次重合的充电电阻器4R。 在不需要重合闸时(如手动断开断路器),电容器C可通过放电电阻6R放电。 用于保证时间元件KT的热稳定电阻5R。 用于监视中间元件KAM和控制开关的触点是否良好的信号灯HL。 用于限制信号灯HL上电压的电阻17R。 继电器内与KAM电压线圈串联的附加电阻3R(电位器),用于调整充电时间。 由于重合闸装置的使用类型不一样,故其动作原理亦各有不同。如单侧电源和两侧电源重合闸,在两侧电源重合闸中又可分同步检定、检查线路或母线电压的重合闸等。 2.重合闸的动作原理 现以图4-2为例说明重合闸的工作过程及原理,图中触点的位置相当于输电线路正常工作情况,断路器在合闸位置,辅助触点QF1断开,QF2闭合。DCH-1中的电容C经按钮触点SB1(EF)和电阻4R已充电,整个装置准备动作,装置动作原理分几个方面加以说明。 (1)断路器由保护动作或其他原因(触点1KAM闭合)而跳闸此时断路器辅助触点QF1返回,中间继电器9KAM起动(利用10R限制电流,以防止断路器合闸线圈KC(L)同时起动)其触点闭合后,起动重合闸装置的时间元件KT经过延时后触点KT1闭合,电容器C通过KT1对KAM(V)放电。KAM起动后接通了断路器合闸回路(由+→SB(EF)→②→KAM1→KAM(I)→①→KS→XB→11KAM2→KC(L)→QF1→-)KC(L)通电后,实现一次重合闸,与此同时,信号继电器KS 发出信号,由于KAM(I)的作用,使触点KAM1、KAM2能自保持到断路器完成合闸,其触点QF1断开为止。如果线路上发生的是暂时性故障,则合闸成功后,电 2

数电仿真实验报告

实验一:组合逻辑电路设计与分析 一、实验目的 (1)掌握组合逻辑电路的特点; (2)利用组合逻辑转换仪对组合逻辑电路进行分析。 二、实验原理 组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻的输入信号的取值组合。根据电路的特定功能,分析组合逻辑电路的过程。 三、实验电路及步骤 (1)利用逻辑转换仪对已知电路进行分析 实验连接图如下: U1A 74LS136D U1B 74LS136D U1C 74LS136D U2A 74LS04D U2B 74LS04D U2C 74LS04D XLC1 A B 真值表和逻辑表达式如下: (2)根据要求利用逻辑转换仪进行逻辑电路分析。 问题的提出:火灾报警器只有在烟感、温感和紫外线三种不同类型的火灾探测器中两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号。

四、思考题 (1)设计一个四人表决电路。如果3人或者3人以上同意,则通过;反之,则被否决。用与非门实现。 (2)利用逻辑转换仪对下图所示逻辑电路进行分析 五、实验体会

实验二:编码器、译码器电路仿真实验 一、 实验目的 (1)掌握编码器、译码器的工作原理。 (2)常见编码器、译码器的作用。 二、 实验原理 数字信号不仅可以用来表示数,还可以用来表示各种指令和信息。通过编码和译码来实现。 (1)编码是指在选定的一系列二进制数码中,赋予每个二进制数码以某一固定含义。能完成编码功能的电路统称为编码器。 (2)译码是编码的逆过程,将输入的每个二进制代码赋予的含义翻译出来,给出相应的输出信号。 U1 74LS148D A 0 9 A 17A 26G S 14 D 313D 41D 52D 212D 111D 0 10 D 74D 63 E I 5E O 15 U2 74LS138D Y 0 15 Y 114Y 213Y 312Y 411Y 510Y 69Y 77A 1 B 2 C 3G 1 6~G 2A 4~G 2B 5 图2-1 编码器74LS148D 和译码器74LS138D 三、实验电路 (1)8-3线优先编码器 实验电路图如下:

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

实验一:逻辑门电路的逻辑功能及测试

实验一逻辑门电路的逻辑功能及测试 一.实验目的 1.掌握了解TTL系列、CMOS系列外形及逻辑功能。 2.熟悉各种门电路参数的测试方法。 3. 熟悉集成电路的引脚排列,如何在实验箱上接线,接线时应注意什么。 二、实验仪器及材料 a)数电实验箱、万用表。 b)TTL器件: 74LS86 二输入端四异或门 1 片 74LS02 二输入端四或非门 1 片 74LS00 二输入端四与非门 1片 74ls125 三态门 1片 74ls04 反向器材 1片 三.预习要求和思考题: 1.预习要求: 1)复习门电路工作原理及相应逻辑表达式。 2)常用TTL门电路和CMOS门电路的功能、特点。 3)三态门的功能特点。 4)熟悉所用集成电路的引线位置及各引线用途。 2.思考题 1)TTL门电路和CMOS门电路有什么区别? 2)用与非门实现其他逻辑功能的方法步骤是什么? 四.实验原理 1.本实验所用到的集成电路的引脚功能图见附录。 2.门电路是最基本的逻辑元件,它能实现最基本的逻辑功能,即其输入与输出之间存在一定的逻辑关系。 TTL集成门电路的工作电压为“5V±10%”。本实验中使用的TTL集成门电路是双列直插型的集成电路,其管脚识别方法:将TTL集成门电路正面(印有集成门电路型号标记)正对自己,有缺口或有圆点的一端置向左方,左下方第一管脚即为管脚“1”,按逆时针方向数,依次为1、2、3、4············。如图1—1所示。具体的各个管脚的功能可通过查找相关手册得知,本书实验所使用的器件均已提供其功能。 图1—1 3.图1—2分别为基本门电路各逻辑功能的测试方法。

4.图1-3是为了理解TTL逻辑门电路多余端的处理方法。 5.图1-4为三态门逻辑功能测试。 五.实验内容及步骤 选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意Vcc及GND不能连接错。线连接好后经检查无误方可通电实验。 1.TTL门电路及CMOS门电路的功能测试。 将CMOS或门CC4071,TTL与非门74LS00、和或非门74LS02分别按图1-2连线:输入端A、B接逻辑开关,输入端Y接发光二极管,改变输入状态的高低电平,观察二极管的亮灭,并将输出状态填入表1-1中: 表1-1 2.TTL门电路多余输入端的处理方法: 将74LS00和74LS02按图示1-3连线后,A输入端分别接地、高电平、悬空、与B端并接,观察当B端输入信号分别为高、低电平时,相应输出端的状态,并填表1-2.

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。 温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样

易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。 二.硬件设计 1.DS18B20 DS1820 单线数字温度计特性 ? 独特的单线接口仅需一个端口引脚进行通讯 ? 简单的多点分布应用 ? 无需外部器件 ? 可通过数据线供电 ? 零待机功耗 ? 测温范围-55~+125℃,以 0.5℃递增 ? 温度以 9 位数字量读出 ? 温度数字量转换时间 200ms (典型值) ? 用户可定义的非易失性温度报警设置 ? 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件 ? 应用包括温度控制、工业系统、消费品、温度计或任何热感测系统 DS1820温度传感器外观图(a )和引脚图(b ) ①引脚1接地 ②引脚2数字信号输入/输出 ③引脚3接高电平5V 高电平

相关文档