文档库 最新最全的文档下载
当前位置:文档库 › DRL600故障录波及测距装置技术说明书

DRL600故障录波及测距装置技术说明书

DRL600故障录波及测距装置技术说明书
DRL600故障录波及测距装置技术说明书

国电南自

Q/SDNZ.J.51.02-2005

标准备案号:1213-2005-K

DRL600

微机型电力系统故障录波及测距装置

技术说明书

国电南京自动化股份有限公司

南京南自新电自动化系统有限公司

DRL600

微机型电力系统故障录波及测距装置

技术说明书

编写:

审核:

批准:

V 6.0.00

南京南自新电自动化系统有限公司

2006年12月

为保证安全、正确、高效地使用装置,请务必阅读以下重要信息:

(1)装置的安装调试应由专业人员进行;

(2)装置上电使用前请仔细阅读说明书,应遵照国家和电力行业相关规程,并参照说明书对装

置进行操作、调整和测试,如有随机材料,相关部分以资料为准;

(3)装置上电前,应明确连线与正确示图相一致;

(4)装置应该可靠接地;

(5)装置施加的额定操作电压应该与铭牌上标记的一致;

(6)严禁无防护措施触摸电子器件,严禁带电插拔模件;

(7)接触装置端子,要防止电触击;

(8)如要拆装装置,必须保证断开所有地外部端子连接,或者切除所有输入激励量,否则,触

及装置内部的带电部分,将可能造成人身伤害;

(9)对装置进行测试时,应使用可靠的测试仪;

(10)请勿随意修改各配置文件,为了保证录波软件的正确性和完整性,在MMI模块内均备份了

该工程的数据配置文件和安装程序,配置文件如有修改,请立刻更新,便于在发生问题时能够及时恢复;

(11)由于本装置的MMI模块是windows2000平台,为了保证装置能够安全的运行,请勿在MMI模

块内安装其它任何应用软件;

(12)详细的使用维护说明请参见“使用说明书”。

本说明书适用于DRL600微机型电力系统故障录波及测距装置V6.0.00版本

产品说明书版本修改登记表

* 技术支持电话:(025)83420680

传真:(025)83464008

* 本说明书可能会被修改,请注意核对实际产品与说明书的版本是否相符

* 由于产品的升级,可能会存在与本说明书不一致的情况,恕不另行通知

* 2006年12月第1版第1次印刷感谢您购买南京南自新电自动化系统有限公司的

DRL600微机型电力系统故障录波及测距装置

总结了

国电南自几十年来二次保护理论与实践的丰富经验

专业化继电保护的可靠性、稳定性设计理念为要求

新型的嵌入式设计为基础

着手于

高速度、高精度、大容量、多存储、网络化的录波采样、存储及传输技术

南自新电

专业打造DRL600微机型电力系统故障录波及测距装置

目次

1.概述 (1)

2.主要特点 (2)

2.1“装置化”设计,电磁兼容性能优,组屏简洁、运行维护方便 (2)

2.2完全基于专业继电保护产品设计理念的嵌入式装置化故障录波器 (2)

2.3面向对象的、针对故障录波功能要求的高性能的嵌入式硬件平台 (2)

2.4基于专业继电保护产品设计理念的录波主CPU独立记录与存储 (3)

2.5面向对象的镜像分布多存储 (3)

2.6完全独立的双以太网设计 (3)

2.7冗余双电源设计 (4)

2.8友好的人机界面,完善的分析功能, (4)

2.9数字化接口,方便实现数字化变电站 (4)

3.主要技术指标 (5)

3.1额定参数: (5)

3.2功率消耗 (5)

3.3过载能力 (5)

3.4录波通道容量 (5)

3.5模拟量线性工作范围 (5)

3.6采样频率 (5)

3.7采样精度 (6)

3.8开关量分辨率 (6)

3.9谐波分析率 (6)

3.10测距精度 (6)

3.11录波启动方式 (6)

3.12录波记录 (7)

3.13录波存储及输出方式 (9)

3.14GPS对时 (9)

3.15联网及通讯远传 (9)

3.16绝缘性能 (9)

3.17抗电磁干扰性能 (10)

3.18机械性能 (10)

3.19正常工作大气条件 (10)

4.原理说明 (11)

4.1硬件结构及功能 (11)

4.2模拟量启动原理 (14)

4.3定值清单 (17)

4.4组网结构级数据远传 (18)

5.产品组成 (19)

5.1录波装置 (19)

5.2组屏(柜) (20)

6.产品维护 (20)

6.1常见故障的处理 (20)

6.2录波处理 (20)

7.订货须知 (21)

8.附录 (22)

·概述·

1.概述

随着国民经济的发展,各种高压、超高压系统以及数字化变电站日益增多,对电网稳定运行的要求越来越高,对继电保护设备的可靠性要求也越来越高。作为“电力系统黑匣子”

的故障录波器,起到了记录保护与安全自动装置的动作顺序,再现系统故障和异常运行时各参量的变化过程,评价继电保护动作行为,分析故障和异常运行的作用,其自身的稳定可靠关系到电网的稳定运行与故障分析。

DRL600微机型电力系统故障录波及测距装置是新一代的广泛应用于常规变电站及数字化变电站输电线路的故障录波装置。它是在充分总结了国电南自几十年来在二次设备研发、设计、制造和实践的丰富经验,引进了国外先进的技术动态,以新型的嵌入式设计为基础,以专业继电保护设备一体化、高可靠性、高稳定性的设计理念为指导,着手于高速度、高精度、大容量、网络化的采样及录波存储技术,由南自新电公司专项研制、生产的。

DRL600微机型电力系统故障录波及测距装置采用新型嵌入式一体化机箱结构,彻底抛弃了“交直流变换器箱+前置机+后台机”的模式,真正做到了“录波器装置化”,图形化界面简介友好、维护方便,可靠性更高一筹。它全面完成故障和异常工况时的模拟量数据记录,保护与安全自动装置的动作顺序记录,再现故障和异常运行时各参量的变化过程,并辅助完成故障录波数据的综合分析,作为评价继电保护动作行为、分析故障和异常运行的重要依据。

2.主要特点

DRL600微机型电力系统故障录波及测距装置是全新一代的广泛应用于110KV~500KV系统的以及数字化变电站的线路及变压器故障录波装置。它全面贯彻国标,同国内外同类产品相比,具有鲜明的特色。

2.1“装置化”设计,电磁兼容性能优,组屏简洁、运行维护方便

新型嵌入式一体化机箱结构,将交直流通道变换、录波采集与启动、波形数据记录与多存储、数据分析、网络通讯、人机界面完全集成于装置,彻底抛弃了交直流变换器箱+前置机+后台机的模式,真正做到了“录波器装置化”。

录波器装置化设计,抗干扰能力明显提高,全部实验结果表明快速瞬变、静放电等各项电磁兼容指标均优于录波国标标准,达到保护装置电磁兼容标准。

录波器装置化设计,组屏简洁、维护方便,可靠性更高一筹。

2.2完全基于专业继电保护产品设计理念的嵌入式装置化故障录波器

DRL600微机型电力系统故障录波装置总结了国电南自几十年来继电保护产品的设计、生产、制造经验,以专业继电保护产品的设计理念,彻底摒弃传统故障录波以“工控机、或一体化工作站、或工控主板及其板卡拼装”为核心的通用工控硬件系统,专门针对故障录波装置要求而开发了专有硬件系统。

软件上采用了VxWorks嵌入式操作系统,实时性好、效率高、性能强、系统资源占用小,解决了高速记录与缓存有限之间的矛盾,做到了真正的高速实时录波

结构上一体化、装置式的电气与机械设计,真正形成了国内首家的嵌入式装置化故障录波器。

故障录波的嵌入式装置化设计,产品性能更加稳定可靠,组屏更加简洁美观,维护更加容易方便。

2.3面向对象的、针对故障录波功能要求的高性能的嵌入式硬件平台

DRL600基于嵌入式硬件设计的面向对象的基本要求,彻底摒弃传统故障录波以“工控机、或一体化工作站、或工控主板及其板卡拼装”为核心的通用工控硬件系统,根据故障录波功能要求专门定制硬件系统:以高性能DSP及32位嵌入式双CPU为核心,采用高分辨率16位A/D、大规模可编程逻辑阵列FPGA/CPLD、大容量FLASH存储器、高性能移动硬盘、大屏幕真彩TFT液晶屏等先进器件,辅以冗余双电源设计、4~6层印刷电路板、SMT表贴加工技术、背插式结构等先进技术……

DRL600故障录波装置总体硬件框架:

2.4 基于专业继电保护产品设计理念的录波主CPU 独立记录与存储

DRL600装置的录波记录与存储直接由录波主CPU 独立完成,完全不倚赖于网络及后台工控机,彻底解决了采用“前置处理+后台记录”的“前后台模式的记录方式”中因网络或后台工控机故障导致的录波失败;录波主CPU 采用大容量存储器,可保存不少于300次的故障录波数据文件,存满后采用循序刷新、先进先出原则。

2.5 面向对象的镜像分布多存储

DRL600装置的波形文件既独立的存储于主CPU ,同时镜像备份存储在MMI 中,此外MMI 还为数据远方传输开辟独立的存储空间并共享在FTP 服务器上,分别面向现场、运行和调度,从而形成了面向对象的录波数据分布多存储。

主CPU 和MMI 还直接支持基于USB 的移动存储。

2.6 完全独立的双以太网设计

DRL600微机型电力系统故障录波装置采用两个独立的对外以太网接口设计,可工作于不同网段,全面满足现场对通讯组网的要求。

以太网2

以太网1

2.7冗余双电源设计

双CPU各自独立电源供电;每块电源直流为主,交流为辅,互为备用,无缝自动切换。

2.8友好的人机界面,完善的分析功能,

Windows图形化界面。方便实用的实时运行监视辅助功能,可在装置液晶显示屏上按设备实时显示电流、电压、负序量、有功功率、无功功率、视载功率、频率、向量图等相关参数,实现运行监视。

录波系统的分析除可查阅、显示、打印输出录波波形,应用缩放、比较、标定等定量手段分析电压、电流的幅值和相位、开关量的状态和动作顺序,还可进一步进行序量分析、谐波分析、阻抗分析、功率P、Q分析、功角δ、δ′、δ″分析、故障测距以及各电气量波形任一点的有效值分析计算。

2.9数字化接口,方便实现数字化变电站

装置设有百兆光纤接口,支持IEC61850协议,可方便实现数字化变电站的建设。

3.主要技术指标

3.1额定参数:

工作直流电源:DC220V/110V±20%;

纹波系数不大于5%

辅助交流电源:AC220V±20%;

频率50Hz±0.5Hz

交流电压回路: Un 57.7V/100V;

交流电流回路: In 5A/1A;

额定频率:50Hz;

开关量输入为无源空接点输入。

3.2功率消耗

交流电压回路不大于1VA/相(额定电压下);

交流电流回路不大于0.5VA/相(额定电流下);

直流电源回路不大于80W;

辅助交流回路不大于500W。

3.3过载能力

交流电流回路2倍额定电流,连续工作

10倍额定电流,允许工作10s

40倍额定电流,允许工作1s 交流电压回路2倍额定电压,连续工作

直流电源回路80%-120%额定电压,连续工作

3.4录波通道容量

模拟量输入通道24/48/72/96路,

开关量输入通道48/72/144/192路;

3.5模拟量线性工作范围

电压回路:0.1V~150V

电流回路:0.1A~100A

3.6采样频率

同步采样频率:最高10000Hz;

3.7采样精度

优于0.5%;

3.8开关量分辨率

开关量分辨率:≤1ms;

3.9谐波分析率

谐波分析率:10次;

3.10测距精度

金属性短路远方短路测距误差小于2%;近处短路测距误差小于2km;

3.11录波启动方式

录波启动方式包括模拟量启动、开关量启动和手动启动三种基本形式。

●手动启动:

人工启动故障录波装置,可就地或远方启动。

●开关量启动:

开关量可任意设定为变位启动、开启动、闭启动或不启动。

●模拟量启动:

除高频信号外,所有模拟量均可作为启动量,主要概括如下:

a、电压各相和零序电压突变量启动

b、正序、负序和零序电压越限启动

c、主变中性点零序电流越限启动

d、电流各相和零序电流突变量启动(用户可整定)

e、线路相电流、负序和零序电流越限启动(用户可整定)

f、10%电流变差启动

g、频率越限、频率变化率启动

h、过激磁启动(针对变压器)

i、负序功率增量方向(针对变压器)

3.12录波记录

3.12.1暂态记录

A时段:系统大扰动开始前的状态数据,输出原始波形(采样率大于4800Hz),记录时间0.12S到0.5S可调,调节步长0.02秒。默认(4800Hz/0.12S)。

B时段:系统大扰动后初期的状态数据,输出原始记录波形(采样率大于4800Hz),记录时间0.1S到0.3S可调调节步长0.02秒。默认(4800Hz/0.2S)。

C时段:系统大扰动的中期状态数据,输出低采样率的原始波形(采样率600Hz),记录时间3S。

D时段:系统动态过程数据,每0.1S输出一个工频有效值,记录时间20S。如果D时段20S记录结束后启动量依然没有复归,新开文件按照D时段记录10min,如果

10min记录满启动量依然没有复归,追加10min,最多追加20min文件结束。

记录方式

1.启动条件

符合任一模拟量启动或开关量启动条件,按A→B→C→D时段顺序执行。

2.新启动

新启动是指:A.突变量启动;B.断路器跳合闸信号启动。

a.在已经启动记录的B阶段过程中,如遇新启动,则继续延长B阶段(B1),从

新启动点按B→C→D执行(B1→C1→D1);

b.在已经启动记录的C阶段过程中,如遇新启动,则按A→B→C→D执行(A1→

B1→C1→D1);已经记录的C阶段数据和A1阶段数据重复的用A1阶段数据替

换,已经记录的C阶段数据时间小于A1阶段的全部用A1阶段数据替换,A1

阶段记录时间自动减少。

c.在已经启动记录的D阶段过程中,如遇新启动,则结束本文件,新开录波文

件按A→B→C→D执行(A1→B1→C1→D1)。

●自动终止条件

1.同时满足C阶段结束、所有启动量复归

2.同时满足第一个D阶段记录满20S,所有启动量复归

3.同时满足第二个文件D阶段每记录满10min,所有启动量全部复归

4.第二个文件D阶段记录满30min

●单个文件限制

1.容量限制:10M,针对B阶段较多;

2.录波阶段限制:20个录波阶段切换。

当单个文件限制满足时录波仍在进行,则重新开新文件按A→B→C→D录波。

3.12.2稳态记录

采用大型数据库服务器,每0.02s记录一个有效值,可保留至少4天的稳态数据。

3.13录波存储及输出方式

3.12.1暂态记录

●自动存于录波CPU模块的硬盘中,可存储不少于350个波形文件,循环覆盖;

●自动镜像储存于MMI模块的硬盘中,存储波形文件的数量受硬盘大小限制;

●监控管理模块为数据远方传输开辟独立的存储空间,并共享在FTP服务器上,远方的

技术管理部门可通过FTP像在本地一样,方便、快捷、可靠的查看和传输文件;

●USB移动存储介质;

●以太网通讯输出;

●MODEM通讯输出;

●打印输出。

3.12.2稳态记录

●存储在MMI模块的数据库中;

●本地、远方均可按时段提出数据,提出的数据将自动转换为COMTRADE格式文件;

●USB移动存储介质;

●以太网通讯输出;

●打印输出。

3.14GPS对时

PPM、PPS+串口通讯。

3.15联网及通讯远传

●基于TCP/IP的联网;

●FTP文件传输;

●断点续传;

●采用103规约与监控系统相联。

3.16绝缘性能

3.16.1绝缘电阻

装置带电部分和非带电部分及外壳之间以及电气上无联系的各电路之间用开路电压500V 的兆欧表测量其绝缘电阻值,正常试验大气条件下,各等级的各回路绝缘电阻不小于10MΩ。

3.16.2介质强度

正常试验大气条件下,装置能承受频率50HZ,电压2000V历时1分钟的工频耐压试验而无击穿闪络及元件损坏现象。试验过程中,任一被试回路施加电压时其余回路等电位互联接地。

3.16.3冲击电压

在正常试验大气条件下,装置的电压输入回路、交流输入回路、输出触点回路对地,以及回路之间,能承受1.2/50μs的标准雷电波的短时冲击电压试验,开路试验电压5KV。

3.16.4耐湿热性能

装置能承受GB/T2423.9-1989规定的湿热试验。最高试验温度+40℃、最大湿度95%,试验时间为48小时,每一周期历时24小时的交变湿热试验,在试验结束前2小时内根据3.16.1的要求,测量各导电电路对外露非带电金属部分及外壳之间、电气上不联系的各回路之间的绝缘电阻不小于1.5 MΩ,介质耐压强度不低于3.16.2规定的介质强度试验电压幅值的75%。

3.17抗电磁干扰性能

3.17.1脉冲干扰

装置能承受GB/T14598.13-1998规定的干扰试验,试验电源频率为100KHZ和1MHZ,试验电压为共模2500V,差模1000V的衰减振荡波。试验时被试装置预先施加电源,按GB/T14598.13-1998表所列临界条件叠加干扰试验电压,装置不误动、不拒动。

3.17.2快速瞬变干扰

装置能承受GB/T14598.10-1996标准规定III级(2KV±10%)快速瞬变干扰试验。

3.17.3静电放电

装置能承受GB/T14598.14-1998标准规定的Ⅳ级(空间放电15KV,接触放电8KV)静电放电试验。

3.18机械性能

3.18.1振动

装置能承受GB/T2423.10-1995规定的严酷等级为I级的振动耐久能力试验。

3.18.2冲击

装置能承受GB/T2423.5-1995规定的严酷等级为I级的冲击耐久能力试验。

3.18.3碰撞

装置能承受GB/T2423.6-1995规定的严酷等级为I级的冲击耐久能力试验。

3.19正常工作大气条件

环境温度:-5℃~+40℃;-10℃~+55℃。

相对湿度:5%~95%。

大气压力:86kPa~106 kPa;66 kPa~110 kPa。

4. 原理说明

4.1 硬件结构及功能

DRL600微机型电力系统故障录波及测距装置采用多CPU 并行处理的分布式主从结构,可分为模拟量采集模块、开关量隔离模块、录波主机模块和MMI 模块4部分。

DRL600的硬件系统结构图

模拟量采集模块由小CT 、PT 、直流采集模块、16位A/D 及FPGA 组成,将强电信号转换成弱电信号,然后进行模数转换,最终将数字数据传送给DSP 。

开关量隔离模块由阻容元件及光电隔离器组成,完成开关量信号的隔离变换。 录波CPU 模块为DSP +CPU 主从结构,独立工作电源。其采用高性能的32位嵌入式微处理器系统,两级Watchdog 电路,完善的软、硬件自检功能;数据计算采用高速DSP 。多DSP 与CPU 之间采用FPGA 以及工业级总线交换录波数据,极大程度地解决了大容量数据流交换的“瓶颈”。录波CPU 模块自带大容量存储器,直接独立的进行录波记录与存储,录波完全不倚赖MMI 模块及网络,极大的提高了录波的可靠性。录波CPU 模块还设置了百兆光纤以太网接口,支持IEC61850协议,可方便实现数字化变电站的建设。

MMI 模块也采用32位嵌入式微处理器系统,独立工作电源,配有800×600分辨率的

以太网2

以太网1

大屏幕真彩液晶显示器,并具有Windows的图形化界面。MMI模块通过以太网总线与录波CPU模块交换数据,完成监控、通讯、管理、波形分析及录波记录的镜像备份双存储。

录波CPU模块和MMI模块既紧密相关相互联系,又在软、硬件上相互独立运行,互不依赖互不干扰;既独立可靠迅速的进行了录波记录与多存储,又做到了监控、通讯、管理及波形分析,还完成了录波记录的备份存储。因此DRL600微机型电力系统故障录波及测距装置不再需要另配后台机,从而从根本上避免了因后台机或网络不稳定而使整个录波器无法正常工作。

4.1.1模拟量采集模块

模拟量采集模块由FPGA、高精度16为A/D、高精度录波专用CT、PT及直流采集模块组成。完成了模拟量的隔离、采集、模数变换。

4.1.2开关量隔离模块

开关量隔离模块采用了高精度宽温军用级阻容元件及光电隔离器,稳定可靠,可直接采集110/220V开关量信号。

4.1.3录波CPU模块

录波CPU模块以高性能的32位嵌入式微处理器系统及工业级总线为核心,包括DSP 部分和CPU部分。

A.DSP部分

DSP部分由高性能的DSP芯片及FPGA构成,完成付氏变换及相关量的计算,同时判断是否启动录波,并把采集的时实数据发送给主CPU,,同时也接收主CPU的命令。

为了更好的与数字化变电站接口,DSP部分还设有百兆光纤以太网接口,由DSP及FPGA完成控制,接收光CT、光PT的数字通信。

B.CPU部分

CPU部分以高性能的32位嵌入式微处理器系统为核心,采用ALL-IN-ONE设计,将几乎全部的PC计算机的标准设备集成于一块模板上。

正常运行情况下,将DSP传送的采样数据存于指定的RAM区中,循环刷新,同时穿插进行硬件自检等工作,并向MMI模块传送实时稳态数据。

一旦启动条件满足,则按故障记录时段的要求,进行数据记录,同时启动相关信号继电器及装置面板信号灯。录波数据文件就地存放于CPU部分自带的大容量存储器,并自动上传至MMI模块进行备份存储,MMI模块将录波数据文件分两个区域进行镜像双存储。

软件上采用了VxWorks嵌入式操作系统,实时性好、效率高、性能强、系统资源占用

小,解决了高速记录与缓存有限之间的矛盾,做到了真正的高速实时录波

4.1.4辅助信号板

该板将装置运行、录波、自检等状态量输出,包括录波动作信号接点输出,各种运行状态的灯光信号输出。

灯光信号输出直接显示于面板,直观、明了地显示运行工况:

a、运行

b、数据

c、正在录波

d、录波信号

正常运行时,运行灯闪烁;

内部数据交换时,数据灯闪烁;

启动录波时,点亮录波信号灯和正在录波灯;录波过程结束,正在录波灯自动熄灭,录波信号灯直到人工按复归按钮熄灭;

4.1.5MMI模块

MMI模块采用嵌入式32为处理器,配有800×600分辨率的大屏幕真彩液晶显示器,并具有Windows的图形化界面。监控管理模块通过Ethernet内部总线与录波主机模块交换数据,完成监控、通讯、管理、波形分析、稳态录波及录波记录的镜像备份双存储。

A.稳态录波功能

MMI模块将录波CPU模块传送过来的实时稳态数据写入数据库,将最新数据保留4天,对过期数据进行删除。

MMI模块还对本地/远方用户提供数据库的按时段查找,并将提出的数据自动转换为COMTRADE格式文件,供本地/远方用户使用。

B.故障录波数据波形的分析、管理

该功能用来查看故障数据文件,将二进制数据转化为可视化波形曲线,计算派生数据,以实现对故障波形分析。

●标明录波启动时间:故障发生时刻。

●标注故障性质:模拟量启动方式或某开关量启动。

●图形编辑与分析:

a、电压、电流的幅值、峰值、有效值分析;

b、电压、电流波形的滚动、放大、缩小、比较;

故障录波器调试方案

目录 1 概述 (2) 2 编写依据 (2) 3 编制目的 (2) 4调试技术准备.......................... 错误!未定义书签。5调试范围.. (2) 6调试应具备的条件 (3) 7安全注意事项 (3) 8调试程序 (3)

第 2 页 1 概述 新疆嘉润资源控股有限公司动力站2×350MW 超临界工程#3(#4)机组二期升压站新增一台系统#2故障录波器,用于记录升压站220kV#3(#4)线路、母联II 、分段I 、公段II 等间隔在发生故障时的电气量及开关量。#3机组及#2启备变共用一台机组故障录波器、#4机组配置一台机组故障录波器,分别用于记录启备变及#3、#4机组发生故障时的电气量及开关量。 本工程故障录波器均采用浪拜迪LBD-WLB8000微机线路动态分析装置。 2 编写依据 2.1 新疆嘉润资源控股有限公司动力站2×350MW 超临界工程#3(#4)机组施工 图纸、设备说明书。 2.2 《火力发电建设工程启动试运及验收规程》DL/T5437-2009 2.3 《电力建设安全工作规程》(火力发电厂部分)DL5009.1—2002 2.4 《电气装置安装工程电气设备交接试验标准》GB50150-2006 2.5 《电力建设安全工作规程(火力发电厂部分)》DL5009.1-9.2 2.6 《电业安全工作规程(发电厂和变电所部分)》 3 编制目的 3.1 为了指导及规范故障录波器设备、系统的调试工作,保证故障录波器设备、 系统能够安全正常投入运行,特制定本措施。 3.2 检查电气保护、联锁、信号及厂用电源切换装置,确认其动作可靠。 3.3 检查设备、系统的运行情况,发现并消除可能存在的缺陷。 4 调试技术准备 4.1 备齐与故障录波器有关的由设计单位提供的有效设计图及厂家技术文件。 4.2 核对厂家图纸是否与设计图纸相符。 4.3了解装置的工作原理,并熟悉调试方法和操作程序。 4.4 编写故障录波器调试方案。 4.5 配备合格的仪器、仪表及厂家提供的专用工具和备件。 4.6 根据调试现场的条件,并结合工程进度,适时地进入现场展开调试工作,以

光拍频法测量光速实验

图1 拍频波场在某一时刻t 的空间分布 光拍频法测量光速实验 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E 0、圆频率分别为1ω和2ω(频差 12ωωω?=-较小)的二光束: 1011120222cos()cos()E E t k x E E t k x ωφωφ=-+? ?=-+? (1) 式中112/k πλ=,222/k πλ=为波数, 1?和2?分别为两列波在坐标原点的初位相。若这两列光波的偏振方向相同,则叠加后的总场为: 1 2 1212012122cos[ ()]22cos[()](2) 22 x E E E E t c x t c ωω φφ ωωφφ--=+=-+++?-+ 上式是沿轴方向的前进波,其圆频率为12()/2ωω+,振幅为12 02cos[ ()]22 x E t c ωφφ?--+,因为振幅绝对值以频率为12/2f f f ωπ?=?=-周期性地变化,所以被称为拍频波,?f 称为光拍波频率。 实验中拍频波由光电探测器检测,光电探测器上的光电流如图1(b )和下式 []{} 2 01cos (/))i gE t x c ω?=+?-+ (3) 其中g 是光电探测器的转换常数,2f ωπ?=?,?是初相位。 如果有两路光频波,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系 2L f L c c ωπ????????= = (4) 当π? 2=?时,?L =Λ,恰为光拍波长,此时上式简化为 c f =??Λ (5) 可见,只要测定了Λ和f ?,即可确定光速c 。

DRL600故障录波及测距装置技术说明书(国电南自)

国电南自 Q/SDNZ.J.51.02-2005 标准备案号:1213-2005-K DRL600 微机型电力系统故障录波及测距装置 技术说明书国电南京自动化股份有限公司

DRL600 微机型电力系统故障录波及测距装置 技术说明书 编写: 审核: 批准: V 6.0.00 国电南京自动化股份有限公司 2006年12月

为保证安全、正确、高效地使用装置,请务必阅读以下重要信息: (1)装置的安装调试应由专业人员进行; (2)装置上电使用前请仔细阅读说明书,应遵照国家和电力行业相关规程,并参照说明书对装 置进行操作、调整和测试,如有随机材料,相关部分以资料为准; (3)装置上电前,应明确连线与正确示图相一致; (4)装置应该可靠接地; (5)装置施加的额定操作电压应该与铭牌上标记的一致; (6)严禁无防护措施触摸电子器件,严禁带电插拔模件; (7)接触装置端子,要防止电触击; (8)如要拆装装置,必须保证断开所有地外部端子连接,或者切除所有输入激励量,否则,触 及装置内部的带电部分,将可能造成人身伤害; (9)对装置进行测试时,应使用可靠的测试仪; (10)请勿随意修改各配置文件,为了保证录波软件的正确性和完整性,在MMI模块内均备份了 该工程的数据配置文件和安装程序,配置文件如有修改,请立刻更新,便于在发生问题时能够及时恢复; (11)由于本装置的MMI模块是windows2000平台,为了保证装置能够安全的运行,请勿在MMI模 块内安装其它任何应用软件; (12)详细的使用维护说明请参见“使用说明书”。

本说明书适用于DRL600微机型电力系统故障录波及测距装置V6.0.00版本 产品说明书版本修改登记表 * 本说明书可能会被修改,请注意核对实际产品与说明书的版本是否相符 * 由于产品的升级,可能会存在与本说明书不一致的情况,恕不另行通知

故障录波器故障原因分析

电站故障录波器故障原因分析及建议 2007年01月15日电站运行人员发现:故障录波器正常运行指示灯不亮,录波信号指示灯常亮(按信号复归键不起作用);同时工控机画面无正常数据显示(所有显示值均为0)。经检查发现该装置的CPU插件与工控机的通信指示灯不亮,且该CPU 插件在插入装置框架时伴有放电现象(此时装置的直流电源已断),同时#2发电机转子一点接地保护动作,DCS画面#2发电机转子一点接地保护保护动作光字牌亮。 经厂家服务人员与检修人员现场检测发现:转子电流采集回路有约30V交流电压,对应2号发电机转子励磁电流的采集转/换模块对地绝缘损坏,导致发电机转子回路对地绝缘下降;同时发电机励磁电压的正极也经损坏的转换模块间接地叠加在录波装置的母板上,进而造成其它录波插件的损坏。 针对上述现象进行如下分析: 1 励磁回路谐波电压(交流)来源分析 我公司采用的是自并激励磁方式,该方式下调节器的励磁电流也就是发电机的转子电流。调节器采用武汉武水电气技术有限公司生产的TDWL T-01型微机励磁调节器,功率元件采用6只可控硅组成桥式整流。由励磁调节器控制可控硅的通/断,从而达到调节发电机的转子电流/电压。由三相桥式可控硅整流原理可知,正常情况下整流器的输出并不是一单纯的直流电压(因为没

有设置滤波元件),而是在输出的直流电压中包含有一定比例的谐波电压(一般用波形系数表示)。现场实测转子回路交流电压值如下表: 2 励磁回路直流电压来源分析 我公司发电机保护采用的是国电南自生产的NDG200数字式发电机保护装置。该保护装置中的发电机转子接地保护采用的是叠加直流原理,在发电机转子负极与地之间叠加一直流电源,通过检测两者之间的漏电流来计算出发电机转子对地的绝缘电阻,进而判断出发电机转子是否发生接地故障。 3 故障录波器对发电机转子电流的采集原理 我公司的故障录波装置采用的是南自生产的WFBL-1微机发变组故障录波与分析装置。该装置对于发电机转子电流量的采集原理,采用的是采集发电机转子回路分流器的75mV输出信号,通过装置内部的75mV-5V转换模块转换成录波装置所需要的电压信号。 4 本次录波装置故障原因分析 综上所述可知:故障录波器在实际运行过程中所采集的信号量中,不仅仅是75mV的电压量,而且包含有一定成分的交流量,此交流量长期叠加于转换模块,这样对故障录波装置的转换模块就要求必须有足够的耐压强度及抗干扰能力。

9612A_04842故障解列装置说明书

RCS-9612A_04842故障解列保护装置 2007-06-05(V3.35.7) 1基本配置及规格 1.1基本配置 RCS-9612A_04842是适用于110KV以下电压等级的负荷侧或小电源侧的故障解列装置,可在开关柜就地安装。当使用该装置低压解列功能时,要特别注意PT断线的判别,具体见2.3.6。 保护方面的主要功能有: 1)二段零序过压解列保护; 2)二段低压解列保护; 3)二段低周解列; 4)二段母线过压解列保护; 5)二段高周解列; 6)独立的操作回路(使用无源接点,取消了事故总和控制回路断线报警)及故障录波。 测控方面的主要功能有: 1)4路遥信开入采集、装置遥信变位、事故遥信; 2)正常断路器遥控分合; 3)U AB、U BC、U CA、U0、I A、I C、F、P、Q、COSф等模拟量的遥测; 4)开关事故分合次数统计及事件SOE等; 5)提供“保护动作信号”虚遥信,装置保护动作后置1,信号复归后清0 1.2 技术数据 1.2.1额定数据 直流电源: 220V,110V 允许偏差 +15%,-20% 交流电压: 100/3V,100V 交流电流: 5A,1A 频率: 50Hz 1.2.2 功耗: 交流电压: < 0.5VA/相 交流电流: < 1VA/相 (In =5A) < 0.5VA/相 (In =1A) 直流回路:正常 < 15W 跳闸 < 25W 1.2.3主要技术指标 ③低周解列 低周定值:45Hz~50Hz 低压闭锁:10V~90V df/dt闭锁:0.3Hz/s~10Hz/s 定值误差:< 5% 其中频率误差:< 0.01Hz ④遥测量计量等级:电流 0.2级 其他: 0.5级 ⑤遥信分辨率: <2ms 信号输入方式:无源接点

故障录波器技术要求规范书

实用文档 第一部分总的部分 (2) 第二部分工程概况及供货围 (3) 第三部分技术要求 (4) 第四部分图纸资料、试验及其它 (7)

第一部分总的部分 本技术规书所列之技术条件为本工程最基本的技术要求,设备供应方(以下简称供方)应根据本技术要求向用户(以下简称需方)推荐成熟、可靠、技术先进的优质产品,本技术规书所提技术参数和功能要求、性能指标等为满足本工程需要而必须的最基本要求。本技术规书所未详细提及的技术指标、性能要求应不低于有关的中华人民国国标、电力行业标准、IEC标准。当某项要求在上述几种标准中不一致时,应按较高标准执行。 参照标准: ·微机母线保护装置通用技术条件 DL/T 670-1999 ·电力装置的继电保护和自动装置设计规GB50062-92 ·继电保护和安全自动装置技术规程 GB 14285-2006 ·微波电路传输继电保护信息设计技术规定 DL/T 5062-1996 ·电力系统微机继电保护技术导则 DL/T 769-2001 ·电力系统继电保护柜、屏通用技术条件 DL/T 720-2000 ·静态继电保护及安全自动装置通用技术条件 DL/T 478-2001 ·电力系统故障动态记录技术准则 DL/T 553-94 ·国家电网公司十八项电网重大反事故措施,国家电网生技[2005]400号。 ·关于继电保护光耦回路研讨会会议纪要及整改措施华北调局继[2005]7号

第二部分工程概况及供货围 2.1 工程概况 1 主接线型式: (详见附图) 2 各级电压及出线数量: 10kV出线: 2 回 3 发电机组: 台数: 2 发电机容量: 30 MW 电压: 10 kV CosΦ: 0.8 4 机组控制方式: DCS控制 2.2 故障录波器配置及供货围 本工程配置的故障录波器应为微机型装置,本工程配置1套微机故障录波装置,每套装置组1面柜(含针式打印机),本工程需1面故障录波器柜。 容量配置: 故障录波器柜(每面含): 模拟量:64路,可接入电流量48路、电压量8路,高频量8路。 开关量:128路,可接入常开或常闭空接点信号; 录波器具体供货围: 屏顶小母线采用双层双列28根布置,带防尘罩。

光速测量

光速测量 地面测量法 直到1849年,法国物理学家斐索(Fizeau,1819-1896)才利用非天文方法在地面上第一次成功地测量了光速,斐索的仪器是非常精巧的。 斐索的方法被称为“旋转齿轮”法,它的核心是一个快速旋转的并可调整转速的齿轮,利用这个齿轮我们可以精确地测量时间。由于当时电灯尚未发明,斐索使用的光源其实是蜡烛,它发出的光波射到8公里远的镜子上并返回。假设齿轮不转动,那么蜡烛发出的光将从相邻两个齿之间穿过,然后又回来射到观察者的眼睛里。 斐索的方法被称为“旋转齿轮”法,它的核心是一个快速旋转的并可调整转速的齿轮,利用这个齿轮我们可以精确地测量时间。由于当时电灯尚未发明,斐索使用的光源其实是蜡烛,它发出的光波射到8公里远的镜子上并返回。假设齿轮不转动,那么蜡烛发出的光将从相邻两个齿之间穿过,然后又回来射到观察者的眼睛里。 现在假设齿轮开始转动,但转速较慢,当光被镜子反射回来的时候正好被相邻的齿挡住,因此没有光射到观察者的眼睛里。如果加快齿轮的转速,使光被反射回来的时候恰好转过一个齿轮,那么光又可以射到观察者的眼睛里。于是斐索知道当齿轮恰好转过一个齿的时间,就对应的是光传播16公里所需要的时间。斐索得到的光速是313111公里/秒,考虑到他所利用仪器的局限,这个结果已经相当精确了。 1850年法国物理学家傅科(Foucault,1819-1868)利用旋转镜法首次实现了在实验室里对光速的测定。傅科使用快速旋转的镜片替代了斐索的齿轮,快速旋转的镜片会使出射光线偏转一个角度θ,1862年傅科的测量结果是29.8万公里/秒。

更精确的测量是由美国物理学家迈克尔逊(Michelson,1852-1931)在1926年完成的,他改进了傅科的方法,使用一个多面的旋转镜,将光波分成不连续的光束。类似于斐索的实验,这些光束将被反射到35公里远的镜子上,然后再被反射回来。如图,我们使用一个六面镜,该镜由电动机转动,可以任意调节旋转速度。假设镜子不转动,并且处在如图的位置,光恰好可以被观察者看到。如果多面镜旋转起来,并且旋转速度不快时,多面镜的位置将不能使光束被反射到观察者的眼睛里。但当逐渐加快多面镜旋转速度,并恰好使相邻镜面恰好处于前一个镜面原先的位置时,即多面镜转了1/6圈时,观察者将可重新看到被反射的光束。

故障录波装置改造工程说明书

110kV变故障录波装置改造项目 可行性研究报告说明书(收口) 项目名称:110kV变故障录波装置改造 项目单位: 编制单位: 二零一四年八月

批准:审核:校核:编制:

目录 1.工程概述 (5) 1.1编制依据 (5) 1.2工程现状 (5) 2.项目必要性 (6) 2.1安全性分析 (6) 2.2效能与成本分析 (6) 2.3 政策适应性分析 (6) 2.4结论 (7) 2.5项目预期目标、依据及经济技术原则 (7) 2.6可研围和规模 (8) 3.项目技术方案 (8) 3.1故障录波 (8) 4.项目拟拆除设备 (9) 5.主要设备材料清表 (9) 5.1编制说明 (9) 5.2主要设备材料表 (9) 6.工程实施计划 (9) 6.1外部环境落实条件 (9) 6.2施工过渡措施 (10) 6.3工程实施计划安排 (10) 7.投资估算 (10) 7.1概述 (10) 7.2编制原则和依据 (11) 7.3投资估算 (11) 8. 附件 (11) 8.1附件一:主要拟拆除设备再使用可行性研究报告 (11) 8.2附件二:拟拆除设备清单 (11) 8.3附件三:估算书 (11)

1.工程概述 1.1编制依据 1.1.1 DL/T 5218《220kV~500kV变电所设计技术规程》 1.1.2 DL/T 5352《高压配电装置设计技术规程》 1.1.3家电网公司《电缆敷设典型设计技术导则》修订版 1.1.4《电力系统调度规程》 1.1.5 DL/T 5222 《导体和电器选择设计技术规定》 1.1.6 DL/T 5136《火力发电厂、变电所二次接线设计技术规程》1.1.7 GB/T 50065-《交流电气装置的接地设计规》 1.1.8 《十八项电网重大反事故措施》(修订版)(国家电网生〔2012〕352号) 1.1.9现场收集的资料。 1.2工程现状 1.2.1变电站规模 110kV 变电站于2010年6月正式投入运行;变电站位于县镇。目前, 110KV变电站电压等级为三级:110kV/35kV/10kV。主

故障解列装置

第一节 故障解列装置 在多电源网络中,根据网络电源和负荷分布,还可以在适当的地方装设故障解列装置。在网络有故障时电网解列成几个独立电网继续运行,保证重要负荷的安全运行。 在宜宾电网主网和地方小电源的联络线上就装设了故障解列装置。例如吊黄楼变电站解列吊纸线517,对端纸厂有小电源,正常运行时与主网联结,增加供电可靠性。如图5.8 当吊黄楼母线故障,或出线故障而未能即使切除故障线路时,母线电压降低,或者零序电压升高,满足装置的动作判据时,解列装置动作跳开吊纸线517,纸厂电源E 2与纸厂负荷F 2,主网电源E 1与主网负荷F 1各自构成电网独立运行。 刚解列的电网也要考虑各自的稳定性。对于主网,是否会因此丢掉大负荷,丢失大负荷后是否会出现电网振荡,对于小电网,是否会突然增加大负荷,增加大负荷是否会出现低周现象,出现低周是否会有合适的减载装置等。 可见,故障解列与低周减载的概念是完全不同的,在电网中的作用也不同。 另外在宜宾电网中还有一个故障解列起的作用与前面讲的不同,那就是用户昌宏化工厂内部安装的故障解列装置。如图5.9 当巡昌线发生故障,巡场175开关跳闸并重合,但是由于昌宏化工的负荷几乎是大的炉变,几台变压器的负荷以及变压器的励磁涌流之和会远远大于175开关的后加速定值,所以 175开关无法合上,这样,就只有在昌宏变电站安装解列装置,解列掉几台炉变(例如1#、2#开关),让剩下的负荷(3#、4#开关)不至于把175开关冲跳。等175开关运行稳定后再逐步投入解列掉的几台炉变。 (说明,一般方式下,巡昌线的负荷不经过巡场175,而是龙头站龙巡西线直接经巡场旁母上巡昌线,只是为了这里解释方便采用是巡场供电方式。) 第二节 备用电源自投装置 备自投装置用于多电源点的变电站,当主供电源断开时自动将备用电源投入,保证供电 图5.8 吊黄楼 主网负荷F 1 E 2 F 2 1#炉变 2#炉变 3#炉变 4#炉变 昌宏

光速测量。。。

人类最早对于光速的测量始于伽利略。最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1983年,光速取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299,792,458米/秒,此数值与当时的米的定义和秒的定义一致。后来,随着实验精度的不断提高,光速的数值有所改变,米被定义为1/299,792,458秒内光通过的路程。根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的物件的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的物件的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。丹麦天文学家罗默从地球观测木卫一的掩蔽来测量光速。1676年奥勒·罗默使用望远镜研究木星的卫星艾欧的运动,第一次定量的估计出光速。艾欧的公转轨道可以用来计算时间,因为它会规律的进入木星的阴影中一段时间(图中的C至D)。罗默观测到当地球在最接近木星时(H点),艾欧的公转周期是42.5小时,当地球远离木星时(从L至K),艾欧从阴影中出现的时间会比预测的越来越晚,很明显的是因为木星与地球的距离增加,使得"信号"要花更多的时间传递。光要通过行星之间增加的距离,使得计时的信号在第一次和下一次之间因而延长了额外的时间。当地球向木星接近时(从F到G),情形则正好相反。罗默观测到艾欧在接近的40 个轨道周期中周期比远离的40个轨道周期缩短了22分钟。以这些观测为基础,罗默认为在80个轨道周期中光线要多花费22分钟行走艾欧与地球之间增加的距离。这意味着从L至K 和F至G,地球经历了80个艾欧轨道周期(42.5小时)的时间,光线只要花22分钟。这对应于一个地球在轨道上绕着太阳运动和光速之间的一个比例(如右图)。 意味着光速是地球的轨道速度的9,300倍,与现在的数值 10,100倍比较,相差无几。在当时,天文单位的估计数值是大约1亿4千万公里。克里斯蒂安·惠更斯结合了天文单位和罗默的时间估计,每分钟的光速是地球直径的1,000倍,他似乎误解了罗默22分钟的意思,以为是横越地球轨道所花费的时间。这相当于每秒220,000公里(136,000英里),比现在采用的数值低了26%,但仍比当时使用其他已知的物理方法测得的数值为佳。艾萨克·牛顿也接受光速是有限的观念,在他1704年出版的书光学中,他提出光每秒钟可以横越地球16.6次(相当于210,000公里/秒,比正确值低了30%)。这似乎是他自己的推断(不能确知他是否有引用或参考罗默的数据)。罗默随后依据同样的原理观察木星表面上的斑点在自转周期上的变化,也观察其他三颗伽利略卫星的相同现象。但是因为这种观测是很困难的,因而日后被其他的方法所取代。. 即使如此,靠著这些观测,光速是有限的仍不能被大众满意的接受(著名的有吉恩·多米尼克·卡西尼),直到在詹姆斯·布雷德里(1728)的观测之后,光速是无限的想法才被扬弃。布雷德里推论若光速是有限的,则因为地球的轨道速度,会使抵达地球的星光有一个微小角度的偏折,这就是所谓的光行差,他的大小只有1/200度。布雷德里计算的光速为298,000公里/秒(185,000英里/秒),这与现在的数值只有不到1%的差异。光行差的效应在19世纪已经被充分的研究,最著名的学者是瓦西里·雅可夫列维奇·斯特鲁维和de:Magnus Nyrén。1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想

光速的测量(位相法)

光速的测量(位相法) 光在真空中的传播速度是一个重要的基本物理常数,许多重要的物理概念和物理量都与它有着密切的联系。例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数、第二辐射常数,质子、中子、电子等基本粒子的质量等常数都与光速c相关。现在,光在一定时间中走过的距离已经成为一切长度测量的单位标准,即“米的长度等于真空中光在1/299,792,458秒的时间间隔中所传播的距离。”光速也已直接用于距离测量,如天文学中的光年。 1676年丹麦天文学家罗默通过观测木星对其卫星的掩食首次测量了光速。自此以后,在各个时期,人们都用当时最先进的技术和方法来测量光速,先后有旋转齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1941年,美国人安德森利用克尔盒作为光开关,调制光束,测得光速值为2.99766×108m/s。1952年,英国物理学家费罗姆用微波干涉仪法测量光速,测得光速值为299792.50±0.10km/s。1973年和1974年,美国国家标准局和美国国立物理实验室用激光对光速作了测定,测得光速分别为299792.4574±0.0011km/s和299792.4590 ±0.008 km/s。 实验目的 掌握一种新颖的光速测量方法,了解和掌握光调制的一般性原理和基本技术。 实验原理 物理学告诉我们,任何波的波长是波在一个周期内传播的距离,而波的频率是指1秒种内发生了多少次周期振动,用波长乘以频率得1秒钟内波传播的距离,即波速: c = λ? f (1) 图1 两列不同的波

图1中,第1列波在1秒内经历3个周期,第2列波在1秒内经历1个周期,在1秒内二列传播相同距离,所以波速相同,只是第2列波的波长是第1列的3倍。 利用这种方法,很容易测得声波的传播速度,但直接用来测量光波的传播速度,还存在很多技术上的困难。主要是光的频率高达1014 Hz ,目前的光电接收器无法响应频率如此高的光强变化,迄今仅能响应频率在108Hz 左右的光强变化并产生相应的光电流。 如果直接测量河中水流的速度有困难,可以采用一种方法:周期性地向河中投放小木块(f),再设法测量出相邻两小木块间的距离(λ),依据公式(1)即可算出木块移动的速度,而这一速度和水流流动的速度相等。 周期性地向河中投放小木块,为的是在水流上作特殊标记。我们也可以在光波上作一些特殊标记,称作“调制”。调制波的频率可以比光波的频率低很多,就可以用常规器件未接收光信号了。与木块的移动速度就是水流的流动速度一样,调制波的传播速度就是光波的传播速度。调制波的频率可由数字式频率计精确地测定,只要再测量出调制波的波长,然后利用公式c = λ? f 即可得到光速值。 本实验中用位相法来测定调制波的波长。 波长为0.65μm 的载波,其强度受频率为f 的正弦型调制波的调制,表达式为 01cos 2x I I m f t c π????=+- ??????? 式中m 为调制度,cos2πf (t-x/c)表示光在测线上传播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向传播,我们称这个波为调制波。调制波在传播过程中其位相是以2π为周期变化的。设测线上两点A 和B 的位置坐标分别为x 1和x 2,当这两点之间的距离为调制波波长λ的整数倍时,该两点间的位相差为 12212()2x x n π??πλ-=-= 式中n 为整数。反过来,如果我们能在光的传播路径中找到调制波的等位相点,并准确测量它们之间的距离,那么这距离一定是波长的整数倍。 设调制波由A 点出发,经时间t 后传播到A′点,AA′之间的距离为2D ,则A′点相对于A 点的相移为φ=ωt=2πft ,见图2 (a)。然而仅用一套测相系统还不能直接测量出AA'间的相移量。为了解决这个问题,较方便的办法是在AA′的中点B 设置一个反射器,由A 点发出的调制波经反射器反射返回A 点,见图2 (b)。由图显见,光线由A →B →A 所走过的光程亦为2D ,而且在A 点,反射波的位相落后φ=ωt 。如果我们以发射波作为参考信号(以下称

ZH-5嵌入式故障录波器柜 技术说明书

ZH-5嵌入式电力故障录波分析装置 技术说明书 武汉中元华电科技股份有限公司 Wuhan Zhongyuan Huadian Science &Technology Co., Ltd

文档历史记录历史记录 修改历史记录 序号日期修改情况版本号签字 01 2009.2.18 创建 1.0 郑君林 02 2009.4.09 修改 1.1 郑君林 03 2009.8.10 增加3、5次谐波定值,删掉单次录波长度定值 1.2 郑君林 04 2009.9.29 增加稳态记录插件 1.3 郑君林 校阅历史记录 序号日期校对情况签字 01 2009.4.7 排版校对无误李婷 02 2009.4.09 排版李婷 03 2009.5.20 校正U N,I N下标错误郑君林 批准历史记录 序号日期批准情况签字 01 2009.6.29 正确张小波

目录 1.概述 (1) 2.工作原理 (2) 2.1.总体结构 (2) 2.2.抗病毒原理 (2) 2.3.IEC 61850建模和服务 (3) 2.4.暂态录波原理 (4) 2.5.稳态连续记录原理 (5) 2.6.定值和整定范围 (6) 3.嵌入式图形软件的主要功能 (8) 3.1.实时监测功能 (8) 3.2.波形查看功能 (8) 3.3.波形分析功能 (8) 3.4.定值整定 (9) 3.5.配线和参数修改 (9) 4.关键技术 (10) 4.1.纯嵌入式结构和基于VxWorks的图形界面 (10) 4.2.对病毒免疫 (10) 4.3.完备的对时接口 (10) 4.4.支持IEC 61850-8规约 (10) 5.技术指标 (11) 5.1.输入信号 (11) 5.2.性能指标 (11) 5.3.稳态连续记录 (12) 5.4.时钟及同步精度 (12) 5.5.基于IEC61850的录波装置模型和通信规约 (12) 5.6.通信接口和规约 (13) 5.7.3/2接线 (13) 5.8.主变录波 (13) 5.9.数据格式 (13) 5.10.抗电磁干扰能力 (13) 5.11.供电电源 (13)

故障录波说明书

YS-900A 线路、主变录波测距装置 发变组录波监测装置(嵌入式) 南京航天银山电气有限公司 2011/01/20

前言 YS-900A 录波装置(嵌入式)是基于嵌入式以太网,采用TCP/IP传输协议、数据采样脉冲与GPS时钟同步的集录波、测量、实时数据输出、故障分析于一体的电力数据实时记录装置。它既可以大容量(96路模拟,192路开关)集中组屏,也可以是分布式组网。即可以作为录波装置也可以作为电力系统动态测量装置。既满足DL/T 553-1994《220kV-500kV电力系统故障动态记录技术准则》、DL/T 663-1999《220kV-500kV电力系统故障动态记录装置检测要求》和DL/T 873-2004《微机型发电机变压器组故障录波装置技术条件》标准,同时在设计中也考虑了《电力系统实时动态监测系统技术规范》的主要技术要求。 采用具有网络传输功能的嵌入式主控系统为实现在录波网络中及时有效地分析,处理和传送实时采样和故障录波数据,同时保证故障录波功能不受影响,为保障电网数据分析的可靠性和稳定性提供了技术保证,开发和研制新一代嵌入式故障录波装置采用了两级嵌入式设计的结构,完全满足嵌入式网络录波装置的要求。同步于GPS脉冲信号的数据采样可实现异地同步测量反映电网稳定性的相角参数,为实现实时动态监测装置(PMU)和故障录波装置软硬件平台一体化奠定了基础。

目录 1、装置概述 (4) 2、装置特点 (4) 3.主要技术指标 (6) 3.1 输入信号 (6) 3.2 采样指标 (6) 3.3 启动要求 (6) 3.4 参数整定方式 (8) 3.5 故障分析 (8) 3.6 告警信号 (9) 3.7 通讯要求 (9) 3.8 抗干扰能力 (9) 3.9 环境条件 (9) 3.10 供电电源 (10) 3.11 机柜外形尺寸颜色及重量 (10) 3.12 过载能力 (10) 3.13 时钟精度和GPS同步 (10) 4.硬件说明 (11) 4.1嵌入式录波单元 (11) 4.2 变送器箱 (11) 4.3后台管理 (11) 4.4 通讯箱 (12) 4.5 其他 (12) 4.6 装置硬件原理框图及面板布置图 (12) 5.面板说明 (14) 5.1 面板指示灯 (14) 5.2 按键说明 (15) 6.后台管理机软件使用说明 (16) 6.1系统菜单 (22) 6.2参数菜单: (24) 6.4分析 (47) 6.5特性试验 (60) 6.6窗口菜单 (62) 6.7帮助菜单 (62) 7.使用维护和说明 (63) 7.1包装 (63) 7.2运输 (63) 7.3储存 (63) 7.4开箱检查 (63) 7.5维护须知 (63)

故障解列装置原理与仿真

故障解列装置原理与仿真 发表时间:2016-12-16T15:00:36.053Z 来源:《电力设备》2016年第19期作者:陈静韩静 [导读] 分析了故障解列装置的原理,在PSCAD下搭建了仿真模型,通过仿真,验证了有效性。 (国网河南卫辉市供电公司河南卫辉 453100) 摘要:分析了故障解列装置的原理,在PSCAD下搭建了仿真模型,通过仿真,验证了有效性。 关键词:故障解列;原理;PSCAD;仿真 The principle and simulation of fault disconnection device Chen Jing,han jing (Weihui Electric Power Bureau,Weihui Henan 453100,China) Abstract:The principle of the fault disconnection device,which simulation model is established in PSCAD,was proved to be effective. Key words:fault disconnection device;principle;PSCAD;simulation 0 引言 随着国民经济的快速发展,电网建设规模发展很快,越来越多的小水电、余热发电、热电项目上马,机组容量相对也越来越大,接入35kV、10kV公用线路上或直接接入终端变电站的35kV、10kV母线上。在大电源系统侧主送电源线路发生瞬时性故障情况下,由于接入终端变电站中、低压侧的小电源作用于变电站高压母线,使得系统侧检无压重合闸条件无法满足,不能可靠重合,因此必须采取措施加以避免[1]。 1 故障解列装置简介 某110kV 变电站系统接线如图1所示,1DL开关安装有线路保护,110kV 线路压变安装于线路A相,作为终端变电站的进线开关2DL未安装有线路保护,#1 主变中性点不接地运行,#1 主变中性点无零序过流保护及零序间隙过流保护。 1.1 装设必要性 (1)当110kV线路发生瞬时性单相接地故障时,灵敏段保护动作跳开1DL开关,系统与小电源解列运行,中性点电压发生偏移。目前系统中采用的多为分级绝缘的变压器,中性点绝缘水平较低,当中性点电压升高后往往容易将变压器中性点绝缘损坏,因此系统发生接地故障后必须尽快切除小电源。 图1 某110kV变电站系统接线图 (2)当110kV线路B(或C)相发生瞬时性单相接地故障,1DL开关跳开后,110kV变电站中性点电压发生偏移,A、C(或A、B)相电压升高,使220kV变电站的110kV线路的A相线路电压抬高,若此电压高于1DL开关重合闸的检无压定值时,将使1DL开关的检无压重合失败。当110kV线路发生BC相故障,1DL开关跳开后,小电源将在某110kV变电站的110kV母线A相上产生一个比较高的残压,接近于健全电压,往往会高于1DL开关重合闸的检无压定值,将使1DL开关的检无压重合失败。 为了防止上述情况的发生,非常有必要在110kV变电站的110kV母线上装设故障解列装置,当110kV线路发生瞬时性相间或单相接地故障时,故障解列装置动作跳开小电源4DL开关并闭锁重合闸,使220kV变电站1DL开关检无压重合能可靠动作。 1.2 故障解列装置原理分析 故障解列装置接入110kV变电站的高压母线电压UA、UB、UC、3U0、UN,系统发生单相接地故障时,母线上产生较高的零序电压;发生相间故障时,故障相母线电压会降低。为了满足各种故障类型情况下都能可靠动作切除小电源,故障解列装置应具有低电压动作、零序过电压动作功能,要求线电压低于低压整定值,或者外加零序电压3U0高于零序过压整定值并且自产零序电压高于8V时,开放解列功能。 2 仿真验证 根据以上原理分析,在PSCAD下搭建了故障解列装置的详细模型,并对图1所示系统在不同故障下是否装设故障解列装置进行仿真对比分析,验证了其有效性。 2.1 单相接地故障 (1)A相接地 0.505s时刻发生A相接地故障,故障持续时间为0.1s,保护于0.515s时刻跳开电源侧开关1DL。通过图2、图3对比可见,由于A相发生接地故障,电压降低,因此无论是否装设故障解列装置,1DL开关的重合闸检无压均能成功,经延时后,1DL重合闸,恢复正常供电。

银山电子故障录波器说明书

- 银山电子 YIN SHAN DIAN ZI YS-89A+ 线路、主变录波测距装置 (嵌入式) 使用说明书 南京银山电子有限公司 NANJING YINSHAN ELECTRONICS CO., LTD.

目录 引言 (1) 1、装置概述 (2) 2、装置特点 (2) 3、主要技术指标 (4) 4、硬件说明 (9) 5、面板说明 (12) 6、后台管理机软件使用说明 (14)

V1.0版 引言 YS-89A+ 录波装置(嵌入式)是基于嵌入式以太网,采用TCP/IP传输协议、数据采样脉冲与GPS时钟同步的集录波、测量、实时数据输出、故障分析于一体的电力数据实时记录装置。它既可以大容量(96路模拟,192路开关)集中组屏,也可以是分布式组网。即可以作为录波装置也可以作为电力系统动态测量装置。既满足DL/T 553-1994《220kV-500kV电力系统故障动态记录技术准则》、DL/T 663-1999《220kV-500kV电力系统故障动态记录装置检测要求》和DL/T 873-2004《微机型发电机变压器组故障录波装置技术条件》标准,同时在设计中也考虑了《电力系统实时动态监测系统技术规范》的主要技术要求。 采用具有网络传输功能的嵌入式主控系统为实现在录波网络中及时有效地分析,处理和传送实时采样和故障录波数据,同时保证故障录波功能不受影响,为保障电网数据分析的可靠性和稳定性提供了技术保证,开发和研制YS89A+新一代嵌入式故障录波装置采用了两级嵌入式设计的结构,完全满足嵌入式网络录波装置的要求。同步于GPS脉冲信号的数据采样可实现异地同步测量反映电网稳定性的相角参数,为实现实时动态监测装置(PMU)和故障录波装置软硬件平台一体化奠定了基础。

故障录波器技术规范

国电吉林龙华白城热电厂扩建工程 微机故障录波器 招标编号: 第二卷技术部分 招标人:国电吉林龙华热电股份有限公司 设计单位:吉林省电力勘测设计院 2010年10月

1. 总则 1.1 范围 1.2 规范和标准 1.3 技术文件 1.4 备品备件 1.5 专用工具和仪表 1.6 投标书中应提供的资料 1.7 设计联络会 1.8 工厂培训及验收 1.9 技术服务 1.10 装运 2环境和使用条件 2.1气象条件 2.2抗震要求 2.3 使用环境 3 220kV系统概况及参数 4 微机故障录波器的技术要求4.1微机故障录波器总的技术要求 4.2微机故障录波器的技术要求 5 保护柜的技术要求 附录A 备品备件 附录B 专用工具和仪表

1 总则 投标方在投标前需仔细阅读包括本技术规范书在内的招标文件中阐述的全部条款。投标方提供的设备技术规范应符合招标文件所规定的要求,如有偏差应提供详尽的技术规范偏差说明。 提供设备的供货方应已取得ISO9000质量体系的有效证书,这些设备应在与规定条件相同或较规定条件更为严格的条件下成功地进行了两年以上商业运行,并通过中国权威机构的动态模拟试验。 设备采用的专利涉及的全部费用均被认为已包含在设备报价中,供方应保证需方不再另外承担与设备专利有关的一切责任。 1.1范围 1.1.1供货范围 1.1.1.1供货范围为白城热电厂的微机故障录波器等。 1.1.1.2种类及数量 种类及数量如下表所示: 注: 配套供应上述保护装置必须的备品备件、测试设备、专用工具等。 1.1.2工作范围 投标方除按合同在期限内供货外,还包括: (a) 出厂试验; (b) 发货; (c) 协助安装,并负责现场调试及成功地投入商业运行; (d) 培训;

光速测量实验报告

光速测量实验报告 实验目的: 1. 了解和掌握光调制的基本原理和技术 2. 学习和使用示波器测量同频正弦方波信号相位差的方法 3. 测量光在空气中的速度 实验仪器: 激光器、信号发生器、光接收器、示波器、反射镜等 实验原理 相位φ=κ*d ,其中φ为相位差,κ为波数,d 为光程差。实验采用平面镜改变光程差d,实验中可以通过测量平面镜之间的距离来确定光程差d 。信号发生器为直流方波输出,则激光器发出激光脉冲。激光接收器收到激光信号后输出基频信号,且输出的信号为一正弦波,前后移动平面反射镜的距离,并测出移动的距离进而测出光程差Δd,由于光程差的改变,则信号反射光的信号的相位发生变化,由示波器上可以确定时间t1和t2,计算出时间差Δt=∣t1-t2∣,所以光速c=Δd/Δt 。下面是测量图: 1. 预习实验的内容,了解实验的目的,理解实验的原理,思考应当怎样把实验 做好,实验过程中都要做什么,同时,复习一下示波器一些基本的使用和各个按键的功能。为实验做好准备工作。 2. 实验前,认真读完实验仪器的操作说明,了解实验仪器的基本结构,以及实 验仪器各部分在实验中的功能和作用,分析实验中应该怎样正确的使用仪器,进入实验状态。 3. 在对实验分析的基础上,正确的连接线,把实验仪器连接摆放好 4. 调试实验仪器,由于如果反射镜离的太远,不利于实验中对实验仪器的调试, 因此,在调试仪器阶段应当使反射镜离激光器近。同时,反射镜,激光器,信号接收器应该保持在同一水平面上。由信号发生器发出一矩形方波,作用在激光器上使激光器发出光脉冲,由反射镜反射的信号由接收器转换成正弦波,把正弦波与方波同时输入示波器,由于方波是很稳定的不随反射镜位置的变化,把触发信号选择成方波。 5. 选择合适的反射镜位置作为基点,然后移动反射镜的位置,测量实验数据Δd 和Δt ,处理实验数据,可以用线性来求。 示波器 信号发生器 激光接收器 激光器 平面反射镜 Δd

故障录波器波形分析

故障录波器波形分析 在我们的日常工作中经常需要通过录波波形来分析电力系统到底发生了何种故障?保护装置的动作行为是否正确?二次回路接线是否正确?试验接线是否正确?CT、PT极性是否正确等等问题。 接下来我就先讲一下分析录波图的基本方法: 1、当我们拿到一张录波图后,首先要通过前面所学的知识大致判断系统发生了什么故 障,故障持续了多长时间。 2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确, 是否为正相序?负荷角为多少度? 3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。 (注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期 分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分 析) 4、绘制向量图,进行分析。 一、单相接地短路故障录波图分析: A相单相接地短路典型录波图 A相单相接地短路典型向量图 UA 3U0 UB 分析单相接地

故障录波图要点: 1、一相电流增大,一相电压降低;出现零序电流、零序电压。 2、电流增大、电压降低为同一相别。 3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。 4、故障相电压超前故障相电流约80度左右;零序电流超前零序电 压约110度左右。 当我们看到符合第1条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第2条可以确定电压、电流相别没有接错;符合第3条、第4条可以确定保护装置、二次回路整体均没有问题(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。若单相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。 这里需要特别说明一下公司的LFP-900系列线路保护装置,该系列保护波形中的电流在计算时加入了一个78度的补偿阻抗,其录波图上反映的正向故障是故障相电压与电流同向,零序电流超前零序电压180度左右;反向故障是故障相电压与电流反向,零序电流与零序电压同向。典型波形如下: IO UJo X m 工k> 工 U V<≡ V to Ve= 对于分析录波图,第4条是非常重要的,对于单相故障,故障相电压超前故障相电流约80度左右;对于多相故障,贝U是故障相间电压超前故障相间电流约80度左右; “ 80度左右”的概念实际上就是短路阻抗角,即线路阻抗角。 、两相短路故障录波图分析: AB相间短路典型录波图

相关文档
相关文档 最新文档