文档库 最新最全的文档下载
当前位置:文档库 › 基于NEC标准的红外编码及解码原理及进程

基于NEC标准的红外编码及解码原理及进程

基于NEC标准的红外编码及解码原理及进程
基于NEC标准的红外编码及解码原理及进程

基于NEC 标准的

主要器件:AT89c51、HS0038HS0038工作频率为38 kHz,能对得到TTL 电平的编码信号,再送给外只有3 个引脚: VS 、GND 和原理:采用 常用电器的NEC 38KHZ (即脉宽调制的方法)信息传给单片机,再通过单片机编码:NEC 标准:用 0.56ms 用0.565ms 高电平+1.685ms 发送的格式:引导码+用户码电平+4.5ms 的低电平组成。用第二次发送的用户码可为第一次是为了判断发送的信息是否正确注意:上面说的低电平和高电平志。即低电平期间不发射38KH 间发射38KHZ 的红外波。

标准的红外编码及解码原理及进程0038红外接收头、红外发射管、

能对收到遥控信号进行放大、检波、整形、解再送给单片机,经单片机解码并执行相关控制程1个脉冲信号输出引脚,使用方便,性能可EC 标准实现红外编码及解码。将要发送的通法)的载波发送出去,再由一体化红外接收单片机程序实现解码。

ms 的高低平+0.565ms 的低电平代表数据中5ms 的低电平代表数据中的1。

户码+用户码+操作码+操作反码。引导码为成。用户码和操作码均用8位的十六进制发送。

第一次发送用户码的反码,也可不为,发送反码,操作码也一样。

高电平不是实际的电平概念,只是个代表0和38KHZ 的红外波,此时发射管可亮可灭

。高电平 形、解调,制程序,对可靠。 数据通过头接收把中的0,9ms 的高送。

反码主要1的标高电平期

发射电路:如上图所示,D1为红外发射管,9014为低噪小功率NPN三极管,R1为10欧姆,R2为50欧姆,为了使发射管发射的距离加长常使R2为零,

R1为4.7K欧姆。

功能:优势:通过对NEC标准红外编码的学习,可同时控制多个接收装置而不产生干扰。因红外发射芯片的地址码为固定的一个,只能控制单独的一个装置

或控制相同地址码的装置,且只能控制与遥控器上键数相同的功能,大多数为

十多个。而学习编码的优势是只用一个单片机就能至少有256个地址码(地址码不取反的话地址码将更多),一个地址码有对应的多个受控装置,可见学习

红外编码可大大节约资源。

解码原理及编程参考上面的编码原理。

实现中的问题:搜集资料不容易,且相同标准一个协议大家说的都不尽相同,

让人很难搞准那个是对的。

焊接的电路没理想的那么好使,红外接收头的距离没开发板上的接受的距离远。红外发射的距离更短,只有十多厘米。

进程:电路已焊接好,程序已写好,下面进入调试阶段。电路还需改进,尽可

能使其发射的距离加长。

史上最全的红外遥控器编码协议

目录 1)MIT-C8D8 (40k) 2) MIT-C8D8(33K) 3)SC50560-001,003P 4)M50462 5)M50119P-01 6)M50119L 7)RECS80 8)M3004 9)LC7464M 10)LC7461-C13 11)IRT1250C5D6-01 12)Gemini-C6-A 13)Gemini-C6 14) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F 17)DATA-6BIT 18)Custum-6BIT 19)M9148-1 20)SC3010 RC-5 21) M50560-1(40K) 22) SC50560-B1 23)C50560-002P 24)M50119P-01 25)M50119P-1 26)M50119P 27)IRT1250C5D6-02 28)HTS-C5D6P 29)Gemini-C17 30)Gemini-C17 -2 31)data6bit-a 32)data6bit-c 33)X-Sat 34)Philips RECS-80 35)Philips RC-MM 36)Philips RC-6 37)Philips RC-5 38)Sony SIRC 39)Sharp 40)Nokia NRC17 41)NEC 42)JVC 43)ITT

44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E2 47) NEC-E3 48) RC-5x 49) NEC1-X2 50) _pid:$0060 51) UPD1986C 52) UPD1986C-A 53) UPD1986C-C 54) MV500-01 55) MV500-02 56) Zenith S10

基于单片机模拟红外编码解码的设计

开放实验报告 课题名称基于单片机的红外解码器的设计学生姓名 系、年级专业信息工程系、11、12级电子信息工程指导教师江世明 2014年 5 月20日

基于单片机的红外解码器的设计 一.实验目的 1、了解红外编码原理,模拟红外发射信号; 2、用程序实现红外编码的解码; 二.实验内容 设计基于单片机的红外解码器,实现红外遥控信号智能解码,要求制作出实物,实现解码功能。 三.电路设计 1、红外编码原理 在实际应用中红外编码将二进制码调制到38MHz的载波频率上,通过在空中传播,由红外接收头接收之后,由内部的解调电路进行解调, 解调出来的就是我们发送的那些二进制码。红外编码方式根据日本NEC 协议编码。每次发送四个字节:用户码,用户反码,数据码,数据反码。数据 0和 1的区别通常体现在高低电平的时间长短上。一次按键首先发送9ms的低电平和4.5ms的高电平的引导码。 实际生活中,用遥控器发出的信号与上面的信号是相反的,经过红外线接收头解码以后就和上图一样了,值得大家注意的是发射模块的芯片不同,引导区的时间和数据都有所不同,但解决的方法都是一样的。 引导码后就是用户码。但是怎么来区分0和1呢?前面我们提到了PWM(脉宽调制)。根据脉冲的宽度来区别0和1.0.56ms低电平之后接0.56ms高电平为0,接1.12ms高电平为1.

2、红外解码方法 在实际生活中红外解码一般由红外接收头接收并解码。解码时先跳过9ms 高电平和4.5ms的低电平,然后跳过0.56ms的低电平,最后通过循环等待搞电平的结束并计时。通过判断高电平时间的长短来区分0(0.56ms)和1(1.12ms)。最后判断接收到的四个字节(用户码,用户反码,数据码,数据反码)中数据码和取反后的数据反码相不相等。 3、红外编解码电路 四、程序设计 见附录 五、系统仿真

红外遥控解码实验报告

嵌入式系统试验报告 1.红外遥控解码实验 1.1 实验目的

了解红外遥控编码并用单片机捕捉信号及解码 熟悉LCD1602的驱动 1.2 实验设备 T1838一体化红外接收头 DT9122D芯片制作 89S51 1.3 实验内容 红外一体化接收头接收到红外遥控发射器所发射的信号,并将此信号进行整形和反相送入单片机端口。经过软件译码,将译码结果(按键代码)昂数码管显示。 1.4 实验预习要求 遥控编码知识 ME850单片机开发实验仪集成有一路一体化红外接收头,并配有红外发射器,能够做红外接收与解码实验 了解简单的单片机的开发的环境 要有一定的C语言基础 1.5 实验原理 所谓解码就是能用单片机把以不同宽度的脉冲区别开来,一种比较好思路就是计算两次下降沿间隔时间,当单片机外部中断1口有下降沿时中断一次,并启动定时器,定时器定50us,当下次下降沿到来时我们计算定时器中断的次数,这样我们就能很好的区分不同宽度的脉冲了。

1.6 实验步骤 将JP21的8个短接子全部用短接帽短接,使DG0-DG7与P2端口接通 将JP22的9个短接子全部用短睫毛短接,使A-DP与P0端口接通,VCC向数码管模块供电 将JP10的短接子用短接帽短接,使红外接头U16的数据线与P3.2端口接通。 将JP24的短接子用短接帽短接,禁止LCD1602显示功能,否则数码管将不能正常显示。 第一次使用遥控器要去下电池盖下的隔离胶片。 1.7 实验电路原理分析 ME850选用T1838一体化红外接收头,接受来自红外遥控器的红外遥控信号。T1838集成红外接收二极管、放大、解调、整形等电路在同一封装上。T1838负责红外遥控信号的解调,将调制在38KHZ上的红外脉冲信号解调并倒相输入到单片机的P3.2引脚,由单片机进行高电平与低电平宽度的测量 T1838的输出端通过JP10与AT89S52的P3.2连接,既可以受用中断的方式也可以使用查询方式来编程 1.8 实验参考程序分析 #include #define uint unsigned int #define uchar unsigned char sbit ir=P3^3;//红外端口

红外遥控原理

红外遥控系统原理及单片机解码实例 红外遥控系统原理及单片机解码实例 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小 型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下, 采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码 专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘 矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、 解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、VC D、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。 这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”; 以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反) 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。

NEC协议的红外遥控器驱动程序

创作编号:BG7531400019813488897SX 创作者:别如克* 是不是觉得红外遥控+51单片机是绝妙组合?但是在编程时才发现超级纠结?其实也没那么纠结,自己摸索摸索,总能找出办法来的。 本程序占用了51单片机的定时器0以及中断1两个资源,为的是使单片机能接收到每一个红外脉冲信号,一个都不能少。如果舍不得用这两个资源,还有另一种查询的办法,就是不一定每个信号都能收到,可自己琢磨一下。

需要全套NEC协议红外遥控器资料的,到网上找,到处都有,而且很全。 另外,对着资料写程序如果实在写不出,可以找个示波器,把波形录下来好好研究研究。毕竟有些时候资料会过时,只要里面有一点东西变化了,程序就完全不一样了。这种弯路,尽量少走。 本程序只是头文件,具体到应用上还要各位自己动脑筋了,希望对大家有所帮助。共同学习,共同进步! /****************************************************************** INF_NEC.h 用于NEC协议的遥控器,主控器为51单片机。用户码8位,分布于2-17个脉冲;按键码8位,分布于18-33个脉冲。皆为前8原码,后8反码。 注意:本驱动占用51单片机的外部中断1以及定时器0两个资源,编程时注意 不要再乱动这两个资源。 *******************************************************************/ #include #define uchar unsigned char #define uint unsigned int uchar nec_flag=0;//nec_flag:遥控码的标志位。0:无信号;1、2:信号采集;3、可用信号 uchar nec_num=0;//nec_num:红外码的序号 uint nec_time=0;//nec_time:定时器的计时次数nec_time*250us uchar nec_cod[2]={0,1};//遥控器的编号,编号0为原码,编号1为反码 uchar nec_dat[2]={0,1};//遥控器的数据,数据0为原码,数据1为反码 #ifndef __INF_NEC__ #define __INF_NEC__ extern void nec_init(); extern void nec_act(); #endif void nec_init() //外中断1及定时器0的初始化函数 { TMOD=(TMOD&0xf0)|0x02; //定时器0模式2,8位自动重装 TH0=0x19; TL0=0x19; //11.0592MHz晶振,计数230次,大概时间250us ET0=1;TR0=0; //定时器0使能,先关着 IT1=1;EX1=1; //外部中断1使能,用来接收红外信号

红外遥控信号的解码

红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、V CD、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。

图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反) 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。 图3 遥控信号编码波形图 UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。 图4 遥控连发信号波形 当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个引导码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据

基于NEC标准的红外编码及解码原理及进程

基于NEC 标准的 主要器件:AT89c51、HS0038HS0038工作频率为38 kHz,能对得到TTL 电平的编码信号,再送给外只有3 个引脚: VS 、GND 和原理:采用 常用电器的NEC 38KHZ (即脉宽调制的方法)信息传给单片机,再通过单片机编码:NEC 标准:用 0.56ms 用0.565ms 高电平+1.685ms 发送的格式:引导码+用户码电平+4.5ms 的低电平组成。用第二次发送的用户码可为第一次是为了判断发送的信息是否正确注意:上面说的低电平和高电平志。即低电平期间不发射38KH 间发射38KHZ 的红外波。 标准的红外编码及解码原理及进程0038红外接收头、红外发射管、 能对收到遥控信号进行放大、检波、整形、解再送给单片机,经单片机解码并执行相关控制程1个脉冲信号输出引脚,使用方便,性能可EC 标准实现红外编码及解码。将要发送的通法)的载波发送出去,再由一体化红外接收单片机程序实现解码。 ms 的高低平+0.565ms 的低电平代表数据中5ms 的低电平代表数据中的1。 户码+用户码+操作码+操作反码。引导码为成。用户码和操作码均用8位的十六进制发送。 第一次发送用户码的反码,也可不为,发送反码,操作码也一样。 高电平不是实际的电平概念,只是个代表0和38KHZ 的红外波,此时发射管可亮可灭 。高电平 形、解调,制程序,对可靠。 数据通过头接收把中的0,9ms 的高送。 反码主要1的标高电平期

发射电路:如上图所示,D1为红外发射管,9014为低噪小功率NPN三极管,R1为10欧姆,R2为50欧姆,为了使发射管发射的距离加长常使R2为零, R1为4.7K欧姆。 功能:优势:通过对NEC标准红外编码的学习,可同时控制多个接收装置而不产生干扰。因红外发射芯片的地址码为固定的一个,只能控制单独的一个装置 或控制相同地址码的装置,且只能控制与遥控器上键数相同的功能,大多数为 十多个。而学习编码的优势是只用一个单片机就能至少有256个地址码(地址码不取反的话地址码将更多),一个地址码有对应的多个受控装置,可见学习 红外编码可大大节约资源。 解码原理及编程参考上面的编码原理。 实现中的问题:搜集资料不容易,且相同标准一个协议大家说的都不尽相同, 让人很难搞准那个是对的。 焊接的电路没理想的那么好使,红外接收头的距离没开发板上的接受的距离远。红外发射的距离更短,只有十多厘米。 进程:电路已焊接好,程序已写好,下面进入调试阶段。电路还需改进,尽可 能使其发射的距离加长。

红外遥控原理及解码程序

红外遥控系统原理及单片机 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC 的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、VCD、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周

期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反)上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3示。 图3 遥控信号编码波形图 UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。

38khz红外发射与接收解析

38khz红外发射与接收 38khz红外发射与接收 红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示. 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的. 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示. 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定. 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高. 图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示. 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.

红外线遥控器解码程序

资料整理自互联网,版权归原作者! 欢迎访问 https://www.wendangku.net/doc/2918269439.html, 新势力单片机,嵌入式
专业技术论坛:https://www.wendangku.net/doc/2918269439.html,
红外线遥控器解码程序
Wang1jin 收藏. 交流论坛: https://www.wendangku.net/doc/2918269439.html,/ 推荐网站: https://www.wendangku.net/doc/2918269439.html, 个人博客: https://www.wendangku.net/doc/2918269439.html,
红外线遥控是目前使用最广泛的一种通信和遥控手段.由于红外线遥控装置具有体积小,功耗低,功能强,成本低等特点,因 而,继彩电,录像机之后,在录音机,音响设备,空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控.工业设备中, 在高压,辐射,有毒气体,粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰.
1 红外遥控系统
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图 1 所示.发射部分 包括键盘矩阵,编码调制,LED 红外发送器;接收部分包括光,电转换放大器,解调,解码电路.
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明, 现以日本 NEC 的 uPD6121G 组成发射电路为例说明编码原理.当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码 也不同.这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为 0.565ms,间隔 0.56ms,周期为 1.125ms 的组合表示二进制的"0";以脉宽为 0.565ms, 间隔 1.685ms,周期为 2.25ms 的组合表示二进制的"1",其波形如图 2 所示.
个人博客:https://www.wendangku.net/doc/2918269439.html,
电子综合站点:https://www.wendangku.net/doc/2918269439.html,

红外遥控原理(红外开发)

红外遥控器的原理 一. 关于遥控器 遥控器其核心元器件就是编码芯片,将需要实现的操作指令例如选台、快进等事先编码,设备接收后解码再控制有关部件执行相应的动作。显然,接收电路及CPU也是与遥控器的编码一起配套设计的。编码是通过载波输出的,即所有的脉冲信号均调制在载波上,载波频率通常为38K。载波是电信号去驱动红外发光二极管,将电信号变成光信号发射出去,这就是红外光,波长范围在840nm到960nm之间。在接收端,需要反过来通过光电二极管将红外线光信号转成电信号,经放大、整形、解调等步骤,最后还原成原来的脉冲编码信号,完成遥控指令的传递,这是一个十分复杂的过程。 红外线发射管通常的发射角度为30-45度之间,角度大距离就短,反之亦然。遥控器在光轴上的遥控距离可以大于8.5米,与光轴成30度(水平方向)或15度(垂直方向)上大于6.5米,在一些具体的应用中会充分考虑应用目标,在距离角度之间需要找到某种平衡。 对于遥控器涉及到如下几个主要问题: 1. 遥控器发出的编码信号驱动红外线发射管,必须发出波长范围在940nm左右的的红外光线,因为红外线接收器的接收二极管主要对这部分红外光信号敏感,如果波长范围不在此列,显然无法达到控制之目的。不过,几乎所有的红外家电遥控器都遵循这一标准。正因为有这一物理基础,多合一遥控器才有可能做成。 2. 遥控器发出一串编码信号只需要持续数十ms的时间,大多数是十多ms或一百多ms重复一次,一串编码也就包括十位左右到数十位二进制编码,换言之,每一位二进制编码的持续时间或者说位长不过2ms左右,频率只有500kz这个量级,要发射更远的距离必需通过载波,将这些信号调制到数十khz,用得最多的是38khz,大多数普通遥控器的载波频率是所用的陶瓷振荡器的振荡频率的1/12,最常用的陶瓷振荡器是455khz规格,故最常用的载波也就是455khz/12=37.9khz,简称38k载波。此外还有480khz(40k)、440khz(37k)、432khz (36k)等规格,也有200k左右的载波,用于高速编码。红外线接收器是一体化的组件,为了更有针对性地接收所需要的编码,就设计成以载波为中心频率的带通滤波器,只容许指定载波的信号通过。显然这是多合一遥控器应该满足的第二个物理条件。不过,家用电器多用38k,很多红外线接收器也能很好地接收频率相近的40k或36k的遥控编码。 3. 一个设备受控,除了满足上面提到的两个基本物理条件外,最重要的变化多种多样的当然应该是遥控器发出一串二进制编码信号了,这也是不同的遥控器不能相互通用的主要原因。由于市场上出现成百上千的编码方式并存,并没有一个统一的国际标准,只有各芯片厂商事实上的标准,这也是模拟并替换各种原厂遥控器最大的难点。随着技术的不断发展,很多公司开发家电设备的遥控子系统时还不采用通用的编码芯片,而是用通用的单片机随心所欲地自编一些编码,这就使通用遥控的问题更加复杂化了。 4. 采用同样的编码芯片,也不意味着可以通用,因为还有客户码。客户码设计的最初本意就是为了不同的设备可以相互区分互不干扰。最初芯片厂商会从全局考虑给不同的家电厂商安排不同的客户码以规范市场,例如录像机和电视机就用不同的设备码,给甲厂分配的设备码和乙厂分配的设备码就区分在不同的范围内。

(完整word)红外遥控协议分析之:NEC协议

红外遥控编码传输协议 生产厂家对红外遥控的编码做了严格的规范,目前国内外主流的红外遥控编码传输协议有十多种,如NEC、Philips RC-5、Philips RC-6、Philips RC-MM、Philips RECS80、 RCA、X-Sat、ITT、JVC、Sharp、Nokia NRC17和Sony SIRC等。 国内最常用的规范有两种:NEC和Sony SIRC。这两种规范的调制方式分别为:PPM(脉冲间隔调制)和PWM(脉冲宽度调制)。谈到这两个概念,我需要具体讲解一下,因为我在网上查阅相关资料时甚是郁闷,好多说法相互矛盾。有说NEC属于PWM的因为它的脉宽不同,PPM的脉宽是固定的。而细心地朋友如果探究到NEC的典型芯片的芯片手册时,会发现上面这种说法是错误的。比如UPD6121这款红外远程控制芯片的调制方式为PPM。后来终于在一家国外的网站上找到了能够自圆其说的解释。个人认为比较正确,拿来和大家分享。 要想认清红外遥控编码传输协议的具体内容,我想还是先捡其重点来讲一下,编码规范中最重要的当属调制这部分了。而主流的调制方式有两种分别为PPM和PWM,当然其他还有好几种,这里先不讲解,免得糊涂了。本文就先介绍下PPM和PWM的区别。 PPM(Pulse Position Modulation),其实更加准确的说法应该是PDM(Pulse Distance Modulation)即脉冲间隔调制: 上图为典型编码规范NEC协议的调制图,为PPM调制。可以看出不管是“0”还是“1”,有高频调制波的地方(下文称其为脉冲)其宽度都是相同的位560us,而脉冲间的间隔则是不同的:“1”时为(2.25ms-560us),“0”时为(1.12ms-560us)。由此得来PPM的称号。 再来看下PWM的调制波形吧: 显然可以看出,“1”的脉冲宽度为1.2ms,“0”的为600us。而脉冲间隔不管是“0”还是“1”,均为600us。从而PPM和PWM的两个概念认识清楚!当然不同规范中PPM和PWM 这两种调制方式的脉宽及脉冲间隔可能不同,上面两个图只是示例而已。

红外遥控解码原理

红外线遥控器解码原理 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。

UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G 最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。 当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码 (9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。 代码格式(以接收代码为准,接收代码与发射代码反向) ①位定义 ②单发代码格式 ③连发代码格式 注:代码宽度算法: 16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度: 2.24ms×16=36ms 易知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms ∴32位代码的宽度为(18ms+27ms)~(36ms+27ms)

红外遥控编码原理及C程序,51单片机红外遥控

红外遥控解解码程序 #include #include #define uchar unsigned char #define uint unsigned int sbit lcden=P1^0; sbit rs=P1^2; sbit ir=P3^2; sbit led=P1^3; sbit led2=P3^7; unsigned int LowTime,HighTime,x; unsigned char a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u; unsigned char flag;//中断进入标志位 uchar z[4]; uchar code table[]={"husidonghahahah"}; uchar code table1[]={"User Code:"}; void delay(uint x) { uint i,j; for(i=x;i>0;i--) //i=xms即延时约xms毫秒for(j=100;j>0;j--); } void write_com(uchar com) {//写液晶命令函数 rs=0; lcden=0; P2=com; delay(3); lcden=1; delay(3); lcden=0; } void write_date(uchar date) {//写液晶数据函数 rs=1; lcden=0; P2=date; delay(3); lcden=1;

delay(3); lcden=0; } void init_anjian() //初始化按键 { a=0;b=0;c=0;d=0; e=0;f=0;g=0;h=0; i=0;j=0;k=0;l=0; m=0;n=0;o=0;p=0; q=0;r=0;s=0;t=0; u=0; } void init_1602() {//初始化函数 uchar num; lcden=0; rs=0; write_com(0x38);//1602液晶初始化 write_com(0x0c); write_com(0x06); write_com(0x01); write_com(0x80); for(num=0;num<14;num++)//写入液晶固定部分显示{ write_date(table[num]); delay(3); } write_com(0x80+0x40); for(num=0;num<9;num++) { write_date(table1[num]); delay(3); } } void write_dianya(uchar add,char date) {//1602液晶刷新时分秒函数4为时,7为分,10为秒char shi,ge; shi=date%100/10; ge=date%10; write_com(0x80+0x40+add); write_date(0x30+shi); write_date(0x30+ge); }

红外遥控编码格式

红外遥控编码 红外遥控编码常用的格式有两种:NEC和RC5 NEC格式的特征: 1:使用38 kHz载波频率 2:引导码间隔是9 ms + 4.5 ms 3:使用16位客户代码 4:使用8位数据代码和8位取反的数据代码 下面的波形是从红外接收头上得到的波形:(调制信号转变成高低电平了) 不过需要将波形反转一下才方便分析:

NEC 协议通过脉冲串之间的时间间隔来实现信号的调制(英文简写PPM)。逻辑“0”是由0.56ms的38KHZ载波和0.560ms的无载波间隔组成;逻辑“1”是由0.56ms的38KHZ载 波和1.68ms的无载波间隔组成;结束位是0.56ms的38K载波。 遥控器的识别码是Address=0xDD20;键值是Command=0x0E;

注意波形先是发低位地址再发高位地址。所以0000,0100,1011,1011反转过来就是1101,1101,0010,000十六进制的DD20; 键值波形如下:

也是要将0111,0000反转成0000,1110得到十六进制的0E;另外注意8位的键值代码是取反后再发一次的,如图0111,0000 取反后为1000,1111。 最后一位是一个逻辑“1”。 RC5编码相对简单一些: 下面的遥控器地址是1A,键值是0D的波形 同样由于取自红外接收头的波形需要反相一下波形以便于分析:

反相后的波形: 根据编码规则:

得到一组数字:110,11010,001101 根据编码定义 第一位是起始位S 通常是逻辑1 第二位是场位F通常为逻辑1,在RC5扩展模式下它将最后6位命令代码扩充到7位代码(高位MSB),这样可以从64个键值扩充到128个键值。 第三位是控制位C 它在每按下了一个键后翻转,这样就可以区分一个键到底是一直按着没松手还是松手后重复按。 如图所示是同一按键重复按两次所得波形,只有第三位是相反的逻辑,其它的位逻辑都一样。

红外遥控器解码原理及示Mini51Board上测试成功

红外遥控器解码原理及示,Mini51Board上测试成功 一、编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有 以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”, 其波形如下图所示。 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射。编码数据, 载波,发射,接收解码如下图所示: UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别

不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,发 射波形图如下图所示。 当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码 (2.5ms)组成。 二、解码 红外接收头将38K载波信号过虑,得到与发射代码反向接收代码

红外遥控软件编解码简析

红外遥控软件编解码简析 摘要: 介绍如何用SONIX单片机实现红外编解码,并讨论SONIX系列芯片在实现红外遥控中的优势所在。文中给出红外发射和接收硬件原理图,并给出相应程序。 关键词:Buzzer输出,外部电平变化中断 引言: 红外线遥控是目前应用最广泛的一种通信和遥控手段。由于红外线遥控器具有体积小、功耗低、功能强、成本低等特点。因此在家电产品中有着广泛的应用。相比与专用的控制芯片,微控制器具有开发灵活的特点,用户可以随意制定编解码格式。SONIX 8bit MCU中的 1、1K的ROM,48bit的RAM完全可以用来开发普通的红外遥控产品,4K的ROM,128bit 的RAM可用做高端复杂的红外遥控产品。 2、Buzzer输出功能可以方便的实现38K载波,1/2个计时计数器,上升下降沿可选的 外部中断便于灵活接收和解码。 3、5V/4MHz条件下,正常工作电流2~3mA,睡眠电流小于1uA,便于电池供电系统。 一、红外编码格式说明 用户采用红外模块时,编码格式非常灵活。目前市场上的红外编码格式非常多,每家公司都可以自己定义一种编解码格式。下面以一种比较常用的格式来做分析说明(示意图中高电平代表38K载波输出): 上面的波形格式包括前导码(Load Code)、身份码和身份反码(ID Code)、数据码和数据反码(Data Code)。 导航码(Load Code):导航码用来通知接受器其后为遥控数据,解码部分在接受到这个信号后就可以开始解码。

系统码(ID Code):系统码用来区分是哪一机型的数据,接收端依此来判断后续的数据是否为须执行的指令。 数据码(Data code):数据码用来区分是哪一个键被按下,接收端根据数据码做出应该执行什么动作的判断。 数据帧间的空闲时间:有用信号中两帧数据间的空闲时间。 红外遥控数据传输系统中的关键是数据传输的可靠性。因此有些公司也会在系统码和数据码后面分别再传送一个同样的码或反码,供误码校验用。 在红外遥控编码中数据位的格式一般如下图所示,通过低电平的时间不同,来区别0和1。在解码的时候既可以根据总的时间长度不同来解码,也可以根据低电平时间的不同来解码。 Bit 0 Bit 1 二、红外发射接收硬件电路部分 红外遥控的发射接收电路比较简单,其中接收电路可以使用集成红外接收器成品。接收器包括红外接收管和信号处理IC。接收器对外只有3个引脚:Vcc、GND和1个脉冲信号输出PO。与单片机接口非常方便,如图所示。 ①Vcc接系统的电源正极(+5V); ②GND接系统的地线(0V); ③脉冲信号输出接CPU的中断输入引脚。采取这种连接方法,软件解既可工作于查询方式,也可工作于中断方式。 但需要注意的两点:一是注意发射接收管的驱动电流;二是要注意接收部分的滤波措施,上图中C2就是用做稳定输出波形,但注意C2不可太大。 三、红外编码发射接收软件实现部分 1、红外编码发射部分软件实现方法: 红外发射管需要靠38K的载波驱动,才能将信号发送出去。有的MCU没有BUZZER

6122编码格式,红外遥控的编码,载波38KHz

红外、6122编码、38KHz载波一、红外遥控编码简介 一般而言,一个通用的红外遥控系统由发射和接收两大部分组成,如图1 所示: 发射部分主要包括键盘矩阵、编码调制、红外发射管; 接收部分包括光、电信号的转换以及放大、解调、解码电路。 举例来说,通常我们家电遥控器信号的发射,就是将相应按键所对应的控制指令和系统码( 由0 和1 组成的序列),调制在32~56kHz 范围内的载波上(目的为:抗干扰及低功率),然后经放大(接三极管)、驱动红外发射管(透明的头)将信号发射出去。 二、6122编码格式简介 流行的控制方法是应用编/ 解码专用集成电路芯片来实现。 不同公司的遥控芯片,采用的遥控码格式也不一样。本文是NEC(代表芯片WD6122)PWM( 脉冲宽度调制) 标准。 遥控载波的频率为38kHz( 占空比为1:3) ;当某个按键按下时,系统首先发射一个完整的全码,然后经延时再发射一系列简码,直到按键松开即停止发射。简码重复为延时108ms,即两个引导脉冲上升沿之间的间隔都是108ms。如图2所示即为完整的NTC编码。

正常发码:引导码(9ms+4.5ms)+用户编码+用户编码(或者是用户编码的反码)+键数据码+键数据反码+延时: 将正常发码标识出来,从图中可以看出“0”和“1”的表示方法。(不要问为什么是这样,规定!标准!高性能!) 重复码:9ms+2.25ms+延时

三、程序思想 ①低功耗。写程序前要想到,没有用过的,可以新建工程只用sleep命令; ②需要知道用户编码(客户码),每个键对应的编码,这些都是自己或者客户设定的; ③高电平期间:用38KHz的方波表示,低电平期间:用低电平表示。也就是说,高电平不是一直都是高,其实是38KHz的方波,这也是为什么上面②和③图中9ms高电平期间有方格。 (我用的公司自己的精简指令集,就不再上传。需要的话,私信) 四、电路 做为波形的输出端,加三极管,放大。 下图为矩形键盘组成的按键,图中黑色二极管为红外发射管。

相关文档