文档库 最新最全的文档下载
当前位置:文档库 › 江大材料物理性能复习资料讲解

江大材料物理性能复习资料讲解

江大材料物理性能复习资料讲解
江大材料物理性能复习资料讲解

第一章 材料的热学性能

1.热容的概念(P42):热容是分子或原子热运动的能量随温度变化而变化的物理量,其定义是物体温度升高1K 所需增加的能量。温度不同,物体的热容不一定相同,温度T 时物体热容为:)/()(K J T

Q C T T ??=(简单点就直接用这个吧:T Q C ??=) PS :物理意义:吸收热量提高点阵振动能量,对外做功,加剧电子运动 比热容(单位质量):T

m Q C ???= 2.晶体热容的经验定律(P42):

杜隆—珀替定律:恒压下元素的原子热容为25J/(K ·mol)

奈曼—柯普定律:化合物热容等于构成此化合物各元素原子热容之和

3.从材料结构比较金属、无机非金属、高聚物的热容大小(P46):

A 金属:a 纯金属:热容由点阵振动和自由电子运动两部分组成:

T T C C C e V L V V γα+=+=3

b 合金金属:符合奈曼—柯普定律∑==+++=n i im i

nm n m m m C x C x C x C x C 12121

B 无机非金属:a 符合热容理论,一般都是从低温时的一个低数值增加到1273K 左右近似于 25J/(K ·mol)的数值;b 无机材料热容与材料结构关系不大,但单位体积热容与气孔率有关,多孔质轻热容小;c 当材料发生相变:一级相变:体积突变,有相变潜热,温度Tc 热容无穷大,不连续变化;二级相变:无体积突变,无相变潜热,在转变点热容达到有限极大值(P47

C 高聚物:多为部分结晶或无定型结构,热容不一定符合理论式,热容相对较大,且由化学结构决定,温度升高链段振动加剧,改变链运动状态(主链、支链(链节、侧基))。 4.从材料结构比较金属、无机非金属、高聚物的热传导机制(P53):

A 金属:有大量自由电子,且电子质轻,实现热量迅速传递,热导率一般较大。纯金属温度升高使自由程减小作用超过温度直接作用,热导率随温度上升而下降;合金热传导以自由电子和声子为主,因异类原子存在,温度本身起主导作用,热导率随温度上升增大。

B 无机非金属:晶格振动为主要传导机制,即声子热导为主,约为金属热传导的三十分之一。

C 高聚物:热导率与温度关系比较复杂,但总体来说热导率随温度的增加而增加。高聚物主要依靠链段运动传热为主,而高分子链段运动比较困难,热导能力比较差。

5.材料热膨胀物理本质:热膨胀是指物体体积或长度随温度升高而增大的现象。膨胀是原子间距(晶格结点原子振动的平衡位置间的距离)增大的结果,温度升高,原子平衡位置移动,原子间距增大,导致膨胀。双原子模型:P49 图2-

6.

图2-5 热焓、热容与加热温度的关系)。

6.热膨胀系数和熔点之间的关系(P49):温度升高至熔点,原子热运动突破原子间结合力,破坏原固态晶体结构变为液态,所以固态晶体膨胀有极限值。 格律乃森定律:C V V V T Tm m V =-=

0α (C 为常数,约在0.06-0.076之间,) 线膨胀系数与熔点:022.0=m l T α 固态晶体熔点越高,膨胀系数越低,间接反映晶体原子间结合力大小。(增大) 7.热分析法概念:测量材料在加热或冷却过程中热效应所产生的温度和时间的关系。但材料固态相变时,产生的热效应小,普通热分析测量精度不高。

8.差热分析法概念:在程序控温下,将被测物与参比物在相同条件下加热或冷却,测量试样与参比物之间的温差随温度、时间的变化关系。

对参比物的要求:应为热惰性物质,在测试温度范围内本身不发生分解、相变、破坏,也不与被测物质发生化学反应,且比热容、热传导系数应尽量与试样接近。(如硅酸盐采用Al 2O 3、MgO ;钢铁采用镍。)

9.热应力(P63):由于材料热膨胀或收缩引起的内应力称为热应力。 材料内应力:)()(0T T E l

l E -'-=?-=σσ 产生原因:杆件材料两端完全刚性约束,热膨胀无法实现,则杆件与支撑体间产生很大应力;多相组成材料,不同相膨胀系数不同,温度变化时各相膨胀收缩量不同而相互牵制产生热应力;各相同性材料,存在温度梯度时也会产生热应力。

10.抗热冲击断裂(P64):发生瞬时断裂,抵抗这类破坏的性能。 第一热应力断裂抵抗因子:max )1(T E

R f ?=-=αμσ 最大热应力max σ不超过强度极限f σ,则材料安全。材料可承受温度变化范围越大,热稳定性约好。 第二热应力断裂抵抗因子:αμλσE R f

)1(-=',h r S R T m 31.01max ?'=? R '越大,热稳定性约好。(散热) 第三热应力断裂抵抗因子:a p R C R R ='=''ρ

(冷却速率) 抗热冲击损伤(P62):在热冲击循环作用下,材料表面开裂、剥落,并不断发展,最终碎裂或变质,抵抗这种破坏的性能称为抗热冲击损伤性能。

抗热应力损伤因子R R '''''''和,二者值越高抗热损伤性能越好。

11.提高抗热冲击断裂措施(P69):

1)提高材料强度σ,减小弹性模量E ,使E

σ提高(同种材料若晶粒细小、晶界缺陷小、气孔少且分散均匀,往往强度高,抗热冲击性能好)。

2)提高材料的热导率λ,提高R '(λ大的材料传递热量快,材料内外温差较快得到缓解、平衡,降低短期热应力的聚集)。

3)减小材料的热膨胀系数α,热膨胀系数小的材料,在同样温差下产生热应力小。

4)减小表面热传递系数h ,保持缓慢散热降温。

5)减小产品的有效厚度m r 。

第二章 材料的导电性能

1.超导电性(P115):一定低温条件下,材料突然失去电阻的现象。(超导态电子对运动不耗能)

超导体的两个基本特性:A 完全导电性:电阻为零,超导体为等电位,内部没有电场。 B 完全抗磁性(迈斯纳效应):屏蔽磁场和排除磁通的性能。 2.固溶体的导电性:

1)固溶体组元浓度影响:形成固溶体合金导电率降低,原因A 溶质原子引起溶剂点阵畸变,破坏晶格势场周期性,增加电子散射概率,增大电阻率;B 组元间化学相互作用增强,有效电子数减少,电阻率增大。

2)有序固溶体:A 组元间化学相互作用加强,电子结合比无序固溶体强,电子数减少,电阻率增强;B 晶体的离子电场有序化后更对称,减少电子散射,电阻降低,这一因素占优势。总体合金电阻降低。

3)不均匀固溶体:冷加工变形使电阻减小。形成不均匀固溶体时,点阵形成原子偏聚,偏聚区成分与固溶体成分不同,原子聚集区域的集合尺寸与电子波波长相当(1nm ),可强烈散射电子波,提高合金电阻率。聚集区域的原子为有序排列,冷加工能有效地破坏固溶体中的这种近程有序状态,是不均匀组织变成无序的均匀组织,因此合金电阻率明显降低。 温度、压力、形变对于导电性质的影响

温度:金属电阻率随温度升高而增大,温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由程减小,散射概率增加而导致电阻率增大。大多数金属在熔化成液态时,其电阻率会突然增大约1.5~2倍,这是由于原子排列的长程有序被破坏,从而加强了对电子的散射,引起电阻增加。

应力的影响:弹性应力范围内的单向拉应力,使原子间的距离增大,点阵的畸变增大,导致金属的电阻增大。高的压力往往能导致物质的金属化。引起导电类型的变化,而且有助于从绝缘休—半导体—金属—超导体的转变。

冷加工变形的影响:引起金属电阻率增大,是由于冷加工变形使晶体点阵畸变和晶体缺陷增加,特别是空位浓度的增加,造成点阵电场的不均匀而加剧对电子散射的结果。若对冷加工变形的金属进行退火,使它产生回复和再结晶,则电阻下降。再结晶生成的新晶粒的晶界增多,对电子运动的阻碍作用增强所造成的,晶粒越细,电阻越大。(回复退火可以显著降低点缺陷浓度,因此使电阻率有明显的降低。再结晶过程可以消除形变时造成的点阵畸变和晶体缺陷,所以再结晶可使电阻率恢复到冷变形前的水平。)

3.金属化合物导电性:合金导电率比纯组元低,因原子间一部分金属键转化成共价键或离子键,有效电子数减少,电阻率增高。

4.多相合金的导电性:与组成相的导电性、相对量、合金的组织形态有关。

5.影响金属导电性的因素(P119):

1)温度:温度升高,热振动振幅加大,原子无序度增加,电子运动自由程减小,散射概率增大,电阻率增大。)1(0T T αρρ+=

2)应力:拉应力使原子间距增大,点阵畸变增大,电阻增大。电阻率)1(0ασρρ+=。

3)冷加工变形(塑性变形):使晶体点阵畸变,晶体缺陷增加,空位浓度增加 ,造成离子场不均匀,对电子波散射率增大,导致电阻增加。回复退火再结晶降低缺陷浓度,降低电阻率。 6.三个热电效应概念及物理本质:热电效应指热与电的转换效应

1)第一热电效应(塞贝克效应P141):两种不同导体组成一个闭合回路,若两接头处存在温差,回路中将有电势及电流产生。回路中产生的电势、电流称为热电势、热电流;该回路

称为热电偶或温差电池。

产生机理:

A 接触电位差:原因a 两种金属的电子逸出功(电子从金属表面逸出所需的最小能量,与金属表面势垒E 0和费米能级E F 有关)不同,电位差1212)(1V V e V a b -=-=

'??;b 两种金属自由电子密度不同,电位差b

a n n e kT V ln 12=''。 B 温差电位差:指金属两端温度不同引起热流,造成自由电子流动,从而引起的电位差。热端高能电子向冷端扩散,热端带正电,冷端带负电,金属内部产生阻止电子扩散的温差电场,稳定后为V a (T 1,T 2)、V

b (T 1,T 2)。 总电位差:

),(),(2ln )(),(),()()(211212

12121121221211212T T V T T V n n e k

T T T T V T T V T V T V -+-=-+-=ε塞贝克效应应用:测量温度、温差发电、材料成分组织分析。

中间金属定律:一系列金属串联的接触电势,只要中间金属两端温度相同,不论其性质如何都与中间金属无关,只与两端金属有关。

2)第二热电效应(波尔帖效应P148):指电流通过两个不同金属接触点,除电流产生焦耳热,还额外产生放热吸热的现象。焦耳热与电流方向无关,波尔贴热与电流方向有关且热力学可逆。正反通电,两次的热量差为2Q (两倍波尔帖热)。

产生机理:用接触电位差解释(P149图4-53),A 接头处两金属接头有接触电位差V12,阻碍电流电子运动,电子反抗电场力做功eV12,电子动能减小;减速电子与金属原子相碰,从金属原子获得动能,则该处温度降低,需从外界吸收能量。B 接头处接触电位差使电子运动加速,电子动能增加eV12,碰撞将动能传递给原子,温度升高释放热量。

3)第三热电效应(汤姆逊效应P149):指当电流通过有温差的导体时,会有一横向热流流入或流出导体(横向吸热或放热),其方向视电流或温度梯度方向而定的现象:dx dT I dt dQ μ=。 产生机理:(P149 图4-54)金属存在温差时,高温端电子扩散快为正电,低温端为负电,形成高温端指向低温端的电位差,当外加电流与V(T1,T2)同向时,电子被温差电场加速获得能量,与晶格碰撞传给晶格,金属能量升高并放热。外加电流反向则吸热。

一个由两种导体组成的回路,接触端温度不同,三种热效应会同时产生:塞贝克热效应

产生热电势、热电流,热电流通过接触点要吸收或放出波尔帖热,通过导体时要吸收或放出汤姆逊热。

第三章 材料的介电性能

1.电介质(P154):放在平板电容器中增加电容的材料称为介电材料。电介质即在电场作用下能建立极化的物质。

2.束缚(感应)电荷:在真空平板电容中嵌入一块电介质,外加电场时,正极板附近的介质表面感应出负电荷,负极板介质表面感应出正电荷,这种感应出的表面电荷称为束缚电荷。

3.电介质极化:电介质在电场作用下产生束缚电荷的现象,可使电容器增加电荷的存储能力。

4.电介质的压电性、热释电性、铁电性的产生条件:

1)压电性(P181):在晶体的一些特定方向上加力,在力的垂直方向的平面出现正、负束缚电荷的现象。产生条件:A 必须是电介质;B 结构必须带有正、负电荷的质点,有离子或离子团的存在,即必须为离子晶体或由离子团组成的分子晶体;C 结构没有对称中心。

2)热释电性(P182):晶体由于温度作用使电极化强度变化。条件:A 具有自发极化(固有

极化)能力的晶体;B 在结构上有极轴(晶体唯一的轴,轴两端有不同的性质,采用对称操作不能与其他晶向重合的方向)C 结构没有对称中心。

3)铁电性:晶体中极化强度随外加电场变化而变化的性质。

一般电介质、压电体、热释电体、铁电体存在的宏观条件 一般电介质

压电体 热释电体 铁电体 电场极化

电场极化 电场极化 电场极化

无对称中心 无对称中心 无对称中心

自发极化 自发极化

极轴 极轴

电滞回线

第四章 材料的磁学性能 1.原子磁矩包括 电子轨道磁矩(电子绕原子核运动产生)、电子自旋磁矩、原子核磁矩。 2.原子固有磁矩概念(P194):电子轨道磁矩和电子自旋磁矩构成原子固有磁矩(本征磁矩)。 产生的本质:电子层各个轨道电子排满,电子磁矩相互抵消,该电子层磁矩和为零;若原子中所有电子层都排满,形成球形对称集体,则电子轨道磁矩和电子自旋磁矩各自相互抵消,此时原子本征磁矩为零。原子中有未被填满的电子壳层,其电子的自旋磁矩未被抵消(方向相反的电子自旋磁矩可以相互抵消),原子具有“永久磁矩”。

3.任何物质都具有抗磁性本质的原因(P198):外加磁场作用下由于电子轨道运动产生与外磁场方向相反的附加磁矩。

顺磁性原因:外磁场作用下,为降低静磁能,原子磁矩要转向外磁场方向,使总磁矩不为零表现出磁性。

4.铁磁性金属产生自发磁化的原因(P203):(自发磁化:在没有外加磁场的情况下,材料发生的磁化)A 有未填满的电子层,因电子间的相互作用产生自发磁化(两原子相接近,电子云互相重叠且电子层的能量相差不大,因此电子可互换位置,使相邻原子自旋磁矩产生有序排列)B 电子互换产生附加能量为交换能,?cos A E ex -=,当a/r>3,A>0,有自发磁化倾向。

5.铬、锰是反铁磁质的原因(P196、P203):反铁磁体的磁化率χ是小的正数,在温度低于某一温度时,磁化率随温度升高而增大,高于这一温度,其行为像顺磁体。

当a/r<3时,A <0,自旋磁矩取反向平行排列能量最低。相邻原子磁矩相等时,原子磁矩反平行排列,原子磁矩相互抵消,自发磁化强度等于零,这一特性称为反铁磁性。Mn 、Cr 为反铁磁体,无论在什么温度下其宏观特性都是顺磁性的,磁化率为正。温度极低时,相邻原子自旋相反,磁矩抵消,磁化率接近0;温度升高,自旋反向作用减弱,磁化率增加。在一定温度Tn (尼尔点)磁化率有最大值rn χ,温度在Tn 以上,反磁体与顺磁体有相同的磁化行为。

6.超交换的概念(P226):超交换作用是指夹杂在磁性离子间的氧离子形成的间接交换作用,是铁氧体有很强自发磁化的原因。

7.尖晶石型(P226)元细胞由8个分子组成,氧四面体空隙位置A 位,八面体空隙位置B 位,用[ ]表示。

正尖晶石型的特点和表示方法:离子分布为M2+处于A 位,Fe3+处于B 位的铁氧体为正尖晶石。A 位被不具有磁矩的Zn+、Cd2+占据,A-B 不存在超交换作用,B 位两个Fe3+磁矩反平行耦合,B-B 磁矩完全抵消,不出现自发磁化。

反尖晶石型的特点表示方法:M2+占B 位,Fe3+占A 位及剩余B 位。A 位与B 位的Fe3+有超交换相互作用,则二者磁矩反向平行并相互抵消,仅余剩下B 位M2+磁矩,因此几乎所有亚铁磁性尖晶石都是反型。

8.磁化曲线、磁滞回线(P197图6-2)

磁性能点:a) 饱和磁感应强度Bs b) 剩余磁感应强度Br ,铁磁物质磁化到饱和后,又将磁场强度下降到零时,铁磁物质中残留的磁感应强度 c) 矫顽力Hc ,铁磁物质磁化到饱和后,由于磁滞现象,要使磁介质中B 为零,须有一定的反向磁场强度-H ,磁场场强度称为矫顽力Hc 。

9.磁致伸缩效应(P206):铁磁体在磁场中被磁化,尺寸形状都发生变化的现象。大小用磁致

伸缩系数λ表示:l

l ?=λ。 产生的本质原因:原子磁矩有序排列时,电子间相互作用导致原子间距自发调整引起的,是其内部各个磁畴形变的外观表现。

10.铁磁质的技术磁化(P212):

技术磁化概念:在外磁场作用下铁磁体从完全退磁状态磁化至饱和状态的内部变化过程。 两种机制方法:畴壁迁移(壁移磁化)、磁畴旋转(畴转磁化)。

过程三阶段:1)起始磁化阶段:锐角磁畴能态低,钝角畴能态高,磁畴壁自旋磁矩能态高,受磁场影响转动,即磁畴壁移动,则锐角畴扩大,钝角畴缩小,若撤销磁场畴壁迁移可逆。

2)急剧磁化阶段:外加磁场增强,畴壁发生瞬时跳跃,钝角畴瞬时转向锐角易磁化方向,畴壁以不可逆跳跃式进行,称为巴克豪森效应(巴克豪森跳跃)。

3)缓慢磁化至饱和阶段:原子磁矩都转向与磁场成锐角的易磁化方向后成为单畴,增强外磁场,磁场要为增加磁晶各向异性能做功,磁畴转动困难而微弱。(转动可逆) 磁化壁移阻力(P213):

1)阻力来源:A 磁化产生退磁能B 晶体内部缺陷。

2)阻力来源理论:A 内应力理论:晶体缺陷及磁化产生的磁致伸缩效应会产生分布不均匀的内应力,内应力的分布状态决定壁移阻力。B 杂质理论:从能量角度看,畴壁处于杂质处,被杂质穿孔而畴壁总面积减少,畴壁能降低,外磁场使畴壁移动,畴壁面积增大、畴壁能增大,造成畴壁迁移阻力。

11.提高剩余磁化强度Mr 方法(P216):1)使外磁场方向与易磁化方向一致,Mr=Ms ;2)进行磁场热处理,让外磁场从高于居里点温度向低温冷却,形成磁织构。

提高矫顽力Hc 的方法(P217):需增加壁移阻力1)提高磁致伸缩系数s λ;2)使材料产生内应力,增加杂质浓度和弥散度;3)选择K 值较高Ms 较低的材料。

12.形变对剩余磁化强度、磁性能的影响(P219):形变使晶格缺陷增加,应力场和壁移阻力增加,使磁导率m μ下降,矫顽力Hc 增加,剩余磁感应强度Br 在临界变形度下急剧下降,以上则增强(刘强老师说:参考图6-41)。晶粒细化也使磁导率减小,矫顽力和磁滞损耗增大。

13.坡莫合金的成分(P221):指铁镍合金,含镍量在35%-90%之间。

磁性能特点:在弱磁场中也有较高的磁导率。Ni 含量30%处,发生γα到的相转变,导致许多磁学性能改变,i m μμ和的最大值在Ni 含量78%处,此时K s 和λ趋于0。

14.单畴颗粒(P210):颗粒足够小,可在一个方向自发磁化到饱和形成单个磁畴的颗粒。 磁化特点:不存在畴壁,在技术磁化时无壁移过程,只靠畴的转动,需克服磁晶各向异性能,技术磁化和退磁都不易,具有低磁导率和高矫顽力。

第五章材料的光学性能

1.光的折射率的产生:折射的实质是由于介质密度不同,光在其中传播速度也不同。光在真空中传播速度与在致密材料中传播速度之比称为材料的绝对折射率。

2.介质中光速比真空中慢原因:在介质中的光波是入射波与介质中振子(原子、分子、离子等微观粒子的抽象概念)受迫振动所发射的次波的合成波。合成波的频率与入射光波相同,但其位相却因受到振子固有振动频率的制约而滞后。因此,波合成的结果使介质中的光速比真空中慢。

3.反射的决定因素有哪些:W’是单位时间内通过单位面积的反射光的能量流,若入射光的单位能量流为W时。

反射系数R=W’/W

光的反射:指光在传播到不同物质时,在分界面上改变传播方向又返回原来物质中的现象。影响因素:在垂直入射的情况下,光在界面上反射的多少取决于两种介质的相对折射率

n21 ,如果n1和n2相差很大,那么界面反射损失就严重。如果n1等于n2,几乎没有反射损失。

由许多块玻璃组成透镜系统,反射损失更可观。为了减小这种界面损失,常常采用折射率和玻璃相近的胶将它们粘起来,这样,除了最外和最内的表面是玻璃和空气的相对折射率外,内部各界面都是玻璃和胶的较小的相对折射率,从而大大减小了界面的反射损失。

4.双折射的概念、特点。光波入射各向异性的晶体,分解成振动方向互相垂直、传播速度不等的两种偏振光,此现象即为双折射;

双折射光纤中,平行于入射面的光线的折射率,称为常光折射率n0,严格遵循折射定律。另一条与之垂直的光线所构成的折射率随入射方向改变而变化,称非常光折射率ne。当光沿晶体光轴方向入射时只有常光折射率存在,与光轴垂直入射时,非常光折射率达到最大。

5.单折射在结构上的要求:双折射是非均质晶体的特性,只要材料不是各向异性,就会产生单折射。

6.电介质在紫外红外产生吸收峰的原因:紫外吸收增加因为波长越短,光子能量越大。当光子能量达到禁带宽度时,电子就会吸收光子能量从满带跃迁到导带,此时吸收系数将骤然增大;红外吸收是因为离子的弹性振动与光子辐射产生谐振消耗能量所致,材料发生振动的固有频率由离子间结合力决定。

7.选择性吸收概念:同一物质对某一种波长的吸收系数可以非常大,而对另一种波长的吸收系数可以非常小的现象称为“选择吸收。

均匀吸收概念:如果介质在可见光范围对各种波长的吸收程度相同,则称为均匀吸收。

8.色散的概念:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质。

9.散射概念:光在通过结构成分不均匀介质微区域时,有一部分能量偏离原来的传播方向而向四面八方弥散开来,这种现象称为光的散射

产生原因:主要是光波遇到不均匀结构产生的次级波与主波方向不一致,二者合成出现干涉现象,使光偏离原来的方向,从而引起散射。

10.弹性与非弹性散射区别、包含哪几类:散射前后,光的波长(或光子能量)不发生变化的散射称为弹性散射。包含:廷德尔散射、米氏散射、瑞利散射;散射光中频率发生改变的光散射称为“非弹性散射”。其中包含瑞利散射线、布里渊散射线、拉曼散射线、斯托克斯线、反斯托克斯线。

从波动和能量观点解释红、蓝移:波动的观点来看,光的非弹性散射机制是光波电磁场与介质内微观粒子固有振动之间的耦合,从而激发介质微观结构的振动或导致振动消失,以至于散射光波频率相应出现红移或蓝移;能量观点来看,处于低能级的介质分子受到某频率入射

光子作用后跃迁到某虚能级再向下跃迁回来时并没有回到原能级,但发射出一个与原先频率不同的光子。这个光子频率与入射光自相比有了能量差,便产生了红移或蓝移现象。

11.影响透光性的因素:材料透光性主要与材料的吸收系数,反射系数及散射系数影响。散射系数是影响材料透光率的主要因素。

12.受激辐射:当一个能量满足hμ=E2-E1的光子趋近高能级E2的原子时,入射的光子诱导高能级原子发射一个和自己性质完全相同的光子。

自发辐射:原子处于高能级,那么它就可能自发的、独立的向低能级跃迁并发射一个光子。受激吸收:原子在低能级时受到hμ=E2-E1的光子趋近时,原子可能吸收一个光子并跃迁到高能级。

自发与受激辐射的异同:自发辐射和受激辐射都发射出光子;但各原子的自发辐射过程完全是随机的,所以自发辐射光是非相干的。但受激辐射会发射出一个和外来光特性完全相同的光子,所以受激辐射光是相干的。

13.激活介质的作用:突破玻尔兹曼分布,是高能级粒子数大于低能级粒子数,实现粒子数反转引发雪崩效应使特定频率、方向、偏振态的光得到增强。

14.激光材料构成:由基质和激活离子组成(红宝石激光器CrAl2O3的基质Al2O3激活离子Cr3+)。基质主要是为激活离子提供一个合适的晶格场,使之产生受激发射。而激活离子则是作为发光中心。

第六章内耗与弹性变形

1.晶体结构材料和高弹态的高聚物的物理本质:对于金属、陶瓷类材料,变形过程由双原子模型解释。外力不大时部分原子克服原子间作用力,使原子发生相对位移改变原子间距,发生弹性型变。外力去除后原子恢复到原先位置,形变消失原子间结合力越大,弹性模量越高;高聚物高弹态是在外力作用下,呈卷曲状高分子链链段运动沿受力方向伸展,且变形量较大;弹性模量的物理本质是标志原子间结合力的大小。材料原子间结合力越大,其弹性模量越高;原子排列越紧密,其弹性模量越高。

温度对各自弹性模量的影响:

一般说来,随温度的升高,物质的原子振动加剧,原子间距增大体积膨胀,原子间结合力减弱,使材料的弹性模量降低。

对于高弹态聚合物,弹性模量随温度的升高略有增加,这一点与其他材料不同。其原因是温度升高时,高分子链的分子运动加剧,力图恢复到卷曲的平衡状态的能力增强所致。

2.动滞与静滞型内耗各自特点与区别:动滞是由于应变落后于应力引起的,大小与振动频率有关;静滞则是由于在加载和去载时应力、应变关系不同引起的,大小与振幅有关。

内耗和角频率之间的关系对Q^-1=△Mωτ/1+(ωτ)^2讨论

当ωτ>>1,即τ>>1/ω时,弛豫时间远大于振动周期,意味着应力变化非常快,材料来不及产生弛豫过程,相当于理想弹性体,所以内耗趋于零。

当ωτ<<1,即τ<<1/ω时,弛豫时间远小于振动周期,意味着应力变化非常慢,材料有充分时间产生弛豫过程,应力应变同步变化,所以内耗趋于零。

当ωτ为中间值时,即当ωτ=1时,弛豫应变跟不上应力变化,所以应力应变曲线不是单值函数,成为了一个椭圆,内耗达到了峰值。

背底内耗:由于位错被钉扎时阻尼振动引起的,与振幅无关,属于动滞后型内耗;由于位错脱钉过程引起的,与频率无关,属于静滞后型内耗;

3.应力感生有序的概念:固溶体中由于溶质原子溶入造成晶格的不对称畸变,在没有应力作用时呈无序分布,但在外力作用下,溶质原子将沿某方向择优分布以降低畸变能。

园林植物生理学复习资料2017.

一:名词解释 自由水:与细胞组分之间吸附力较弱,可以自由移动的水。 压力:植物细胞中由于静水质的存在而引起的水势增加的值。 束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。 蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 .蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g?kg-l表示。蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。抗蒸腾剂的种类很多,如有的可促进气孔关闭。 水分代谢:植物对水分的吸收、运输、利用和散失的过程。 水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则是负值。 渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流和吐水现象是根压存在的证据。 渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。 .衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 .吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。 水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。 2. 随有温度升高弹性模量不一定会下降。如低碳钢温度一直升到铁素体转变为 奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。 3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。 4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合 力。对于一定的材料它是个常数。 弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。因为建立的模型不同,没有定量关系。(☆) 5. 材料的断裂强度:a E th /γσ= 材料断裂强度的粗略估计:10/E th =σ 6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近 绝对零度时,热容按T 的三次方趋近与零的试验结果。 7. 德拜温度意义: ① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温 度θD 来划分这两个温度区域: 在低θD 的温度区间,电阻率与温度的5次方成正比。 在高于θD 的温度区间,电阻率与温度成正比。 ② 德拜温度------晶体具有的固定特征值。 ③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有 相同的关系曲线。德拜温度表征了热容对温度的依赖性。本质上, 徳拜温度反应物质内部原子间结合力的物理量。 8. 固体材料热膨胀机理: (1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升 高而增大。 (2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。随着温度升 高,热缺陷浓度呈指数增加,这方面影响较重要。 9. 导热系数与导温系数的含义: 材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。 即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆) 10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震 性。 热稳定性破坏(即抗热振性)的类型有两种:抗热冲击断裂性和抗热冲击损伤性。 11. 提高材料抗热冲击断裂性能的措施 ①提高材料强度σ,减小弹性模量E ,σ/E 增大,即提高了材料柔韧性,这样可吸收较多的应变能而不致于开裂。晶粒较细,晶界缺陷小,气孔少且分散者,强度较高,抗热冲击断裂性较好。

植物生理学复习资料

植物生理学复习资料 第一章植物的水分生理 根系是植物吸水的主要器官,其中根毛区为主要吸水区域。 根毛细胞壁含有丰富的果胶质,有利于与土壤接触并吸水。 根毛区有成熟的疏导组织,便于水分运输。 根毛极大的增加了根的吸收面积。 主动吸水:由根系自身的生理代谢活动引起的需要利用代谢能量的吸水过程,称为植物的主动吸水。 主动吸水的动力是根压。 被动吸水:由于枝叶的蒸腾作用而引起的根部吸水称为被动吸水。 被动吸水的动力是蒸腾拉力。 蒸腾作用:植物体内的水分以气态的方式通过植物体表面散失到外界环境的过程称为蒸腾作用。蒸腾作用是植物散失水分的主要方式。 蒸腾作用的意义: 第一,是植物吸收和运输水分的主要动力,特别是对于高大的植物,没有蒸腾作用较高处就无法得到水分。 第二,能促进植物对矿质盐类(养分)的吸收和运输。 第三,能调节植物的体温,避免叶片在直射光下因温度过高而受害。 第二章植物的矿质营养 1、矿质营养:植物对矿质盐的吸收、运输和同化,叫做矿质营养。 2、植物的必须元素的条件:①不可缺少性:缺乏该元素,植物不能完成其生活史。②不可 代替性:无该元素,表现专一缺乏症,当提供该元素时,可预防和纠正此缺乏症,而这种作用不能被其他元素所代替。③直接功能性: 3、必须矿质元素的生理作用: ①细胞结构物质和功能物质的组成成分。②植物生命活动的调节者,参与酶的活动。③起电化学平衡和信号传导作用。 4、主动吸收:细胞直接利用能量代谢,逆电化学势梯度吸收矿质的过程。 主动运输的特点:①运输速度超过根据透性和电化学势梯度预测的速度。②转运达到衡态时,膜两侧电化学势不平衡。③在运输量和消耗能量之间存在定量关系。 5、原初主动运输:质膜H+→A TP酶利用A TP水解产生的能量,把细胞质内的H+向膜外“泵”出(质子泵)。H+→ATPase不断运输的结果:(1)膜内外两侧形成H+化学势差(△PH)。(2)膜内外两侧形成电势梯度差(△E)。 6、次级主动吸收:是以质子驱动力为动力的分子或离子的吸收。原初主动运输为次级主动吸收蓄积了动力(质子动力势),而次级主动吸收利用质膜两侧质子动力势梯度逆电化学梯度运输离子。 7、根系吸收矿质元素的特点 (1)根系吸收矿质与吸收水分既有关又无关。 (2)根系对离子的选择吸收。 (3)单盐毒害和离子拮抗。 8、单盐毒害:单一盐溶液对植物的毒害现象称为单盐毒害。 9、离子拮抗:在盐溶液中加入少量其他离子,就会减弱或消除毒害,离子间的这种相互消除毒害的现象称为离子拮抗。 第三章植物的光合作用

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

材料物理性能复习总结

1、 ?拉伸曲线: ?拉伸力F-绝对伸长△L的关系曲线。 ?在拉伸力的作用下,退火低碳钢的变形过程四个阶段: ?1)弹性变形:O~e ?2)不均匀屈服塑性变形:A~C ?3)均匀塑性变形:C~B ?4)不均匀集中塑性变形:B~k ?5)最后发生断裂。k~ 2、弹性变形定义: ?当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。 ?弹性变形的可逆性特点: ?金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性 关系,且弹性变形量都较小。 ?橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。 ?无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。 3、弹性比功:(弹性比能、应变比能),用a e 表示, ?表示材料在弹性变形过程中吸收弹性变形功的能力。 ?一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?物理意义:吸收弹性变形功的能力。 ?几何意义:应力σ-应变ε曲线上弹性阶段下的面积。 4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即: ?①应变对于应力的响应是线性的; ?②应力和应变同相位; ?③应变是应力的单值函数。

?材料的非理想弹性行为: ?可分为滞弹性、伪弹性及包申格效应等几种类型 5、滞弹性(弹性后效) ?滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹 性应变的现象。 6、实际金属材料具有滞弹性。 ?1)单向加载弹性滞后环 ?在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步), 形成一封闭回线,称为弹性滞后环。 ?2)交变加载弹性滞后环 ?交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图 b)。 ?3)交变加载塑性滞后环 ?交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。 7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。 ?这部分在变形过程中被吸收的功,称为材料的内耗。 ?内耗的大小:可用滞后环面积度量。 8、金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的“内耗”。 ?严格说,循环韧性与内耗是有区别的,但有时常混用。 ?循环韧性: ?指材料在塑性区内加载时吸收不可逆变形功的能力。 ?内耗: ?指材料在弹性区内加载时吸收不可逆变形功的能力 9、循环韧性:也是金属材料的力学性能,因它表示在交变载荷(振动)下吸收不可逆变形功的能力,故又称为消振性。 ?材料循环韧性越高,则自身的消振能力就越好。 ?高的循环韧性可减振:如汽轮机叶片(1Cr13),机床材料、发动机缸体、底座等选 用灰铸铁制造。 ?低循环韧性可提高其灵敏度:如仪表和精密机械、重要的传感元件。 ?乐器所用材料的循环韧性越低,则音质越好。 10、伪弹性有些合金如(Au金-Cd镉,In铟-Tl铊等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复 11、当材料所受应力超过弹性极限后,开始发生不可逆的永久变形,又称塑性变形。 12、单晶体受力后,外力在任何晶面上都可分解为正应力和切应力。 ?正应力:只能引起弹性变形及解理断裂。 ?只有在切应力的作用下,金属晶体才能产生塑性变形。 13、金属材料常见的塑性变形方式:滑移和孪生两种。 14、滑移现象: ?表面经抛光的金属单晶体在拉伸时,当应力超过屈服强度时,在表面会出现一些与 应力轴成一定角度的平行细线。 ?在显微镜下,此平行细线是一些较大的台阶(滑移带)。 ?滑移带:又是由许多小台阶组成,此小台阶称为滑移线

植物生理学复习资料全

植物生理学复习资料 1、名词解释 杜衡:细胞可扩散正负离子浓度乘积等于细胞外可扩散正负离子浓度乘积时的平衡,叫做杜衡。 水势:每偏摩尔体积水的化学势与纯水的化学势的差值。 渗透作用:水分从水势高的系统通过半透膜流向水势低的系统的现象。 蒸腾作用:植物通过其表面(主要是叶片)使水分以气体状态从体散失到体外的现象。 光合作用: 绿色植物利用太阳的光能,将CO2和H2O转化成有机物质,并释放O2的过程 呼吸作用:是植物体一切活细胞经过某些代途径使有机物质氧化分解,并释放能量的过程。有氧呼吸:活细胞利用分子氧(O2 )把某些有机物质彻底氧化分解,生成CO2与H2O,同时释放能量的过程。 无氧呼吸:在无氧(或缺氧)条件下活细胞把有机物质分解为不彻底的氧化产物,同时释放出部分能量的过程。 蒸腾速率:也叫蒸腾强度,是指植物在单位时间、单位叶面积上通过蒸腾而散失的水量。矿质营养:植物对矿质元素的吸收、运转与同化的过程,叫做矿质营养 光合速率:指单位时间、单位叶面积吸收co2的量或放出o2的量,或者积累干物质的量 呼吸速率:呼吸速率又称呼吸强度,是指单位时间单位鲜重(FW)或干重(DW)植物组织吸收O2或放出CO2的数量(ml或mg)。 诱导酶:植物本来不含某种酶,但在特定外来物质(如底物)的影响下,可以生成这种酶。植物激素:是指在植物体合成,并经常从产生部位输送到其它部位,对生长发育产生显著作用的微量有机物。 种子休眠:一个具有生活力的种子,在适宜萌发的外界条件下,由于种子的部原因而不萌向性运动: 春化作用:低温诱导花原基形成的现象(低温促进植物开花的作用) 二、植物在水分中的状态? 在植物体,水分通常以束缚水和自由水两种状态存在。 三、水分在植物生命活动中的作用 1.水是细胞原生质的重要组分 2.水是代过程的反应物质 3.水是植物吸收和运输物质的溶剂 4.水使植物保持挺立姿态 5.水的某些理化性质有利于植物的生命活动 四、水势(ψw):每偏摩尔体积水的化学势与纯水的化学势的差值。 纯水的水势规定为0。水势最大 细胞水势(ψw)、衬质势(ψm )、渗透势(ψπ或ψs )、压力势(ψp)之间的关系为: ψw = ψm + ψπ + ψp 水势单位:Pa(帕)或MPa(兆帕)。 1 MPa =106Pa 五、植物细胞吸水方式③代性吸水②渗透性吸水①吸胀性吸水

无机材料物理性能期末复习题资料

无机材料物理性能期 末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 2x。 10.对于中心穿透裂纹的大而薄的板,其几何形状因子。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。 14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。

材料物理性能复习思考题汇总

材料物理性能复习思考题汇总 第一章绪论及材料力学性能 一.名词解释与比较 名义应力:材料受力前面积为A,则δ。=F/A,称为名义应力 工程应力:材料受力后面积为A。,则δT =F/A。,称为工程应力 拉伸应变:材料受到垂直于截面积方向大小相等,方向相反并作用在同一条直线上的两个拉伸应力时发生的形变。 剪切应变:材料受到平行于截面积大小相等,方向相反的两个剪切应力时发生的形变。 结构材料:以力学性能为基础,以制造受力构件所用材料 功能材料:具有除力学性能以外的其他物理性能的材料。 晶须:无缺陷的单晶材料 弹性模量:材料发生单位应变时的应力 刚性模量:反映材料抵抗切应变的能力 泊松比:反映材料横向正应变与受力方向线应变的比值。(横向收缩率与轴向收缩率的比值) 形状因子:塑性变形过程中与变形体尺寸,工模具尺寸及变形量相关参数。 平面应变断裂韧性:一个考虑了裂纹尺寸并表征材料特征的常数 弹性蠕变:对于金属这样的实际弹性体,当对它施加一定的应力时,它除了产生一个瞬时应变以外,还会产生一个随时间而变化的附加应变(或称为弛豫应变),这一现象称为弹性蠕变。 蠕变:在恒定的应力δ作用下材料的应变随时间增加而逐渐增大的现象 材料的疲劳:裂纹在使用应力下,随着时间的推移而缓慢扩展。 应力腐蚀理论:在一定环境温度和应力场强度因子作用下,材料中关键裂纹尖端处,裂纹扩展动力与裂纹扩展阻力的比较,构成裂纹开裂和止裂的条件。 滑移系统:滑移面族和滑移方向为滑移系统 相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称相变增韧 弥散强化:在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧效果,这称为弥散增韧 屈服强度:屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力 法向应力:导致材料伸长或缩短的应力 切向应力:引起材料切向畸变的应力 应力集中:受力构件由于外界因素或自身因素导致几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

植物生理生态学复习资料

植物生理生态学 ● 绪论 植物生理生态学:研究植物与环境的相互作用和机制的一门实验科学。 研究层次:植物个体—器官—组织水平。 植物生理生态学特点:植物生态学的一个分支,主要用生理学的观点和方法来分析生态学现象。研究生态因子和植物生理现象之间的关系。 植物生理生态学主要集中在组织、器官、个体与生物环境之间的相互关系,作为对生态现象的验证和解释,同时也对微观植物生理学提供了表征验证。 ● 植物与环境 环境:某一特定生物体或生物群体周围一切因素的总和,包括空间及直接或间接影响该生物体或生物群体生存的各种因素。 环境的本质就是生物生存和发展的资源或影响这种资源的因素。 生态因子:环境中对生物起作用的因子。对生物的生长、发育、生殖、行为和分布有着直接或间接影响。 生存条件:生态因子中对生物生存环境不能缺少的生态因子的总称。 生境:特定生物个体或群体的栖息地的生态环境。 生态因子根据性质划分: 1)气候因子:温度、水分、光照、风、气压和雷电等。 2)土壤因子:土壤结构、土壤成分的理化性质及土壤生物。 3)地形因子:陆地、海洋、海拔高度、山脉走向与坡度等。 4)生物因子:包括动物、植物和微生物之间的各种相互作用。 5)人为因子:人类活动对自然的干预、影响、破坏及对环境的污染等。 植物与生态因子之间的相互关系: 1) 生态作用:生态因子对植物的结构、过程、功能、分布等产生的影响。 2) 生态适应:植物改变自身结构与过程以与其生存环境相协调的过程。3) 相互作用:植物对环境做出的响应和反馈,并影响环境的过程。(环境 小气候、土壤结构、土壤微生物、大气组分、生物链结构、协同进化、 生物多样性。)

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

江大材料物理性能复习资料

第一章 材料的热学性能 1.热容的概念(P42):热容是分子或原子热运动的能量随温度变化而变化的物理量,其定义是物体温度升高1K 所需增加的能量。温度不同,物体的热容不一定相同,温度T 时物体热容为:)/()(K J T Q C T T ??=(简单点就直接用这个吧:T Q C ??=) PS :物理意义:吸收热量提高点阵振动能量,对外做功,加剧电子运动 比热容(单位质量):T m Q C ???= 2.晶体热容的经验定律(P42): 杜隆—珀替定律:恒压下元素的原子热容为25J/(K ·mol) 奈曼—柯普定律:化合物热容等于构成此化合物各元素原子热容之和 3.从材料结构比较金属、无机非金属、高聚物的热容大小(P46): A 金属:a 纯金属:热容由点阵振动和自由电子运动两部分组成: T T C C C e V L V V γα+=+=3 b 合金金属:符合奈曼—柯普定律∑==+++=n i im i nm n m m m C x C x C x C x C 12121Λ B 无机非金属:a 符合热容理论,一般都是从低温时的一个低数值增加到1273K 左右近似于 25J/(K ·mol)的数值;b 无机材料热容与材料结构关系不大,但单位体积热容与气孔率有关,多孔质轻热容小;c 当材料发生相变:一级相变:体积突变,有相变潜热,温度Tc 热容无穷大,不连续变化;二级相变:无体积突变,无相变潜热,在转变点热容达到有限极大值(P47 C 高聚物:多为部分结晶或无定型结构,热容不一定符合理论式,热容相对较大,且由化学结构决定,温度升高链段振动加剧,改变链运动状态(主链、支链(链节、侧基))。 4.从材料结构比较金属、无机非金属、高聚物的热传导机制(P53): A 金属:有大量自由电子,且电子质轻,实现热量迅速传递,热导率一般较大。纯金属温度升高使自由程减小作用超过温度直接作用,热导率随温度上升而下降;合金热传导以自由电子和声子为主,因异类原子存在,温度本身起主导作用,热导率随温度上升增大。 B 无机非金属:晶格振动为主要传导机制,即声子热导为主,约为金属热传导的三十分之一。 C 高聚物:热导率与温度关系比较复杂,但总体来说热导率随温度的增加而增加。高聚物主要依靠链段运动传热为主,而高分子链段运动比较困难,热导能力比较差。 5.材料热膨胀物理本质:热膨胀是指物体体积或长度随温度升高而增大的现象。膨胀是原子间距(晶格结点原子振动的平衡位置间的距离)增大的结果,温度升高,原子平衡位置移动,原子间距增大,导致膨胀。双原子模型:P49 图2- 6. 图2-5 热焓、热容与加热温度的关系)。

材料物理性能思考题

材料物理性能思考题 第一章:材料电学性能 1如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 2 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 3 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 4 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、 简并度、能态密度、k空间、等幅平面波和能级密度函数。 5 自由电子近似下的等能面为什么是球面?倒易空间的倒易节点数与不含自旋 的能态数是何关系?为什么自由电子的波矢量是一个倒易矢量? 6 自由电子在允许能级的分布遵循何种分布规律?何为费米面和费米能级?何 为有效电子?价电子与有效电子有何关系?如何根据价电子浓度确定原子的费米半径? 7 自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由 电子近似下的量子导电理论,试分析温度如何影响材料的导电性。 8 自由电子近似下的量子导电理论与经典导电理论在欧姆定律的微观解释方面 有何异同点?

9 何为能带理论?它与近自由电子近似和紧束缚近似下的量子导电理论有何关 系? 10 孤立原子相互靠近时,为什么会发生能级分裂和形成能带?禁带的形成规律 是什么?何为材料的能带结构? 11 在布里渊区的界面附近,费米面和能级密度函数有何变化规律?哪些条件下 会发生禁带重叠或禁带消失现象?试分析禁带的产生原因。 12 在能带理论中,自由电子的能量和运动行为与自由电子近似下有何不同? 13 自由电子的能态或能量与其运动速度和加速度有何关系?何为电子的有效质 量?其物理本质是什么? 14 试分析、阐述导体、半导体(本征、掺杂)和绝缘体的能带结构特点。 15 能带论对欧姆定律的微观解释与自由电子近似下的量子导电理论有何异同 点? 16 解释原胞、基矢、基元和布里渊区的含义

植物与植物生理学复习资料

一、名词解释: 1、原生质体:是指活细胞中细胞壁以各种结构的总称(1分),细胞的代活动主要在这里进行(1分)。是分化了的原生质(1分)。 2、胞间连丝:是指穿过细胞壁的细胞质细丝(1分),是细胞原生质体之间物质和信息(1分)直接联系的桥梁(1分)。 3、生物膜:植物细胞的细胞质外方与细胞壁紧密相连的一层薄膜,称为质膜或细胞膜(1.5分)。质膜和细胞的所有膜统称为生物膜(1.5分)。 4、有丝分裂:也叫间接分裂,是植物细胞最常见、最普遍的一种分裂方式(1分)。它的主要变化是细胞核中遗传物质的复制及平均分配(2分)。 5、植物组织:人们常常把植物的个体发育中(1分),具有相同来源的(即由同一个或同一群分生细胞生长、分化而来的)(1分)同一类型的细胞群组成的结构和功能单位,称为植物组织(1分)。 6、分生组织:是指种子植物中具有持续性(1分)或周期性分裂能力(1分)的细胞群(1分)。 7、维管束:是指在蕨类植物和种子植物中(1分)由木质部、韧皮部和形成层(有或无)(1分)共同组成的起疏导和支持作用的束状结构(1分)。 8、后含物:是指存在于细胞质、液泡及各种细胞器(1分),有的还填充于细胞壁上的各种代产物及废物(1分)。它是原生质体进行生命活动的产物(1分)。 9、花序:多数植物的花是按照一定的方式(1分)和顺序着生在分枝或不分枝的花序轴上(1分),花这种在花轴上有规律的排列方式,称为花序(1分)。10、年轮:是指在多年生木本植物茎的次生木质部中(1分),可以见到的同心圆环(1分)。年轮的产生是形成层活动随季节变化的结果(1分)。 11、渗透作用:水分从水势高的一方(1分)通过半透膜(1分)向水势低的一

武汉理工材料物理性能复习资料

第一章 一、基本概念 1.塑性形变及其形式:塑性形变是指一种在外力移去后不能恢复的形变。晶体中的塑性形变有两种基本方式:滑移和孪晶。 2.蠕变:当对粘弹性体施加恒定压力σ0时,其应变随时间而增加,这种现象叫做蠕变。弛豫:当对粘弹性体施加恒定应变ε0时,其应力将随时间而减小,这种现象叫弛豫。 3.粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性,称为粘弹性,所有聚合物差不多都表现出这种粘弹性。 4.滞弹性:对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之消除,但对于实际固体这种弹性应变的产生与消除需要有限时间,无机固体和金属这种与时间有关的弹性称为滞弹性。 二、基本理论 1.金属材料和无机非金属材料的塑性变形机理:○1产生滑移机会的多少取决于晶体中的滑移系统数量。○2对于金属,金属键没有方向性,滑移系统多,所以易于滑移而产生塑性形变。对于无机非材料,离子键和共价键有明显的方向性,同号离子相遇,斥力极大,只有个别滑移系统才能满足几何条件与静电作用条件。晶体结构越复杂,满足这种条件就越困难,所以不易产生滑移。○3滑移反映出来的宏观上的塑性形变是位错运动的结果,无机材料不易形成位错,位错运动也很困难,也就难以产生塑性形变,材料易脆断。 金属与非金属晶体滑移难易的对比 金属非金属 由一种离子组成组成复杂 金属键物方向性共价键或离子键有方向性 结果简单结构复杂 滑移系统多滑移系统少 2.无机材料高温蠕变的三个理论 ○1高温蠕变的位错运动理论:无机材料中晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。当温度增加时,位错运动加快,除位错运动产生滑移外,位错攀移也能产生宏观上的形变。热运动有助于使位错从障碍中解放出来,并使位错运动加速。当受阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会降低,这就解释了蠕变减速阶段的特点。如果继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来,引起最后的加速蠕变阶段。 ○2扩散蠕变理论:高温下的蠕变现象和晶体中的扩散现象类似,并且把蠕变过程看成是外力作用下沿应力作用方向扩散的一种形式。 ○3晶界蠕变理论:多晶陶瓷中存在着大量晶界,当晶界位向差大时,可以把晶界看成是非晶体,因此在温度较高时,晶界粘度迅速下降,外力导致晶界粘滞流动,发生蠕变。 第二章 一、基本概念 1.裂纹的亚临界生长:裂纹除快速失稳扩展外,还会在使用应力下,随着时间的推移而缓慢扩展,这种缓慢扩展也叫亚临界生长,或称为静态疲劳。 2.裂纹扩展动力:物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能,反之,前者小于后者,则裂纹不会扩展。将上述理论用于有裂纹的物体,物体内储存的弹性应变能的降低(或释放)就是裂纹扩展动力。

材料物理性能-复习资料

第二章材料的热学性能 热容:热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。 不同温度下,物体的热容不一定相同,所以在温度T时物体的热容为: 物理意义:吸收的热量用来使点阵振动能量升高,改变点阵运动状态,或者还有可能产生对外做功;或加剧电子运动。 晶态固体热容的经验定律: 一是元素的热容定律—杜隆-珀替定律:恒压下元素的原子热容为25J/(K?mol); 二是化合物的热容定律—奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 热差分析:是在程序控制温度下,将被测材料与参比物在相同条件下加热或冷却,测量试样与参比物之间温差(ΔT)随温度(T)时间(t)的变化关系。 参比物要求:应为热惰性物质,即在整个测试的温度范围内它本身不发生分解、相变、破坏,也不与被测物质产生化学反应同时参比物的比热容,热传导系数等应尽量与试样接近。 第三章材料的光学性能 四、选择吸收:同一物质对各种波长的光吸收程度不一样,有的波长的光吸收系数可以非常大,而对另一波长 的吸收系数又可以非常小。 均匀吸收:介质在可见光范围对各种波长的吸收程度相同。 金属材料、半导体、电介质产生吸收峰的原因 (1)金属对光能吸收很强烈,这是因为金属的价电子 处于未满带,吸收光子后即呈激发态,用不着跃迁到导 带即能发生碰撞而发热。(2)半导体的禁带比较窄, 吸收可见光的能量就足以跃迁。(3)电介质的禁带宽, 可见光的能量不足以使它跃迁,所以可见光区没有吸收 峰。紫外光区能量高于禁带宽度,可以使电介质发生跃 迁,从而出现吸收峰。电介质在红外区也有一个吸收峰, 这是因为离子的弹性振动与光子辐射发生谐振消耗能量所致。 第六章材料的磁学性能 一、固有磁矩产生的原因 原子固有磁矩由电子的轨道磁矩和电子的自旋磁矩构成,电子绕原子核运动,产生轨道磁矩;电子的自旋也产生自旋磁矩。当电子层的各个轨道电子都排满时,其电子磁矩相互抵消,这个电子层的磁矩总和为零。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消(方向相反的电子自旋磁矩可以互相抵消),原子就具有“永久磁矩”。 二、抗磁性与顺磁性 抗磁性:轨道运动的电子在外磁场作用下产生附加的且与外磁场反向的磁矩。 产生原因:外加磁场作用下电子绕核运动所感应的附加磁矩造成的。 顺磁性:材科的顺磁性来源于原子的固有磁矩。 产生原因:因为存在未填满的电子层,原子存在固有磁矩,当加上外磁场 时,为了降低静磁能,原子磁矩要转向外磁场方向,结果使总磁矩不为零而表 现出磁性。 三、强顺磁性:过渡族金属在高温都属于顺磁体,这些金属的顺磁性主要是由 于3d, 4d, 5d电子壳层未填满,而d和f态电子未抵消的磁矩形成晶体离子 构架的固有磁矩,因此产生强烈的顺磁性。 四、磁化曲线、磁滞回线

植物生理-复习资料

以下是梁洁莹准备的植物生理复习资料,只共参考。 一、水分代谢 1.根压——是指由于根系自身的生理代谢活动所引起的吸水并压水向上的力量。 2. 暂时萎蔫——靠降低蒸腾即能消除水分亏缺以恢复原状的萎蔫。 3.水分临界期——指植物在生命周期中,对缺水最敏感、最易受害的时期,一般而言,植物的水分临界期多处于花粉母细胞四分体形成期 4. 永久萎蔫——如果由于土壤已无可资植物利用的水,虽降低蒸腾仍不能消除水分亏缺以恢复原状的萎蔫。 5.蒸腾作用——指植物体内水分以气态方式通过植物体表面散失到大气中去的过程。 6. 冬季越冬作物组织内自由水/束缚水比值(B)。A升高/ B降低/C变化不大 7. 土壤通气不良使根系吸水量减少的原因是(A)。A缺乏氧气/B水分不足/ C. C02浓度过高 8. 根部吸水主要在根尖进行,吸水能力最大是(C)。A分生区/B伸长区/C根毛区 9. 植物蒸腾作用的生理意义及其方式。 (1)生理意义:是植物对水分吸收和运输的主要动力;有助于植物对矿物质和有机物的吸收;能降低叶片的温度;(2)叶片蒸腾方式:角质蒸腾;气孔蒸腾。 10. 影响植物蒸腾失水速度差异的原因。 立于群体之外的单个树木的蒸腾失水更快,其原因是:茂密森林中的树木所处的环境与单个树木相比,由于树木的相互遮蔽,林中的温度低、湿度大、光照弱、空气流动性小,这些都是影响蒸腾作用的直接因素,因而使茂密森林中树木的蒸腾作用明显低于群体之外的单个数。 11.植物细胞吸水主要有(扩散)、(集流)和(渗透作用)三种方式。 12.植物根系吸水的途径有3种,分别是(质外体途径)、(共质体途径)和(跨膜途径),后两种途径统称为细胞途径。

无机材料物理性能复习资料

一、名词解释 塑性形变:指一种在外力移去后不能恢复的形变 延展性:材料在经受塑性形变而不破坏的能力称为材料的延展性 黏弹性:一些非晶体和多晶体在受到比较小的应力作用时可以同时表现出弹性和粘性,这种现象称为黏弹性 滞弹性:对于实际固体,弹性应变的产生与消除都需要有限的时间,无机固体和金属表现出的这种与时间有关的弹性称为滞弹性 蠕变:当对黏弹性体施加恒定压力σ0时,其应变随时间增加而增加。这种现象叫蠕变,此时弹性模量Ec也将随时间而减小 Ec(t)=σ0/ε(t) 弛豫:如果施加恒定应变ε0,则应力将随时间而减小,这种现象叫弛豫。此时弹性模量Er也随时间降低Er=σ(t)/ε0 Grffith微裂纹理论:实际材料中总是存在许多细小的裂纹或缺陷;在外力作用下,这些裂纹和缺陷附近产生应力集中现象;当应力到达一定程度时,裂纹的扩展导致了材料断裂。(为什么某物质尖端易断?) 攀移运动:位错在垂直于滑移面方向的运动称为攀移运动。 热容:描述材料中分子热运动的能量随温度而变化的一个物理量,定义为使物体温度升高1K所需要外界提供的能量。 德拜热容理论(德拜三次方定律):在高于德拜温度θD时,热容趋于常数25 J/(mol·K),而在低于θD时热容则与T3成正比。 热稳定性:是指材料承受温度急剧变化而不破坏的能力,又称抗热震性。 抗热冲击断裂性能:材料发生瞬时断裂,抵抗这类破坏的性能为~ 抗热冲击损伤性能:在热冲击循环作用下,材料表面开裂、剥落,并不断发展,

最终破裂或变质,抵抗这类破坏的性能为~ 本征电导(固有电导):晶体点阵中基本离子的运动,称为~ 电介质的极化:电介质在电场作用下产生束缚电荷,也是电容器贮存电荷能力增强的原因。 居里温度:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁磁体从铁磁相转变成顺磁相的相变温度。也可以说是发生二级相变的转变温度。低于居里点温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里点温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。 二、填空 晶体中的塑性形变有两种方式:滑移和孪晶 滑移系统包括滑移方向和滑移面 影响粘度的因素:温度、时间、组成 影响热导率的因素:温度、显微结构、化学组成、 反射分为:全反射、漫反射、镜面反射 载流子:电子、空穴、正离子、负离子、空位 金属材料电导的载流子是自由电子 无机非金属材料电导的载流子可以是电子、电子空穴、或离子、离子空位、 非金属材料按其结构状态可以分为晶体材料与玻璃态材料 杂质半导体:n型半导体(五价元素原子取代四价原子),p型半导体(三价元素原子取代四价原子) 超导特性:完全抗磁性在超导体永远保持磁感应强度为零迈斯纳效应与零电阻现象是超导体的两个基本特性 提高材料透明度:细:细化晶粒密:减小气孔纯:减少杂质

相关文档
相关文档 最新文档