文档库 最新最全的文档下载
当前位置:文档库 › 物理学简介

物理学简介

物理学简介
物理学简介

物理学简介(各专业,各方向)

物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。

物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。

随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。

物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这?目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。

物理学介绍---物理学

物理学

物理学早期称为自然哲学,是自然科学中与自然界的基本规律关系最直接的一门学科。它以研究宇宙间物质各层次的结构、相互作用和运动规律以及它们的实际应用前景为自己的任务。

从17世纪牛顿力学的建立到19世纪电磁学基本理论的奠定,物理学逐步发展成为独立的学科,当时的主要分支有力学、声学、热力学和统计物理学、电磁学和光学等经典物理。本世纪初,相对论和量子论的建立使物理学的面貌焕然一新,促使物理学各个领域向纵深展,不但经典物理学的各个分支学科在新的基础上深入发展,而且形成了许多新的分支学科,如原子物理、分子物理、核物理、粒子物理、凝聚态物理、等离子体物理等。在近代物理发展的基础上,萌发了许多技术学科,如核能与其它能源技术、半导体电子技术、激光和近代光学技术、光电子技术、材料科学等,从而有力地促进了生产技术的发展和变革。

19世纪以来,人类历史上的四次产业革命和工业革命都是以对物理学某些领域的基本规律认识的突破为前提的。当代,物理学科研究的突破导致技术变革所经历的时间正在缩短,从而在近代物理学与许多高技术学科之间形成一片相互交叠的基础性研究与应用性研究相结合的宽广领域。物理学科与技术学科各自根据自身的特点,从不同的角度对这一领域的研究,既促进了物理学的发展和应用,又加速了高技术的开发和提高。

我国的物理学专业,从来就不是纯物理专业,它是包括应用物理和技术物理在内的基础研究和应用研究相结合的专业。建国以来,我国的许多新技术学科如半导体、核技术、激光、真空技术等的大部分,都是在物理学科中萌芽、形成和发展起来的。基础性工作与应用性工作同时并存、相互结合是我国物理学科的特点.

物理学科是一门基础学科。在物理学基础研究过程中形成和发展起来的基本概念、基本理论、基本实验手段和精密测量方法,已成为其他学科诸如天文学、化学、生物学、地学、医学、农业科学等学科的组成部分,并推动了这些学科的发展。物理学还与其他学科相互渗透,产生了一系列交叉学科,如化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等。这种相互渗透过程一直在进行之中,例如量子计算问题是当前的一个研究热点,有可能对信息科学产生重要的影响。数学对物理学的发展起了重要的促进作用,反过来物理学也促进了数学和其他交叉学科的发展。

物理学也是各种技术学科和工程学科的共同基础,物理量测量的规范化和标准化已成为计量学的一个重要研究内容。依据上述认识,物理学科可包含如下几个分支∶理论物理、粒

子物理与原子核物理、原子和分子物理、凝聚态物理、等离子体物理、声学、光学以及无线电物理。

理论物理

1. 概况

理论物理是从理论上探索自然界未知的物质结构、微观相互作用和物质运动的基本规律的学科。一个国家的理论物理学水平,在一定程度上反映了民族的科学素养和独立发展高水平科学技术的潜力。理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等。几乎包括物理学所有分支的基本物理问题。

2. 学科的研究范围

理论物理是在实验现象的基础上,以理论的方法和模型研究基本粒子、原子核、原子、分子、等离子体和凝聚态物质运动的基本规律,解决科学本身和高科技探索中提出的基本理论问题。研究范围包括粒子物理理论、原子核理论、凝聚态理论、统计物理、光子理论、原子分子理论、等离子体理论、量子场论与量子力学、引力理论、数学物理、理论生物物理、非线性物理、计算物理等。

凝聚态物理

1. 概况

凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材

料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展。

2.学科研究范围

研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理与超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄

膜物理、表面与界面物理和高分子物理)、液体物理、微结构物理(包括介观物理与原子簇)、缺陷与相变物理、纳米材料和准晶等。

粒子物理与原子核物理

1. 概况

本学科研究粒子(重子、介子、轻子、规范粒子和夸克等)和原子核的性质、结构、相互作用及运动规律, 探索物质世界更深层次的结构和更基本的运动规律。从根本意义上讲,粒子物理和核物理的研究处于整个物理学研究的最前沿。由于宇宙中大量核过程的存在,这门学科对于认识物质世界的另一极端,即天体的形成和演化的规律起着重要的作用。核物理

的研究曾导致了核能的广泛利用。粒子物理和核物理的实验研究对极为精密和极为复杂的仪器设备以及先进实验术的需求是高新技术发展的推动力之一。近二、三十年来,由于各种大型加速器的建立和各种新型探测技术的发展,以及基于规范场理论(量子色动力学(QCD)和弱电统一规范理论)的创立,我们能够从夸克和胶子的动力学出发来研究强相互作用、强子和原子核结构以及新的强子物质的形成和性质。高能重粒子碰撞形成的极高温度和密度条件下可能产生的强子物质,即夸克-胶子等离子体的研究,对QCD为基础的新的强子态的研究,对超新星爆炸核物理的研究,对新元素

的合成,奇异核的产生及原子核的超形变和高自旋态的研究,以及对QCD非微扰问题的研究等引起了人们广泛的关注。随着对这些具有挑战性的问题的深入了解,人类对物质世界更深层次的结构和运动规律的认识必将进一步深化。

2. 学科的研究范围

原子核物理和粒子物理的理论研究和实验研究; 原子核物理与粒子物理同其他学科交叉领域的研究。例如∶核天体物理与高能天体物理等; 核技术在其他学科和工、农业生产部门的应用。

原子与分子物理

1. 概况

原子分子物理学研究原子分子结构、性质、相互作用和运动规律,阐明物理学基本定律,提供各种原子分子信息和数据。原子分子物理学是揭示微观世界奥秘的先驱,是现代物理学创立的奠基石。原子、分子和团簇是物质结构从微观过渡到宏观过程的必经层次和桥梁。从天体到凝聚态、等离子体,从化学到生命过程都与原子分子过程息息相关。原子分子物理学是基础性强、渗透面宽、应用范围广的物理学分支学科。不仅为现代科学各分支学科提供基础理论、实验方法和基本数据,而且在能源、材料、环境、医学和生命科学以及国防研究中发挥重要作用,在开拓高新技术产业和推动科技发展和促进社会进步方面占有不可忽视的重要地位

2. 学科研究范围

原子与分子物理学研究原子分子的结构、性质、相互作用和运动规律,阐明物理学基本定律,提供各种各样的原子分子信息和数据。原子结构与原子光谱,分子结构与分子光谱,原子分子与电磁场的相互作用,原子分子的非线性光学性质,物理学基本定律的验证和基本物理学常数的精密测量,原子分子碰撞物理,粒子束与物质的相互作用,单原子分子测控科学与技术,激光束与离子束相互作用,电子和离子、原子、分子间碰撞动力学,负离子产生及其特性,与原子分子物理有关的新概念、新理论、新方法、新技术、新设备及其在国民经济领域中的应用。

光学

1. 概况

光学是研究光辐射的性质及其与物质相互作用的一门基础学科,具有悠久的历史。本世纪六十年代初激光问世,这一划时代的成就为光学学科本身开创了新的纪元。不仅使光学再度成为人类探索大自然奥秘的主要手段及前沿学科,也带动了科学技术和工业的革命性变化。光学作为一门既古老又年轻的学科在基础科学与高新技术的发展

中正占有越来越重要的地位。激光为人类提供了性能奇特的相干光源,新的光学效应随之不断涌现,新的分支学科如非线性光学、量子光学、光电子学、原子光学等层出不穷。激光与其它学科的结合又使诸如激光化学、激光生物学、激光医学、光量子信息科学等交叉学科应运而生。激光的应用从核聚变、光通信、光信息处理到印刷、记

录技术几乎无所不在,给人类社会的文明进程产生了深远的影响。近年来飞秒高功率激光、X射线激光、光集成、光纤技术、激光冷却、光量子通讯、量子计算机和量子密码术等的迅

速发展更展示了光学学科的深厚潜力和广阔前景,使光学学科的地位与作用与日俱增,必将为人类社会生产力的发展发挥极其重要的作用,成为“科学技术是第一生产力”的生动例证。光学学科的发展与理论物理、凝聚态物理及材料科学等的发展密切相关,也对信息科学、生物、化学及医学等的进步产生深刻影响。

2. 业务范围

研究光辐射的基本性质及其与物质相互作用的基本特征,包括光的产生、传输与探测规律,光与原子、分子、凝聚态物质、等离子体相互作用的线性和非线性光学过程及光谱学特征。研究光学与其它学科交叉的有关问题及应用。

等离子体物理学

1. 概况

等离子体物理学主要研究等离子体的整体形态和集体运动规律、等离子体与电磁场及其它形态物质的相互作用。等离子体物理学是二十世纪发展起来的一门新的物理学独立分支学科。

等离子体是宇宙中最广泛存在的物质状态,认识和掌握各种条件下等离子体运动规律是人类认识宇宙中各种现象的基本前提。所以,等离子体物理是向我们提供太阳、恒星、行星际介质和银河系知识的基石之一。

等离子体物理学研究为人类解决能源问题带来希望。地球能源枯竭和现有化石燃料与核电站带来的环境污染、生态危机一直是威胁人类生存的全局性问题。通过受控核聚变来发展用之不竭的清洁能源已成为人类解决能源危机的主要选择。然而,聚变概念的改进和聚变实验堆的优化均要求改善约束和加热等离子体的方法。掌握高温等离子体的运动规律是实现受控聚变的关键。

等离子体物理学研究也是人类认识和控制地球环境变化、开发空间产业、维持全球通讯的重要保证。研究太阳等离子体热核能量的输出和传输,研究磁层和电离层中能量的转化和分配,对于认识和保障地球环境有深远的意义。空间等离子体物理学研究能为保障航天安全和空间应用的正常进行提供理论依据。研究电离层等离子体环境及其对电波传播的影响,起着保障和改善通讯、导航和授时精度的重要作用。

等离子体物理学研究促进了低温等离子体技术以极为迅猛的势头在国民经济各领域中广泛应用。等离子体处理加工技术已成为一些重要产业(如微电子、半导体、材料、航天、冶金等)的关键技术,而在灭菌、消毒、环境污染处理、发光和激光的气体放电、等离子体显示、表面改性、同位素分离、开关和焊接技术等等方面的应用已创造了极大的经济效益。

等离子体物理学研究开辟了由高技术开发的新领域。非中性等离子体的研究产生了一批崭新的具有革命性意义的高技术项目,如相干辐射源的研制和粒子加速器新概念的提出。这些项目已初见成效并将在能源、国防、通讯、材料科学和生物医学中发挥重要作用。对基本物理过程的深入研究已成为推动这些技术取得突破性进展的关键。

等离子体物理学各领域的研究还提出了一些带有共性、密切相关的基本问题,诸如波和粒子相互作用与等离子体加热、混沌、湍流和输运、等离子体鞘层和边界层、磁场重联和发动机效应等。这些问题构成了等离子体物理进一步发展的核心内容。

2. 研究范围

磁约束聚变等离子体、惯性约束聚变等离子体、空间等离子体、天体等离子体、低温等离子体、非中性等离子体、尘埃等离子体、基础等离子体等。

声学

1.概况

声学主要研究声波的产生、接受机理和其在各种媒质中的传播规律与相互作用原理。近代声学,如非线性声学、声与光、声与热等与近代物理学的其它分支有密切的关系。声学是

一门交叉性极强的边缘学科,声学与电子学、计算技术、信息科学等相结合,渗透到国民经济、国防建设、科学研究乃至文化艺术的不同的领域和学科中,既致力于当今科学的前沿领域又重视应用基础研究,使声学成为与前沿科学、高新技术密不可分的应用学科。

2. 学科研究范围

a. 非线性声学

声孤子混沌,声与物质的非线性相互作用,声空化、声凝聚、声制冷,流体、生物媒质、固体及界面的非线性声特性以及非线性声参量表征与成象。

b. 光声科学

光声、光热谱及显微成象技术,固体表面及亚表面结构的分层检测,对半导体材料和器件及其它凝聚态物质的定量无损评价,新型声成象方法及其逆问题,脉冲激光超声激发和检测在材料无损评价中的应用。

c. 超声学

声波传播理论和声器件,及在通讯、雷达和电子对抗中的应用,多相媒质中声传播理论,生物媒质及固体中超声检测和声测井新技术、声化学、声传感、新型超声换能器等超声电子器件,以及超声的工业应用等。

d. 环境声学与电声学

建筑声学、噪声与振动的有源控制,环境噪声声评价与扬声器等电声器件和系统的振动分析、计算机辅助设计和测试以及电声参数测量新技术。

e. 语音信号处理

噪声中语言信息提取,汉语分析、合成、识别、混沌编码通信、数字声频技术等

无线电物理

1. 概况

电磁场和波是自然界最基本的物理现象,现代电子信息科学技术的发展有力地促进了作为信息和能量载体的电磁场和波的研究和应用。无线电物理研究电子信息科学技术中电磁场和波(光、红外、毫米波、微波等)与物质相互作用和信息传输的理论、方法及技术, 是现代电子信息科学的基础,在电子高科技中有极为广泛的应用。例如, 现代高频高速电子技术、空间和城市无线通讯、雷达与天线技术、广播与电视、空间全球遥感、电子计算机技术、电子信息计算技术、光声电耦合技术、电磁兼容技术、微波超导、新型复合材料诊断、生物医学电子工程、地球物理能源资源探测、射电天文等等,都是无线电物理的研究领域。当今高科技的发展已促使电子信息科学的研究从简单物质到复杂系统、定性或解析解到定量和数值解、线性或稳态问题到非线性和瞬态问题、正向研究或一般性参数计算到逆向反演和可视化仿真的转化。这不仅创建了无线电物理新的基础理论,而且形成了电子信息科学技术、应用物理、地球、空间、材料等不同学科的广泛交叉和应用。无线电物理中电磁和电子信息的获取、传输、处理和利用形成了众多交叉学科高科技的应用基础,同时,它的广泛应用又促进了物理学基础理论的深入发展。

2.学科研究范围

电磁场与微波、天线与电波传播、复杂系统中电磁散射辐射与传输、空间遥感理论与技术、计算电磁和计算电子学、通讯中的波传输、数字传输理论与技术、毫米波理论与测量技术,微波超导、微波等离子体等

物理学前沿

陕西师范大学2014~2015学年第一学期期末考试 物理学院2012级教育硕士 物理学前沿试题 答卷注意事项: 1、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在答题纸上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4 、本卷共4大题,总分为100分。 1.理论物理部分 ( 共5题,每题5分,共25分) 1.混沌现象的主要特征是什么 对于什么是混沌,目前科学上还没有确切的定义,但 随着研究的深入,混沌的一系列特点和本质的被揭示,对混沌完整的、具有实质性意义的确切定义将会产生。目前人们把混沌看成是一种无周期的有序。它包括如下特征: (1)内在随机性。它虽然貌似噪声,但不同于噪声,系统是由完全确定的方程描述的,无需附加任何随机因数,但系统仍会表现出类似随机性的行为; (2)分形性质。前面提到的lorenz 吸引子,Henon 吸引子都具有分形的结构; (3)标度不变性。是一种无周期的有序。在由分岔导致混沌的过程中,还

遵从Feigenbaum常数系。 (4)敏感依赖性。只要初始条件稍有偏差或微小的扰动,则会使得系统的最终状态出现巨大的差异。因此混沌系统的长期演化行为是不可预测的 2.分形结构的特点是什么请举例说明。 特点是无定形,不光滑,具有自相似性。如弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星等。它们的特点都是,极不规则或极不光滑。即每一元素都反映和含有整个系统的性质和信息,从而可以通过部分来印象整体。 3.分析小世界网络、无标度网络和随机网络三者之间的相同点和不同点。 共同点:都是用特征路径长度和聚合系数来衡量网络特征。不同点:在网络理论中,小世界网络是一类特殊的复杂网络结构,在这种网络中大部份的节点彼此并不相连,但绝大部份节点之间经过少数几步就可到达。规则网络具有很高的聚合系数,大世界(largeworld,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(smallworld,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub点的节点拥有极其多的连接,而大多数节点只有很少量的连接。少数Hub点对无标度网络的运行起着主导的作用。从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。随机网络,任意两个点之间的特征路径长度短,但聚合系数低。而小世界网络,点之间特征路径长度小,接近随机网络,而聚合系数依旧相当高,接近规则网络。发现规则网络具有很高的聚合系数,大世界(large world,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(small world,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。 4.从自组织临界态的角度来看,地震的物理原理是什么

物理学最前沿八大难题

物理学最前沿八大难题 当今科学研究中三个突出的基本问题是:宇宙构成、物质结构及生命的本质和维持,所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 我们可以从物理学最前沿的八大难题来了解最新的物理学动态。 难题一:什么是暗能量 宇宙学最近的两个发现证实,普通物质和暗物质远不足以解释宇宙的结构。还有第三种成分,它不是物质而是某种形式的暗能量。 这种神秘成分存在的一个证据,来源于对宇宙构造的测量。爱因斯坦认为,所有物质都会改变它周围时空的形状。因此,宇宙的总体形状由其中的总质量和能量决定。最近科学家对大爆炸剩余能量的研究显示,宇宙有着最为简单的形状——是扁平的。这又反过来揭示了宇宙的总质量密度。但天文学家在将所有暗物质和普通物质的可能来源加起来之后发现,宇宙的质量密度仍少了2/3之多! 难题二:什么是暗物质 我们能找到的普通物质仅占整个宇宙的4%,远远少于宇宙的总物质的含量。这得到了各种测算方法的证实,并且也证实宇宙的大部分是不可见的。

最有可能的暗物质成分是中微子或其他两种粒子: neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据说是没有较为有效的测量方法。又这三种粒子都不带电,因此无法吸收或反射光,但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。如果找到它们的话,很可能让我们真正的认识宇宙的各种情况。 难题三:中微子有质量 不久前,物理学家还认为中微子没有质量,但最近的进展表明,这些粒子可能也有些许质量。任何这方面的证据也可以作为理论依据,找出4种自然力量中的3种——电磁、强力和弱力——的共性。即使很小的重量也可以叠加,因为大爆炸留下了大量的中微子,最新实验还证明它具有超过光速的性质。 难题四:从铁到铀的重元素如何形成 暗物质和可能的暗能量都生成于宇宙初始时期——氢、锂等轻元素形成的时候。较重的元素后来形成于星体内部,核反应使质子和中子结合生成新的原子核。比如说,四个氢核通过一系列反应聚变成一个氢核。这就是太阳发生的情况,它提供了地球需要的热量。当然也还有其它的种种核反应。 当核聚变产生比铁重的元素时,就需要大量的中子。因此,天文学家认为,较重的原子形成于超新星爆炸过程中,有大量现成的中子,尽管其成因还不很清楚。另外,最近一些科学家已确定,至少一些最重的元素;如金、铅等,是形成于更强的爆炸中。还有一点需要确定,即当两颗中子星相撞还会塌陷成为黑洞。

电磁学 课程教学大纲

电磁学课程教学大纲 一、课程说明 (一)课程名称:电磁学 所属专业:物理 课程性质:物理学 学分:4分 (二)课程简介、目标与任务 电磁学课程是一切自然科学的重要基础课之一。电磁学所涉及的现象和规律贯穿 于一切自然科学的研究领域之中,学好电磁学是学好其它自然学科的基本保证。 本课程所讲授的内容为基本电磁现象的实验定律和相关的导出定理以及它们在相 应领域和电路理论中的应用。力求通过对于它们的研究,深刻认识电磁现象的基本性质, 掌握电磁学的基本理论和应用知识,学会电磁学研究和处理问题方法。课程还适时地将 电磁学的理论与其它学科及有关自然现象相联系,以期获得对于电磁学理论较为全面的 理解。通过本课程的学习应使学生在提高科学素养,建立科学的世界观,培养严密的思 维能力,熟练应用数学工具等诸方面获得全面的进步。 本课程针对我校物理学院近年来学生的平均水平编写教材。物理学院为理科学生培 养基地,设有“基地”和“普通”教学班,教材的编写考虑了两部分学生的需求。体现 在:教学大纲中带有“*”号的内容,作为提高课题对基地班讲授。对于普通班,相应 的时间用于习题课,讲解习题中的问题和补充例题。对于大纲中未打“*”号内容的讲 解深度,教师可视两部分学生的实际情况有所区别。整个课程总学时72,基本上每小节 两学时。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以高等数学和部分力学知识为基础,为后继的基础课程和专业课程有关的知识做准备。 (四)教材与主要参考书 教材:《电磁学》第三版,赵凯华、陈熙谋著 主要参考书: 1.《费曼物理学讲义》费曼著 2.《磁性物理学》宛德福马兴隆著

物理学师范专业简介

物理学师范专业简介 Revised by BLUE on the afternoon of December 12,2020.

“物理学(师范)”专业简介 一、培养目标 物理学专业的培养目标是:培养德、智、体全面发展,具有较高的思想道德和文化素质修养、敬业精神和社会责任感,掌握物理学的基本理论、基本知识及实验技能,具备物理学基本理论、应用研究能力和高度的科学文化素养的,能在中等及以上学校从事教学和初步科学研究工作的物理学人才。 二、培养规格 本专业学生主要学习和掌握物理学的基本理论和基本知识,并进行物理实验以及教育实践的基本训练,具备从事物理教学工作及应用研究的能力。毕业生应获得以下几方面的知识和能力: (1)热爱社会主义祖国、拥护中国共产党领导,树立科学的世界观、正确的人生观和价值观,养成高尚的思想道德素质; (2)具有一定的人文、艺术、法律等方面知识,了解体育运动的基本知识,掌握一定的体育锻炼能力,具备系统的教育科学理论素养,树立育人为本、实践取向、终身学习的教育理念,形成正确的学生观、教师观和教育观; (3)掌握物理学科的基本理论、基本知识以及实验研究的初步能力;掌握和运用现代教育技术,特别是多媒体、网络教育技术的能力; (4)掌握并能够初步运用教育学、心理学基础理论,具有良好的教师职业道德素养和从事物理学教学的基本能力; (5)了解物理学的前沿理论、应用前景及发展动态,以及物理学教学的新成果,具有一定的创新意识和创新能力;

(6)具有在中等及以上学校,从事教学的工作能力和初步的科学研究能力;或者具有能将物理学应用于技术和社会各领域的能力。 (7)掌握一门外语,具有较好的听说读写能力和外语应用能力。 三、学制、学位、学时和学分 学制:4年(不少于3年,不超过6年,具体按学校有关文件执行) 学位:理学学士 学分: 165 学时: 2671 四、相关和相近专业 应用物理学 五、专业主要课程 力学、热学、电磁学、光学、近代物理学、普通物理实验、数学物理方法、理论力学、电动力学、热力学与统计物理学、量子力学、固体物理学、近代物理实验、教育学基础、心理学、现代教育技术、中学物理课程标准与教材研究、中学物理教学设计等。

《磁性物理学》教学大纲关于组织修制定

《磁性物理学》教学大纲 Magnetism in Physics 课程代码: M102105 总学时:(理论+实验)56+12 学分:4 课程性质:专业方向课课程类别:必修 先修课程:普通物理、理论物理、固体物理面向专业:应用物理学 开课学科:凝聚态物理学开课二级学院:理学院 执笔:崔玉建审校:焦志伟 一、课程的地位与任务 本课程是应用物理专业的专业方向基础课。主要介绍磁现象和规律、磁性起源及自发磁化理论、铁磁体内的能量、磁畴和技术磁化、铁磁物质在交变场作用下的磁化特性、各种磁物理效应和磁性材料的应用。以此作为学习其它专业方向课的基础。 二、课程主要内容与基本要求 第一章 1、熟练掌握各基本磁学量的物理概念及其相互关系;理解磁化曲线和磁滞回线。 2、掌握磁体中静磁能的概念,理解退磁场的概念,理解简单几何形状磁体退磁因子的计算方法;会进行磁滞回线的退磁修正。 3、了解磁路的简单概念。 实践环节:了解磁场、磁感应强度的测量方法。

第二章 1、理解洪特定则,会计算原子或离子的磁矩。 2、了解轨道角动量淬灭的条件。 3、了解晶体的能带理论对金属磁矩的解释。 第三章 1、掌握顺磁物质的基本物理特性,理解朗之万的经典和量子理论顺磁性理论; 2、掌握铁磁物质的基本物理特性,理解奈尔的铁磁学理论,理解居里温度与分子场系数的关系;理解海森堡铁磁学理论的基本概念;分子场系数、居里温度与交换积分常数的关系;物质出现铁磁与反铁磁的条件。了解贝斯统计理论和自旋波理论。 3、掌握反铁磁性和亚铁磁性的基本物理特性;理解分子场理论对反铁磁和亚铁磁性的唯象理论处理;理解超交换作用的基本概念。 4、掌握铁氧体的结构、磁矩和磁特性。 实践环节:了解铁氧体的制备方法和磁性的测量方法。 第四章 1、掌握常见的磁性材料的磁晶各向异性,掌握单轴晶体和立方晶体的各向异性能的计算;了解磁晶各向异性场的概念;了解产生磁晶各向异性的机理;了解磁性材料的其它几种各向异性;了解磁晶各向异性性能的测量方法。 2、掌握磁致伸缩的基本概念;掌握立方晶体的磁致伸缩公式;了解

《星际穿越》中的物理学

《物理学基础与前沿专题》课程论文 题目:《星际穿越》中的物理学 姓名:林亚南 学号:SY140954 年级:2014 院系:理学院 专业:学科教学(物理)专业 任课教师:邹斌 2014年 12月 30 日

《星际穿越》中的物理学 一、为什么宇宙飞船要旋转 这是一个比较简单的问题。首先简单解释一下对于在太空飞行的宇航员来说何谓“失重”。 下面是一些关键点: (1)太空里仍有万有引力; (2)当宇航员(和飞船)只在万有引力的作用下加速时,宇航员就会有失重感; (3)对于宇航员来说,这种感觉就像重力“消失”了; (4)但人类并不怎么能感觉到重力,因为它作用于我们身体的每一个部分。 事实上,我们将重量和接触到的外力,例如地面支撑我们的力,联系起来。我们称这种力为“表观重量”(apparent weight)。 飞船当然受到引力,但引力都用来改变飞船的速度了。宇航员感到的“失重”,失去的其实是表观重量。而解决失重感的方法,就是对物体施加某种力,使之具有表观重量。 图1 地球上与飞船上的宇航员所受的力 上面的图中有两个宇航员。左边那个站在地球上,右边那个站在宇宙飞船里。如果宇航员处于引力非常小的地方(如深空),唯一使他“感受到重量”的方法办法就是令地面对他施加支持力。这种情况下,右边的宇航员也能像左边的一样感受到重量。 那么要如何在太空里对宇航员施加这个力呢这就要从力的性质入手了。大家对

下面这个公式应该十分熟悉: 这个公式表明物体会在其受到的(净)合力下加速。力和速度都是矢量,现在我们只研究极短时间内物体的运动状况。在这个极短的时间段内,物体的平均加速度是: 图2 宇宙飞船中的宇航员的速度 做圆周运动需要加速度,这一点其实我们早就知道了——每次开车转弯时,你都能感受到这股沿着角加速度方向的力。宇宙飞船在旋转时的原理亦是如此。宇航员(在旋转飞船里)受到的表观重量只取决于两点——圆周的半径和旋转的速度(通常用角速度ω表示)。以合适的速度做匀速圆周运动,飞船里的宇航员也可以获得表观重量。下面是在旋转飞船里的表观重量的表达式(用重力加速度g 来衡量): 大的宇宙飞船(半径r比较大)不需要转得太快。如果飞船比较小,就要转快一些。 图3 《星际穿越》中的宇宙飞船 二、宇航员能活着穿过虫洞吗 (一)虫洞是什么 虽然爱因斯坦和他的助手纳森·罗森(Nathan Rosen)最早不这么叫它,但是虫洞最初的确是他们的智慧结晶。当时他们正在试图用各方法来解爱因斯坦的广义相对论方程,以及用一个纯粹的数学模型来解释整个宇宙,包括重力,以及构成物质的各种粒子。其中包括的一种方法是将空间描述成两个几何面,其间由“桥”连接,而在我们的感知中,这些桥就是粒子。

物理学最前沿八大难题资料

物理学最前沿八大难 题

物理学最前沿八大难题 当今科学研究中三个突出的基本问题是:宇宙构成、物质结构及生命的本质和维持,所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 我们可以从物理学最前沿的八大难题来了解最新的物理学动态。 难题一:什么是暗能量 宇宙学最近的两个发现证实,普通物质和暗物质远不足以解释宇宙的结构。还有第三种成分,它不是物质而是某种形式的暗能量。 这种神秘成分存在的一个证据,来源于对宇宙构造的测量。爱因斯坦认为,所有物质都会改变它周围时空的形状。因此,宇宙的总体形状由其中的总质量和能量决定。最近科学家对大爆炸剩余能量的研究显示,宇宙有着最为简单的形状——是扁平的。这又反过来揭示了宇宙的总质量密度。但天文学家在将所有暗物质和普通物质的可能来源加起来之后发现,宇宙的质量密度仍少了2/3之多! 难题二:什么是暗物质 我们能找到的普通物质仅占整个宇宙的4%,远远少于宇宙的总物质的含量。这得到了各种测算方法的证实,并且也证实宇宙的大部分是不可见的。

最有可能的暗物质成分是中微子或其他两种粒子: neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据说是没有较为有效的测量方法。又这三种粒子都不带电,因此无法吸收或反射光,但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。如果找到它们的话,很可能让我们真正的认识宇宙的各种情况。 难题三:中微子有质量 不久前,物理学家还认为中微子没有质量,但最近的进展表明,这些粒子可能也有些许质量。任何这方面的证据也可以作为理论依据,找出4种自然力量中的3种——电磁、强力和弱力——的共性。即使很小的重量也可以叠加,因为大爆炸留下了大量的中微子,最新实验还证明它具有超过光速的性质。 难题四:从铁到铀的重元素如何形成 暗物质和可能的暗能量都生成于宇宙初始时期——氢、锂等轻元素形成的时候。较重的元素后来形成于星体内部,核反应使质子和中子结合生成新的原子核。比如说,四个氢核通过一系列反应聚变成一个氢核。这就是太阳发生的情况,它提供了地球需要的热量。当然也还有其它的种种核反应。 当核聚变产生比铁重的元素时,就需要大量的中子。因此,天文学家认为,较重的原子形成于超新星爆炸过程中,有大量现成的中子,尽管其成因还不很清楚。另外,最近一些科学家已确定,至少一些最重的元素;如金、铅等,是形

物理学发展简介

1687年,依萨克·牛顿经过多年的潜心研究,终于出版了他的《自然哲学的数学原理》(以下简称《原理》),它标志着物理学的真正诞生 《原理》是人类自然科学知识的首次大综合。在这里,牛顿把伽利略“地上的”物体运动规律,与开普勒“天上的”星球运动规律天才地统一起来,建立了牛顿力学(也称经典力学或古典力学)的完整理论体系。 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。 古典物理学 经典力学 阿基米德公元前250:浮力原理——王冠密度测量 杠杆原理——给我一个支点,我可以翘起地球 托勒密2世纪:地心说——地球是宇宙中心 哥白尼1543:日心说——太阳是宇宙中心 亚里士多德:力是维持物体运动的原因 伽利略17世纪:比萨斜塔实验,惯性提出者,物理实验之父 斜面小球实验说明:力不是维持物体运动的原因 笛卡尔:完善补充了伽利略的观点,指出如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下也不偏离原来方向。 开普勒1609:行星三大运动定律 牛顿1687:牛顿力学三大定律,万有引力定律 牛顿总结伽利略和笛卡尔的正确结论,得出动力学的一条基本规律,即牛 顿第一定律(惯性定律) 伯努利1738:流体动力定律 热学 前人:热质说,认为热是一种由高温流向低温处之物质 卡诺:卡诺循环理论,卡诺热机 布朗:布朗运动 焦耳:测量出热功当量,证明热是能量的一种形式 克劳修斯:分子动理论 光学 司乃尔:折射定律 牛顿:光的微粒说,光的色散 海根斯:光的波动性提出者 汤姆斯、杨:光的波动性证明:杨氏双缝实验 麦克斯韦:建立光学是电磁波的理论 赫兹:发现光电效应 爱因斯坦:光量子理论,解释了光电效应,光电方程 电磁学

物理学前沿简介

放射物理与防护绪论 物理学是自然科学中基本的学科,是研究物质运动最一般规律和物质基本结构的学科。在尺寸标度上涉及从基本粒子到整个宇宙,在时间标度上从飞秒级的短寿命到宇宙纪元。物理学确立的新概念和理论,已经成为人类对周围世界认识的不可分割的部分,直接影响到社会生产和生活,对社会发展起着推动作用。一、物理学的发展 纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段。 (一)物理学萌芽时期 在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。 在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直进、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的著作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。电磁学方面,发现了摩擦起电、磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、元气论、阴阳五行说、以太等假设。 在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。 总之,从远古直到中世纪(欧洲通常把五世纪到十五世纪叫做中世纪)末,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件

物理学前沿问题探究

课程名称:前进中的物理学 论文题目:物理学前沿问题探究 学号: 姓名: 年级: 专业: 学院: 完成日期:

物理学前沿问题探究 我是南开大学物理学院的学生,自然对物理学的前沿问题较一般的同学有更多的了解,对这方面也更感兴趣,我希望能更多地了解这方面的知识,以使自己对物理学的未来有一个更清晰的认识。 物理学——一门非常严肃的科学,源自哲学,由于数学方法的引进而成为一门独立的科学,其终极目的是探知宇宙的精神。 我们的物理学发展到现在已经为我们认识和改造世界提供了一件又一件法宝: 光学显微镜,使生物学拥有了细胞学说; 蒸汽机,引发了工业革命; 引力理论,成为了太空航行的理论依据; 电力的发现,让化学出现了新的分支——电化学; 能量守恒定律,使人们不在盲目建造永动机; 热力学第二定律,指出了时间的方向性; 电子显微镜,使生命科学进入分子生物学时代; 电子计算机,引领世界进入信息时代; 将来,量子通信,量子计算机,必将使世界进入全新的量子时代! 我相信物理学必将继续引领世界前进的步伐,但是其基础是一个个前沿难题的解决或新发现,物理领域有着大量的前沿课题,相信我们年轻的一代,以及其他未来的科学家必将在这些方面有所建树。 下面我将对这些疑难问题做一个概述: 1、关于整个宇宙和天体的创生和演化 宇宙起源问题、黑洞的研究、宇宙年龄问题、宇宙有怎样的结构、暗物质、暗能量、类星体的结构、引力波的存在问题、太阳系诞生问题、地-月创生和演化、生命起源于哪里、外星生命是否存在、宇宙加速膨胀之谜…… 2、微观世界中物质结构和基本粒子的相互作用及其运动规律 物质深层结构之谜(质子自旋危机)、概率论和决定论的争论、统一场论的最终导出(大统一、超统一)、超弦、真空不空问题、量子计算机、量子隐形传态、量子非局域性、量子论与相对论之矛盾、狭义相对论与超光速疑难…… 3、宏观范围内的非线性复杂性问题 自组织与耗散结构、分形与分维、多体问题、混沌理论、孤立波、

物理学前沿论文

物理学前沿课程作业 题目:一、超导材料的研究与发展 光催化反应机理 二、TiO 2 姓名:谭琳 学号:S130720032

一、超导材料的研究与发展 1、 引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。 2、 分类 2.1按成分分为: 元素超导体、合金和化合物超导体,有机高分子超导体三类。 2.2按Meissner 效应分为: 第一类超导体: 超导体在磁场中有一同的规律,如图a 所示:当HH c 时,B=μH ,即在超导态内能完全排除外磁场,且只有一个值。除钒、铌、钌外,元素超导体都是第一类超导体。 第二类超导体: 如图b 所示,第二类超导体的特点是:当H0而B< μH ,磁场部分穿透。当H>H c2时,B= μH ,磁场完全穿 透。也就是在超导态和正常态之间有一种混合态存在,H c 有两个值H c1和H c2 。钒、铌、钌及大多数合金或化合物超导体都是属于第二类导体。 3、 性质 3.1零电阻性 超导材料处于超导态时电阻为零,能够 无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维

物理学简介

物理学简介(各专业,各方向) 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这?目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。 物理学介绍---物理学 物理学 物理学早期称为自然哲学,是自然科学中与自然界的基本规律关系最直接的一门学科。它以研究宇宙间物质各层次的结构、相互作用和运动规律以及它们的实际应用前景为自己的任务。 从17世纪牛顿力学的建立到19世纪电磁学基本理论的奠定,物理学逐步发展成为独立的学科,当时的主要分支有力学、声学、热力学和统计物理学、电磁学和光学等经典物理。本世纪初,相对论和量子论的建立使物理学的面貌焕然一新,促使物理学各个领域向纵深展,不但经典物理学的各个分支学科在新的基础上深入发展,而且形成了许多新的分支学科,如原子物理、分子物理、核物理、粒子物理、凝聚态物理、等离子体物理等。在近代物理发展的基础上,萌发了许多技术学科,如核能与其它能源技术、半导体电子技术、激光和近代光学技术、光电子技术、材料科学等,从而有力地促进了生产技术的发展和变革。 19世纪以来,人类历史上的四次产业革命和工业革命都是以对物理学某些领域的基本规律认识的突破为前提的。当代,物理学科研究的突破导致技术变革所经历的时间正在缩短,从而在近代物理学与许多高技术学科之间形成一片相互交叠的基础性研究与应用性研究相结合的宽广领域。物理学科与技术学科各自根据自身的特点,从不同的角度对这一领域的研究,既促进了物理学的发展和应用,又加速了高技术的开发和提高。 我国的物理学专业,从来就不是纯物理专业,它是包括应用物理和技术物理在内的基础研究和应用研究相结合的专业。建国以来,我国的许多新技术学科如半导体、核技术、激光、真空技术等的大部分,都是在物理学科中萌芽、形成和发展起来的。基础性工作与应用性工作同时并存、相互结合是我国物理学科的特点. 物理学科是一门基础学科。在物理学基础研究过程中形成和发展起来的基本概念、基本理论、基本实验手段和精密测量方法,已成为其他学科诸如天文学、化学、生物学、地学、医学、农业科学等学科的组成部分,并推动了这些学科的发展。物理学还与其他学科相互渗透,产生了一系列交叉学科,如化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等。这种相互渗透过程一直在进行之中,例如量子计算问题是当前的一个研究热点,有可能对信息科学产生重要的影响。数学对物理学的发展起了重要的促进作用,反过来物理学也促进了数学和其他交叉学科的发展。 物理学也是各种技术学科和工程学科的共同基础,物理量测量的规范化和标准化已成为计量学的一个重要研究内容。依据上述认识,物理学科可包含如下几个分支∶理论物理、粒

物理学前沿学习心得

物理学前沿学习心得 专业班级:物联网13-01 姓名:司文哲 学号:311309080116

物理学前沿这门课是我看名字就选的一门选修课,因为本身对于物理拥有极大的兴趣,喜欢物理这门学科,并且还因为对物理前沿的知识感到好奇和前沿物理学的研究对世界的改变让我感到惊奇而选的这门课。在上前几节课的时候,一直听老师讲的是有关物理学历史的问题,这让我有困惑和不解,为什么报了个物理学前沿却在这听物理学历史,后来在一节课中老师也说到这个问题,然后思考过后,才觉得对于物理学的历史学习还是很有必要的,有助于整个对物理学的发展有个看法和了解,这样对物理学前沿问题才会感到有兴趣。经过4个星期的上课,多多少少也了解了点屋里前沿知识的大概皮毛,这篇心得就把老师提到的几个21世纪物理学的发展方向以及各个前沿的基本概念、前景总结一下,也算是对物理学前沿这门课程的学习总结。 在查阅物理前沿的资料之前,我先对有一节课老师放的宇宙的视频说一点我对宇宙的看法和认识,我觉得我们生活在繁杂世界中,纷纷扰扰,喜怒哀乐,总以为人才是世界的中心,殊不知这是多么渺小的想法。一个大自然就能轻轻松松把人类毁灭,更不用说浩瀚无边的宇宙了,宇宙就像心胸广袤,坐定如山的巨大长者。又如各个地方都在发生着变换,停歇不得的魔鬼。我们对宇宙的认识从华夏大地的人们认为的盖天说和巴比伦的拱形天地被大海环绕的世界,到无锡拉人从美学观念觉得地球是圆形的,认为天体和我们居住的大抵都是圆形的,再到地心说,日心说和万有引力定律的发现,再到发现银河系以外的星系,期间经过了人类多少的努力和困难,才认识到我们生活千万年的外界是什么东西,然而宇宙却千万年间一直在这里,巍然无比,让人心生敬畏。 21世纪物理学发展的前景还是非常巨大的,有许多我认为改变世界的发现还在研究当中在本篇中我查阅一些物理前沿的研究分支,作为自己简单的学习。 1.暗物质和暗能量 暗能量和暗物质是一种不可见的、能推动宇宙运动的能量,宇宙中所有的恒星和行星的运动皆是由暗能量与万有引力来推动的。根据“普朗克”探测器收集的数据,科学家对宇宙的组成部分有了新的认识,宇宙中普通物质和暗物质的比例高于此前假设(73%),而暗能量这股被认为是导致宇宙加速膨胀的神秘力量则比想象中少,占不到70%。]暗能量是宇宙学研究的一个里程碑性的重大成果。支持暗能量的主要证据有两个。一是对遥远的超新星所进行的大量观测表明,宇宙在加速膨胀。按照爱因斯坦引力场方程,加速膨胀的现象推论出宇宙中存在着压强为负的“暗能量”。暗能量是什么,它的存在意味着什么?科学家才刚开始尝试回答这些问题。暗能量对宇宙整体的作用泄漏了它的行踪,而人们逐渐意识到,暗能量不仅对整个宇宙有影响,似乎也能操控宇宙的居民,指引恒星、星系和星系团的演化进程。虽然以前并没有意识到暗能量对这些结构的影响,但天文学家们几十年来一直在研究它们的演化过程。 讽刺的是,暗能量的无处不在,反而让人们很难意识到它的存在。暗能量与物质不同,它是均匀分布的,不会在某个地方聚集成团。不论是在你家的厨房,还是在星际空间,暗能量的密度都完全一样,约为10^-26千克/立方米,相当于几个氢原子的质量。太阳系中所有的暗能量加起来,与一颗小行星的质量差不多,在行星的“舞蹈”中,几乎起不了作用。只有在巨大的空间尺度上和时间跨度上,才能体现出暗能量的影响力。 2.广义相对论 广义相对论是阿尔伯特·爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。在广义相对论中,引力被描述为

物理学前沿知识

《九年义务教育三年制初级中学教师教学用书第二册物理》试用修订版上海科学技术出版社华东地区初中物理教材编写协作组编2002年8月第一版第一次印刷 参考资料P346 1、物理学——前沿科学的支柱 自然界是无限广阔庭丰富多彩的。物理学是自然科学中最基本的科学,它研究物质运动的形式和规律,物质的结构及其相互作用,以及如何应用这些规律去改造自然界。因此,物理学又是许多科学技术领域的理论基础。 从本世纪开始,物理学经历了极其深刻的革命,从对宏观现象的研究发展到对微观现象的研究,从研究低速运动发展到研究高速运动,由此诞生了相对论和量子力学,并在许多科技领域中引发了深刻的变革。 物理学在认识、改造物质世界方面不断取得伟大成就,不断揭示物质世界内部的秘密;而社会的发展又对物理学提出无穷无尽的研究课题。例如,原子能的利用,使人类掌握了武器和新能源;激光技术的出现,焕发了经典光学物理的青春,使许多以往光学技术办不到的事情,现还能办到了;半导体科学技术的发展,导致了计算技术、无线电通信和自动控制的革命;超导电性、纳米固体材料和非晶态材料的出现,如金属物理、半导体物理、电介质物理、非晶态物理、表面与界面物理、高压物理、低温物理等。此外,物理学与其他学科之间的渗透,又产生了许多边缘交叉学科,如天体物理、大气物理、生物物理、地球物理、化学物理和最近发展起来的考古物理等。 我们可以说,物理现象存在于人类生活和每个角落,发生在宇宙的每一地方,物理学是推动科学技术发展的重要支柱,它是自然科学中应用广泛、影响深刻、发展迅速的一门基础科学和带头科学。 2、“无限大”和“无限小”系统物理学 “无限大”和“无限小”系统物理学是当今物理学发展一个非常活跃的领域之一。天体物理学和宇宙物理学就属于“无限大”系统物理学的范畴,它从早期对太阳系的研究,逐步发展到银河系,直至对整个宇宙的研究。热大爆炸宇宙模型作为20世纪后半叶自然科学中四大成就之一是当之无愧的。利用该模型可以成功地解释宇宙观测的最新结果,如宇宙膨胀、宇宙年龄下限、宇宙物质的层次结构、宇宙在大尺度范围内是各向同性的等重要结果。可以说,具有暴胀机制的热大爆炸宇宙模型已为现代宇宙学奠定了可靠的基础。但是到目前为止,关于宇宙的起源问题仍没有得到根本解决,还有待于科学工作者进一步的努力和探索。 原子核物理学和粒子物理学等属于“无限小”系统物理学的范畴。它从早期对原子和原子核的研究,逐步发展到对基本粒子的研究。 基本粒子是在物质结构层次中属于比原子核更深层次的物质单元,如光子、质子、中子、π介子等。迄今已确认有400余种基本粒子,它们都是通过宇宙射线和加速器实验发现的。基本粒子的性质可用一系列描述其内禀性质的物理量,如质量、电荷、自旋、宇称、同位旋、轻子数、重子数、奇异数、超荷等表征。基本粒子之间存在着弱相互作用、电磁相互作用和强相互作用(见下面介绍的“物质间的基本相互作用”)。通过这些相互作用,基本粒子可发生创生、湮没以及相互转化等现象。 按照参与相互作用的类型,通常将基本粒子区分为三大类:轻子、强子、和规范玻色子。轻子如电子、μ子和中微子等;它们仅参与弱作用和电磁作用。强子如质了、中子、π介子等,它们参与上述全部三种作用。规范玻色子如光子、中间玻色子(W±,Z0)、胶子等,它们是传递相互作用的媒介粒子,光子传递电磁作用,中间玻色子传递弱作用,胶子传递强作用,目前人们已经知道,强子都是由更小的粒子——“夸克”构成。至今已经发现了多种夸克。

物理化学-化学前沿与进展资料

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

《磁性物理学》教学大纲(68)doc-关于组织修(制)定

《磁性物理学》教学大纲 Magnetism inPhysics 课程代码:M102105 总学时:(理论+实验)56+12学分:4 课程性质: 专业方向课课程类别:必修 先修课程:普通物理、理论物理、固体物理面向专业: 应用物理学 开课学科:凝聚态物理学开课二级学院: 理学院 执笔:崔玉建审校:焦志伟 一、课程的地位与任务 本课程是应用物理专业的专业方向基础课。主要介绍磁现象和规律、磁性起源及自发磁化理论、铁磁体内的能量、磁畴和技术磁化、铁磁物质在交变场作用下的磁化特性、各种磁物理效应和磁性材料的应用。以此作为学习其它专业方向课的基础。 二、课程主要内容与基本要求 第一章 1、熟练掌握各基本磁学量的物理概念及其相互关系;理解磁化曲线和磁滞回线。 2、掌握磁体中静磁能的概念,理解退磁场的概念,理解简单几何形状磁体退磁因子的计算方法;会进行磁滞回线的退磁修正。 3、了解磁路的简单概念。 实践环节:了解磁场、磁感应强度的测量方法。 第二章 1、理解洪特定则,会计算原子或离子的磁矩。 2、了解轨道角动量淬灭的条件。 3、了解晶体的能带理论对金属磁矩的解释。 第三章 1、掌握顺磁物质的基本物理特性,理解朗之万的经典和量子理论顺磁性理论; 2、掌握铁磁物质的基本物理特性,理解奈尔的铁磁学理论,理解居里温度与分子场系数的关系;理解海森堡铁磁学理论的基本概念;分子场系数、居里温度与交换积分常数的关系;物质出现铁磁与反铁磁的条件。了解贝斯统计理论和自旋波理论。 3、掌握反铁磁性和亚铁磁性的基本物理特性;理解分子场理论对反铁磁和亚铁磁性的

唯象理论处理;理解超交换作用的基本概念。 4、掌握铁氧体的结构、磁矩和磁特性。 实践环节:了解铁氧体的制备方法和磁性的测量方法。 第四章 1、掌握常见的磁性材料的磁晶各向异性,掌握单轴晶体和立方晶体的各向异性能的计算;了解磁晶各向异性场的概念;了解产生磁晶各向异性的机理;了解磁性材料的其它几种各向异性;了解磁晶各向异性性能的测量方法。 2、掌握磁致伸缩的基本概念;掌握立方晶体的磁致伸缩公式;了解单轴晶体的磁致伸缩的公式;了解磁致伸缩的物理根源。 3、掌握磁弹性能的物理概念及几种简单情况下的计算方法;理解磁弹性能的物理意义。 第五章 1、理解铁磁体中的退磁能是形成磁畴的原动力;对磁畴、畴壁有清晰的物理概念。 2、理解畴壁形成原理,壁内原子磁矩取向规律以及畴壁的厚度和能量的简单计算。 3、了解各种类型的磁畴结构,掌握运用平衡条件求解磁畴结构的方法。 4、了解微粒、薄膜磁体的磁畴结构及其应用。 实践环节:磁畴的观察 第六章 1、理解磁化、反磁化过程,理解畴壁位移起始磁导率,转动磁化起始磁导率和矫顽力的 计算。 2、理解不可逆磁化过程的分析和反磁化过程的计算。 第七章 1、了解铁磁物质在交流磁场作用下的动态特性,掌握各种损耗的计算方法。 2、了解畴壁的动态方程和畴壁的自然共振,掌握μ', μ''随频率f变化的关系曲线。 第八章 1、掌握软磁铁氧体磁性材料的制备方法和测量方法。 2、掌握永磁铁氧体磁性材料的制备方法和测量方法。 实践环节:磁性材料的制备方法和测量。 第九章 1、了解铁磁体中磁阻效应、磁热效应、霍尔效应、磁光效应及其起源; 2、理解解磁性材料的使用范围和基本特点。 实践环节:了解磁阻效应、磁热效应、霍尔效应、磁光效应。 本课程要求完成课外习题20-30道。

“物理学”简介、含义、起源、历史与发展【精选】

物理学 物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。 经典力学 经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。 自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。 经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

相关文档