文档库 最新最全的文档下载
当前位置:文档库 › 21光的衍射(一)

21光的衍射(一)

21光的衍射(一)
21光的衍射(一)

光的衍射(一)

1.一束波长为λ的单色平行光垂直照射到宽为a 的单缝AB 上,若屏上的P 为第三级明纹,则单缝AB 边缘A 、B 两处光线之间的光程差为( D )

(A)3λ (B)6λ (C)5λ/2 (D)7λ/2

2.一单色光垂直照射宽为a 的单缝,缝后放一焦距为f 的薄凸透镜,屏置于焦平面上,若屏上第一级衍射明纹的宽度为△x ,则入射光波长为( A )

(A)a △x/f (B)△x/af (C)f △x/a (D)a/f △x

3.波长为λ的平行光垂直照射到单缝AB 上,若对应

于某一衍射角 最大光程差△=BC=λ/2,则屏上P 点是( C )

(A)一级明纹中心 (B)一级暗纹中心

(C)在中央明条纹内 (D)一级明纹与一纹暗纹的中点

4.根据惠更斯一菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的:( D )

(A)振动振幅之和 (B)光强之和

(C)振动振幅之和的平方 (D)振动的相干叠加

5.以波长6000?的单色平行光垂直照射到宽度a 为

0.20mm 的单缝上,设

某级衍射明纹出现在 =arcsin0.0165的方向上,单缝处的波阵面对该方向而言可分成11个半波带,该明纹的级数为5级。

??

6.在夫琅和费单缝衍射实验中,单缝宽度为0.05mm ,现用波长为6×10-7m 的平行光垂直照射,如将此装置全部置于n=1.62的二硫化碳液体中,则第一级暗纹的衍射角为φ1=0.074rad=0.424o 。

7.天空中两颗星相对于一望远镜的角距离为 4.48×10-6弧度,由它们发出的光波波长为5.5×10-5cm ,则望远望口径至少应为15cm 才能分辨出这两颗星。

8.用一橙黄色(波长范围6000?~6500?)平行光垂直照射到宽度为a=0.6mm 的单缝上,在缝后放置一个焦距f=40cm 的凸透镜,则在屏幕上形成衍射条纹,若屏上离中央明条纹中心为1.40mm 的P 处为一明条纹,试求:

(1)入射光的波长 (2)中央明条纹的角宽度,线宽度

(3)第一级明纹所对应的衍射角

解: (1)由明纹条件 2)12(sin λ?+=k a

得 a

k a k 2)12(2)12(arcsin λλ?+≈+= (k =1,2,3,···) 第级明纹在屏上的位置

a

f k f f x k 2)12(tan λ??+=≈= 而f k ax k )12(2+=λ , 设λ1=6000?, λ2=6500?

(精选)第11-2章光的衍射作业-答案

第11-2章光的衍射作业答案 一.选择题 1. 在单缝衍射实验中,用单色平行光垂直入射后,在光屏上产生衍射条纹,对 于屏上的第二级明条纹中心,相应的单缝所能分成的半波带数目约为 ( C ) (A) 2 (B) 3 (C) 5 (D) 6 2.一束平行单色光垂直入射在光栅上,当光栅常数 b+b’为下列情况 (b 代表 每条缝的宽度) k = 2 、4 、6 等级次的主极大均不出现?( A ) (A) b+b'=2b (B) b+b'=3b (C) b+b'=4b (D) b+b'=6b 3.根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为 S,则 S 的前方某 点 P 的光强度决定于波阵面 S 上所在面积元发出的子波各自传到 P 点的 ( B ) (A)振动振幅之和;(B)振动的相干叠加; (C)振动振幅之和的平方(D)光强之和。 4.关于光学仪器的分辨率,下列说法正确的是( C ) A.与入射光波长成正比,与透光孔径成正比; B.与入射光波长成反比,与透光孔径成反比; C.与入射光波长成反比,与透光孔径成正比; D.与入射光波长成正比,与透光孔径成反比。 5.某元素的特征光谱中,含有波长分别为 1450nm λ=和 2750nm λ=的光谱线, 在光栅光谱中,这两种波长的光谱线有重叠现象,重叠处 1 λ的谱线级数是( C )(A)3 、6 、9L( B)2 、4 、6L (C)5 、10 、15L(D)4 、8 、12L 6. 在图示的夫琅和费单缝衍射装置中,将单缝宽度a稍微 变窄,同时使会聚透镜L沿y轴正方向作微小位移,则屏 幕C上的中央衍射条纹将 ( A ) (A) 变宽,同时向上移动 (B) 变宽,同时向下移动 (C) 变宽,不移动 (D) 变窄,同时向上移动 7. 用单色光垂直照射光栅,测得第一级主极大的衍射角为0 30,则在衍射角

光的衍射发展史

光的衍射发展史 姓名:xx 学院:x学院 班级:xx 专业:xxx 学号:xxx 日期:2012年10月13日

光的衍射发展史 摘要:凡是不能用反射或折射予以解释的光偏离直线传播的现象称为光的衍射。通常我们生活中观察到的衍射现象是由不透明的障碍物引起的,而当光通过光学厚度不等的完全透明的三维障碍物(如带有空气泡的玻片、透明的生物标本等)时,在各处的相位延迟不一样,也会发生衍射现象。总之当光波在传播路径中遇到障碍物时,不管障碍物是透明的或不透明的,只要波前受阻区域上得振幅和相位或二者之一的分布发生了改变,均会发生衍射现象。 关键词:光的衍射、菲涅尔衍射、惠更斯原理、惠更斯-菲涅尔原理、菲涅尔-基尔霍夫衍射积分公式。 背景:光在传播的过程中能绕过障碍物边缘,偏离直线传播,而进入几何阴影,并出现光强分布不均匀的现象。光波的波长比声波的波长短很多,这也是为什么人们最先意识到声波的衍射而往往把光波的衍射当成直线的传播。光的衍射是光的波动性的重要标志之一,所以从衍射的发现到衍射的应用经历了几百年的时间,期间花费许多科学家的心血,他

们发挥了惊人的智慧,为光学的发展做出了巨大贡献。 论述: 一、光的衍射现象的发现 最早发现衍射现象的是意大利物理学家格里马迪,在他1665年出版的书中记载了光线通过棍棒后的强弱分布,发现光的分布没有截然的边界,不能用当时通行的光的微粒说来解释。此外,光的衍射现象的另一个发现者是胡克,在他所著的《显微术》一书中,记载了他观察到光向几何影中衍射的现象.牛顿也曾重复过类似的实验,他观察了屏幕的边缘的衍射,从中得出结论:光粒子能够同物体的粒子相互作用,且在它们通过这些物体边缘时发生倾斜。 二、衍射现象的解释与研究过程 (1)在1960年荷兰物理学家惠更斯发表的《论光》一书中提出波面上每一点都可看作一个次级扰动中心,它产生球面次波,这些次波的包络面就是次一时刻的波面。如图(a)和(b),图中v表示波速,S1为t时刻的波面,S2为按照惠更斯原理作出的t+γ时刻的波面。根据惠更斯原理可以由前一时刻波面的位置求出次一时刻波面的位置,在各向同性介质中波面的法线就是波的传播方向,所以惠更斯原理可以解决波面未受阻情况下均匀波的传播方向问题。但惠更斯原理有很大的局限性,用它不能说明衍射现象。

第11-2衍射作业答案

一.简答题 1光栅衍射和单缝衍射有何区别? 答:单缝衍射和光栅衍射的区别在于 1.光栅是由许多平行排列的等间距等宽度的狭缝组成,光栅衍射是单缝衍射调制下的多缝干涉; 2.从衍射所形成的衍射条纹看,单缝衍射的明纹宽,亮度不够,明纹与明纹间距不明显,不易辨别。而光栅衍射形成的明纹细且明亮,明纹与明纹的间距大,易辨别与测量。 2.什么是光的衍射现象? 答:光在传播过程中,遇到障碍物的大小比光的波长大得不多时,会偏离直线路程而会传到障碍物的阴影区并形成明暗变化的光强分布,这就是光的衍射现象。 2.简述惠更斯——菲涅尔原理 答:从同一波阵面上各点发出的子波,经传播而在空间某点相遇时,也可相互叠加而产生干涉现象,称为惠更斯——菲涅尔原理。 4.什么是光栅衍射中的缺级现象? 答:光栅衍射条纹是由N个狭缝的衍射光相互干涉形成的,对某一衍射角若同时满足主极大条纹公式和单缝衍射暗纹公式,那么在根据主极大条纹公式应该出现主明纹的地方,实际不出现主明纹,这种现象称为缺级。 二.填空题 1. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长428.6nm 。 2. 波长为600nm的单色光垂直入射到光栅常数为2.5×10-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现主明纹的最大级别为3。全部级数为0、±1、±3 。 3.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为5个半波带,沿第三级暗纹的衍射方向狭缝可分为4个半波带。 4、平行单色光垂直入射到平面衍射光栅上,若减小入射光的波长,则明条纹间距将变小若增大光栅常数,则衍射图样中明条纹的间距将减小。 5.在单缝衍射实验中,缝宽a= 0.2mm,透镜焦距f= 0.4m,入射光波长λ= 500nm,则在距离中央亮纹中心位置2mm处是纹 6. 用平行的白光垂直入射在平面透射光栅上时,波长为440 nm的第3级光谱线将与波长为660nm 的第2级光谱线重叠. 三.选择题 1在夫琅和费单缝衍射中,对于给定的入射光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹。(B) (A) 对应的衍射角变小;(B) 对应的衍射角变大; (C) 对应的衍射角也不变;(D) 光强也不变。 2.一束平行单色光垂直入射在光栅上,当光栅常数( a+b ) 为下列情况( a 代表每条缝的宽度) k = 3 、6 、9 等级次的主极大均不出现?(B) (A) a+b= 2a (B) a+b= 3a (C) a+b= 4a (D) a+b= 6a

紫外可见分光光度计光学发展史

紫外可见分光光度计光学发展史 A、公元前390年前 我国春秋战国之际,墨翟和他的弟子们记载了关于光的直线传播和光在镜面(凹面和凸面)上的反射等现象,并提出了一系列经验规律,把物和象的位置与大小与所用镜面的曲率联系了起来。 B、公元50-168年间 克莱门德和托勒密研究了光的折射现象,最先测定了光通过两种介质分界面时的入射角和折射角。培根(R.Bacon,公元1214-1294年)提出用透镜校正视力和采用透镜组构成望远镜的可能性,并描述过透镜焦点的位置。 C、到十五世纪末和十八世纪初 凹面镜、凸面镜、眼镜、透镜以及暗箱和幻灯等光学元件已相继出现。在这时期建立了光的反射和折射定律,奠定了几何光学的基础。荷兰李普塞在1608年发明了第一架望远镜。十世纪初延森(Z.Janssen,1588-1632)和冯特纳最早制作了复合显微镜。1610年伽里略(1564-1642年)用自己制造的望远镜观察星体,发现了绕木星运行的卫星,这给哥白尼关于地球绕日运转的日心说提供了强有力的证据。开普勒(1571-1630年)汇集了前人的光学知识,他提出了用点光源照明时,照度与受照面到光源距离的平方成反比的照度定律。他还设计了几种新型的望远镜,特别是用两块凸透镜构成的开普勒天文望远镜。至于折射定律的精确公式则是斯涅耳(W.Snell,1591-1626年)和笛卡儿(R.Descares,1596-1650年)提出的。接着费马(P.de Fermat,(1601-1665)在1657年首先指出光在介质中传播时所走路程取极值的原理,并根据这个原理推出光的反射定律和折射定律。综上所述,到十七世纪中叶,基本上已经奠定了几何光学的基础。意大利人格里马第 (F.M.Grimaldi,1618-1663年)首先观察到光的衍射现象,1672-1675年间胡克(R.Hooke,1635-1703年)也观察到衍射现象,并且和波义耳(R.Boyle,1627-1691年)独立地研究了薄膜所产生的彩色干涉条纹,所有这些都是光的波动理论的萌芽。十七世纪下半叶,牛顿(I.Newton,1642-1727年)和惠更斯(C.Huygens,1629-1695年)等把光的研究引向进一步发展的道路。牛顿还仔细观察了白光在空气薄层上干涉时所产生的彩色条纹—牛顿圈,从而首次认识了颜色和空气层厚度之间的关系。牛顿于公元1704年提出了光是微粒流的理论。他认为这些微粒从光源飞出来,在真空或均匀物质定律,然而在解释牛顿直线运动,并以此观点解释光的反射和折射定律。然而在解释牛顿圈时,却遇到了困难,同时,这种微粒流的假设也难以说明光在绕过障碍物之后所发生的衍射现象。惠更斯反对光的微粒说,认为光是在“以太”中传播的波。惠更斯不仅成功地解释了反射和折射定律,还解释了方解石的双折射现象。这一时期中,在以牛顿为代表的微粒说占统治地位的同时,由于相继发现了干涉、衍射和偏振等光的波动现象,以惠更斯为代表的波动说也初步提出来了。 D:十九世纪光学的发展 到了十九世纪,初步发展起来的波动光学体系已经形成。杨(T.Young,1773-1829年)和菲涅耳(A.J.Fresnel,1788-1827年)的著作在这里起着决定性的作用。1801年杨氏最先用干涉原理令人满意地解释了白光照射下薄膜颜色的由来和用双缝显示了光的干涉现象,并第一次成功地测定了光的波长。1815年菲涅耳用杨氏干涉原理补充了惠更斯原理,形成了人们所熟知的惠更斯——菲涅耳原理。1808年马吕(E.L.Malus,1775-1812年)偶然发现光在两种介质界面上反射时的偏振现象。为了解释这些现象,杨氏在1817年提出了光波和弦中传播的波相仿的假设,认为它是一种横波。菲涅耳进一步完善了这一观点并导出了菲涅耳公式。1845年法拉第(M.Faraday,1791-1867年)发现了光的振动面在强磁场中的旋转,提示了光现象和电磁现象的内在联系。1856年韦伯(W.E.Weber,1804-1891年)和柯尔劳斯(R.Koh-Lrausch,1809-1858年)在莱比锡做的电学实验结果,发现电荷的电磁单位和静电单位的比值等于光在真空中的传播速度,即3×108米/秒。麦克斯韦(J.C.Maxwell,1831-1879年)在1865年的理论研究中指出,电场和磁场的改变不会局限在空间的某部分,而是以数值等于电荷的电磁单位与静电单位的比值的速度传播的,即电磁波以光速传播,这说明光是一种电磁现象。这个理论在1888年被赫兹(H.R.Hertz,1857-1894年)的实验证实,他直接从频率和波长来测定电磁波的传播速度,发现它恰好等于光速,至此,就确立了光的电磁理论基础。十九世纪末到二十世纪初,光学的研究深入到光的发生、光和物质相互作用的某

第二章 光的衍射 习题及答案

第二章 光的衍射 1. 单色平面光照射到一小圆孔上,将其波面分成半波带。求第к个带的半径。若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。 解: 20 22r r k k +=ρ 而 20λ k r r k += 20λk r r k = - 20202λ ρk r r k = -+ 将上式两边平方,得 42 2020 20 2 λλρk kr r r k + +=+ 略去22λk 项,则 λ ρ0kr k = 将 cm 104500cm,100,1-8 0?===λr k 带入上式,得 cm 067.0=ρ 2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样 改变大小。问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。 解:(1)根据上题结论 ρ ρ0kr k = 将 cm 105cm,400-5 0?==λr 代入,得 cm 1414.01054005k k k =??=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。 (2)P 点最亮时,小孔的直径为 cm 2828.02201==λρr 3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。 解:根据题意 m 1=R 500nm mm 1R mm 5.0R m 121hk hk 0====λr 有光阑时,由公式 ???? ??+=+=R r R R r r R R k h h 11)(02 002λλ

《大学物理AII》作业 No 光的衍射 参考答案

《大学物理AII 》作业 No.06 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ ------------------------------------------------------------------------------------------------------- ****************************本章教学要求**************************** 1、理解惠更斯-菲涅耳原理以及如何用该原理解释光的衍射现象。 2、理解夫琅禾费衍射和菲涅耳衍射的区别,掌握用半波带法分析夫琅禾费单缝衍射条纹的产生,能计算明暗纹位置、能大致画出单缝衍射条纹的光强分布曲线;能分析衍射条纹角宽度的影响因素。 3、理解用振幅矢量叠加法求单缝衍射光强分布的原理。 4、掌握圆孔夫琅禾费衍射光强分布特征,理解瑞利判据以及光的衍射对光学仪器分辨率的影响。 5、理解光栅衍射形成明纹的条件,掌握用光栅方程计算主极大位置;理解光栅衍射条纹缺级条件,了解光栅光谱的形成以及光栅分辨本领的影响因素。 6、理解X 射线衍射的原理以及布拉格公式的意义,会用它计算晶体的晶格常数或X 射线的波长。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、当光通过尺寸可与(波长)相比拟的碍障物(缝或孔)时,其传播方向偏离直线进入障碍物阴影区,并且光强在空间呈现(非均匀分布)的现象称为衍射。形成衍射的原因可用惠更斯-菲涅耳原理解释,即波阵面上各点都可以看成是(子波的波源),其后波场中各点波的强度由各子波在该点的(相干叠加)决定。 2、光源和接收屏距离障碍物有限远的衍射称为(菲涅尔衍射或近场衍射);光源和接收屏距离障碍物无限远的衍射称为(夫琅禾费衍射)或者远场衍射。在实际操作中,远场衍射是通过(平行光)衍射来实现的,即将光源放置在一透镜的焦点上产生平行光照射障碍物,通过障碍物的衍射光再经一透镜会聚到接收屏上观察来实现。 3、讨论单缝衍射光强分布时,可采用(半波带法)和(振幅矢量叠加法)两种方法,这两种方法得到的单缝衍射暗纹中心位置都是一样的,暗纹中心位置= x (a kf λ ±)。两相邻暗纹中心之间的距离定义为(明纹)宽度,单缝衍射中央明

光学显微镜的发展历史

光学显微镜的发展历史、现状与趋势 杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '1f

'2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 '2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1'120202β?=≤f y

第3章光的衍射B_new

3.6衍射光栅 衍射光栅:能对入射光波的振幅或相位,或者两者同时产生空间周期性调制的光学元件。 *一种应用非常广泛、非常重要的光学元件,主要用作分光(从远红外到真空紫外)元件,还可用于长度和角度的精密测量、以及调制元件;*工作基础:夫朗禾费多缝衍射效应。 光栅的分类: 按工作方式分类: –透射光栅 –反射光栅 按对入射光的调制作用分类: –振幅光栅 –相位光栅

3.6.1 光栅的分光性能 1. 光栅方程 多缝衍射中干涉主极大条件 sin d m θλ =d ?θ为缝间距,称为, 为入射角,光常数 栅为衍射角 衍射光与入射光同侧取正,异侧取负号 ↑斜入射衍射极大条件 (s 0,1,2, in sin )d m m ?θλ±=±±="----光栅方程

2. 性能参数 (1) 色散本领 3.6.1 光栅的分光性能 将不同波长的同级主极大光分开的程度,通常用角色散和线色散表示。 A.角色散d θ/d λ。 ?波长相差10-10 m 的两条谱线分开的角距离称为角色散。?由光栅方程对波长取微分求得 θλθcos d m d d =此值愈大,角色散愈大,表示 不同波长的光被分得愈开。 * 光栅的角色散与光谱级次m 成正比,级次愈高,角色散 就愈大;与光栅刻痕密度1/d 成正比,刻痕密度愈大(光栅常数d 愈小),角色散愈大。

B.线色散dl/d λ 在聚焦物镜的焦平面上,单位波长差的两条谱线分开的距离称为线色散。 cos dl d m f f d d d θλλθ==长焦物镜可以使不同波 长的光被分得更开。 * 光栅的刻痕密度1/d 很大(光栅常数d 很小),故光栅的色 散本领很大。 * 若在θ不大的位置记录光栅光谱,cos θ几乎不随θ变 化,则色散是均匀的,这种光谱称为匀排光谱,对于光谱仪的波长标定来说,十分方便。  3.6.1 光栅的分光性能

光的衍射作业

光的衍射 一.填空题 1.波长λ = 500 nm(1 nm = 10?9 m)的单色光垂直照射到宽度a = 0.25 mm的单 缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹的宽度为d = 12 mm,则凸透镜的焦距f 为__________________. 2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈ 589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10?9 m)的蓝紫色光的中央明纹宽度为____________________. 3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8mm,则入射光的波长为______________________. 4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍 射光谱中第______________________级谱线缺级. 5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30° 角入射,在屏幕上最多能看到第_______________________级光谱. 6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10?6 m)的 光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l=0.1667 m,则可知该入射的红光波长λ=_________________________nm.(注意此衍射角比较大,不能sin约等于tg近似) 7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分 辨两个远处的点状物体对透镜中心的张角必须不小于______________rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于______________μm. 8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10?9 m),若平 面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是_________________. 9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱 线将与波长为λ2 =__________ nm的第2级光谱线重叠(1 nm = 10?9 m). 10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为 ______________. 二.计算题 11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单

光学发展简史

课程名称:光学主讲教师:王丹专业班级: 14光电 学号 201430320311 姓名谢宇成绩: 光学发展简史 摘要:光学是一门古老的科学,从远古时期就已经开始有人研究光的学问;光学也是一门实用的科学,我们日常生活中的许多设备,技术都离不开光学的应用。回顾光学的发展史,更有利于学习和把握光学这门有趣的科学。 关键词:光学科学学习发展史 光学的发展,大体上可以分为五个时期——萌芽时期,几何光学时期,波动光学时期,量子光学时期和现代光学时期。 在萌芽时期,主要进行简单光学元件的制造和基础光学原理的研究。在此时期,先秦典籍已经记载了影的定义和生成,光的直线传播性和针孔成像等光学原理[1];这之后,西方的欧几里得研究了光的反射,叙述了光的反射角等于入射角。在11世纪,阿拉伯学者伊本·海赛木首次提出视觉是由物体发生的光辐射线引起的[2]。14世纪,波特研究了成像暗箱,即小孔成像原理。从15世纪末到16世纪初,凹面镜、凸面镜、眼镜、透镜以及暗箱和幻灯等光学元件相继出现,对光学的研究即将到达一个峰点——几何光学。 紧接着的几何光学时期,是光学真正成为一门科学的时期。从公元1590年到十七世纪初,詹森和李普希同时独立发明了显微镜。在1608年,荷兰的李普塞发明了第一架望远镜。光学仪器的相继问世,给光学的研究插上了助推器。17世纪初,开普勒创设大气折射理论,提出天体望远镜原理。从15世纪中叶到17世纪,斯涅耳和笛卡尔、费马等经过一系列研究总结出的光的反射定律和折射定律,基本奠定了几何光学的基础。此后,在十七世纪中后叶,牛顿发现太阳光折射光谱和“牛顿环”,创立了光的“微粒说”[3]。但从17世纪开始,光的直线传播原理已经不能解释一些实验现象:意大利人格里马首先观察到了光的衍射现象,接着,胡克和波意耳独立地研究了薄膜所产生的彩色条纹干涉。自此,光学

高中物理-光的衍射练习题

高中物理-光的衍射练习题 基础·巩固 1.肥皂泡在太阳光照射下呈现彩色是_______________现象;露珠在太阳光照射下呈现彩色是_______________现象;通过狭缝观看太阳光时呈现彩色是_______________现象. 答案:光的干涉光的色散光的衍射 2.凡是波都具有衍射现象,而把光看作直进的条件是________________________________.要使光产生明显衍射的条件是_____________________________________________. 答案:障碍物或孔的尺寸比波长大得多障碍物或孔的尺寸可与光波长相比或比光波长小3.试回答下列各现象分别属于哪种现象? (1)通过狭缝看日光灯的周围有彩色条纹,是_______________现象; (2)阳光下的肥皂泡表面呈现出彩色花纹,是_______________现象; (3)通过放大镜看物体的边缘是彩色的,这是_______________现象; (4)光学镜头上涂一层增透膜是利用_______________现象来减少光的反射损失; (5)通过尼龙织物看白炽灯丝周围呈现彩色,是_______________现象. 解析:根据物体产生干涉和衍射的现象,产生条件和分布规律进行判断. 答案:衍射干涉色散干涉衍射 4.如图13-5-5所示,甲、乙是单色光通过窄缝后形成的有明暗相间条纹的图样,则下列说法中哪一个是正确的() 图13-5-5 A.甲是光通过单缝形成的图样,乙是光通过双缝形成的图样 B.甲是光通过双缝形成的图样,乙是光通过单缝形成的图样 C.甲、乙都是光通过单缝形成的图样 D.甲、乙都是光通过双缝形成的图样 解析:由干涉图样和衍射图样可知,甲是光通过单缝形成的衍射图样,乙是光通过双缝形成的干涉图样,A选项正确. 答案:A 5.关于衍射,下列说法中正确的是() 图13-5-6 A.衍射现象中条纹的出现是光叠加后产生的后果 B.双缝干涉中也存在着光的衍射现象 C.一切波都很容易发生明显的衍射现象 D.影的存在是一个与衍射现象相矛盾的客观事实 解析:衍射图样是很复杂的光波叠加现象,双缝干涉中光通过狭缝时均发生衍射现象,一般

光学发展史

光学发展史 光科1001班曲东雪 10272017 摘要:光学的主要光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。光学的起源在西方很早就有光学知识的记载,但是光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起。其发展主要经历了萌芽时期,几何光学时期,波动光学时期和量子光学时期四个阶段。人们通常把光学分成几何光学、物理光学和量子光学来研究。 关键词:光学的定义;光学的历史发展;光学研究内容 Optical Development History Abstract: optical main optical ( Optics ) is the study of light ( electromagnetic waves) behavior and properties, as well as the interaction of light with matter of physics. Optics origin in the West have long optical knowledge records, but the optical true to form a science, should from build reflection law and refraction law era. Its development mainly experienced budding period, geometrical optics, wave optics and quantum optics in four stages: the period of. People usually put on optical geometric optics, physical optics and quantum optics research. Key words: optical definition; optical historical development; optical research content 光学定义 光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光学既是物理学中最古老的一个基础学科,有事当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切的认识总部走向较完善和较确切认识的过程。它的不少规律和理论是直接从欧美和生产实践中总结出来的,也有相当多的发现来自长期的系统的科学实验。光学的发展为生产技术提供了许多精密、快速、的衡东的实验手段和重要的理论依据;而圣餐技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。 光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元

8第十七章-光的衍射作业答案(参考模板)

第八次 (第十七章 光的衍射) 一、选择题 [ B ]1、(基础训练1)在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a =4 的 单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A ) 2 个 (B ) 4 个 (C ) 6 个 (D ) 8 个 【答】已知a =4 ,θ=30°,1sin 4422 a λ θλ∴=? =?,半波带数目N = 4. [ C ]2、(基础训练5)一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜。已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (A )100 nm (B )400 nm (C )500 nm (D )600 nm 【答】中央明条纹宽度为2, 5002x a x f nm a f λ λ???≈∴= = [ B ]3、(基础训练6)一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A )a +b =2 a (B )a +b =3 a (C )a +b =4 a (A )a +b =6 a 【答】光栅缺级:()sin sin 'a b k a k θλ θλ +=?? =?, 缺级的主极大的级次为',2,3,...a b a b a b a b k k a a a a ++++==,k 应为整数,依题意,k=3,6,9缺级,所以a+b=3a 符合。 [ D ]4、(基础训练10)孔径相同的微波望远镜和光学望远镜相比较,前者分辨本领较小的原因是 (A ) 星体发出的微波能量比可见光能量小 (B ) 微波更易被大气所吸收 (C ) 大气对微波的折射率较小 (D ) 微波波长比可见光波长大 【答】分辨本领为1 1.22R d R θλ==,孔径d 相同时,R 与波长λ成反比关系。微波波长比可见光波长 大,所以微波望远镜分辨本领较小。 [ C ]5、(自测提高2)在如图17-14所示的单缝夫琅禾费衍射装置中, 将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将 (A )变窄,同时向上移 (B )变窄,同时向下移 (C )变窄,不移动 (D )变宽,同时向上移 (E )变宽,不移 【答】(1)中央明纹宽度11x 2 2sin 2f tg f f a λ θθ?=≈=,现在a ↑,所以x ?↓. (2)中央明纹即为像点,其位置只与透镜的位置及光的传播方向有关,不因缝的平移而改变。 图17-14 O y x λ L C f a

高中物理选修3-4光的衍射现象

光的衍射现象 一、教学目标 1、知识与技能 (1)认识光的衍射现象,使学生对光的波动性有进一步的了解. (2)了解光产生明显衍射的条件,及衍射图样与波长、缝宽的定性关系. 2、过程与方法 (1)通过观察实验,培养学生对物理现象的观察、表述、概括能力. (2)通过观察实验培养学生观察、表述物理现象,概括规律特征的能力,学生亲自做实验培养学生动手的实践能力. 3、态度、情感、价值观 (1)通过对“泊松亮斑”的讲述,使学生认识到任何理论都必须通过实践检验,实验是检验理论是否正确的标准. 二、教学重点与难点分析: (1)通过众多的光的衍射实验事实和衍射图片来认识光的波动性. (2)光的衍射现象与干涉现象根本上讲都是光波的相干叠加. (3)正确认识光发生明显衍射的条件. (4)培养学生动手实验能力,教育学生重视实验,重视实践. 三、教学过程 1、常见的衍射现象有那些? 小孔衍射、小屏衍射、单缝衍射、边缘衍射。 例1、在观察光的衍射现象的实验中,通过紧靠眼睛的卡尺测脚形成的狭缝,观看远处的日光灯管或线状白炽灯丝(灯管或灯丝都要平行于狭缝),可以看到 ( ) A.黑白相间的直条纹 B.黑白相间的弧形条纹 C.彩色的直条纹 D.彩色的弧形条纹 例2、在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹.若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),这时( ) A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失 B.红色和绿色的双缝干涉条纹消失,其他颜色的干涉条纹依然存在 C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮 D.屏上无任何光亮 2、为什么平时很难见到光的衍射现象?(发生衍射现象的条件) 因为发生明显衍射现象的条件为:逢、孔、障碍物的尺度与波长接近时。由于光的波长很短,所以生活中很难看到光的衍射现象。 例1、如图4-2所示,A、B两幅图是由单色光分别 入射到圆孔而形成的图案.其中图A是光的_____ (填“平行”或“衍射”)图象,由此可判断出图A 所对应的圆孔的孔径_____(填“大于”或“小于”) 图B所对应的圆孔的孔径. 3、什么是“泊松亮斑”?谁提出了“泊松亮斑”?提出的目的是什么?谁证实了“泊松亮斑” 的存在?你从中能体会到什么? 著名数学家泊松根据菲涅耳的波动理论推算出:把一各不透光的小圆盘放在光束中,在小圆盘后方的光屏上,圆盘阴影中央出现一个亮斑。后人称此亮斑为泊松亮斑。泊松指望这

现代光学的发展历程

现代光学的发展 众所周知,因为有了光,人们才能看见这个色彩斑斓的世界,才能在这世界上生存。因此在我们的生活中有许许多多的光现象及其应用的产生。无论是建造艺术,还是雕塑、绘画及舞蹈艺术等众多领域都离不开光的存在,也因为有了光的存在,使其更加的炫目夺人。 那么,光在于现代是如何发挥它对人类的作用的呢?而光又是如何发展成 为现代光学呢? 20世纪中叶随着新技术的出现,新的理论也不断发展,由于光学的应用十 分广泛,已逐步形成了许多新的分支学科或边缘学科。几何光学本来就是为设 计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也越 来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍 射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构、分 子结构等)方面曾起了关键性的作用,人们把数学、信息论与光的衍射结合起来, 发展起一门新的学科——傅里叶光学把它应用到信息处理、像质评价、光学计 算等技术中去。特别是激光的发明,可以说是光学发展史上的一个革命性的里 程碑,由于激光具有强度大、单色性好、方向性强等一系列独特的性能,自从 它问世以来,很快被运用到材料加工、精密测量、通讯、测距、全息检测、医 疗、农业等极为广泛的技术领域,取得了优异的成绩。此外,激光还为同位素 分离、储化,信息处理、受控核聚变、以及军事上的应用,展现了光辉的前景。 光学是物理学的一个分支, 是一门古老的自然学科, 已经有数千年发展历 史。在十七世纪前后, 光学已初步形成了一门独立的学科。以牛顿为代表的微 粒说和与之相应的几何光学;以及以惠更斯为代表的波动说和与之相应的波动 光学构成了光学理论的两大支柱。到十九世纪末, 麦克斯韦天才地总结和扩充 了当时已知的电磁学知识, 提出了麦克斯韦方程组, 把波动光学推到了一个更 高的阶段。然而, 人们对光的更进一步的认识是与量子力学和相对论的建立分 不开的。一方面, 十九世纪及其以前的光学为这两个划时代的物理理论的建立 提供了依据。另一方面, 这两个理论的建立, 更加深了人类对光学有关现象的 深入了解。从十七世纪到现在,光学的发展经历了萌芽时期、几何光学时期、 波动光学时期、量子光学时期、现代光学时期等五大历史时期。

作业光的衍射答案

一,选择填充 [B]1,(基础训练1)在单缝夫琅禾费衍射实验中,波长为?的单色光垂直入射在宽度为a =4??的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A ) 2 个 (B ) 4 个 (C ) 6 个 (D ) 8 个 【提示】已知a =4??,θ=30°,1sin 442 2 a λ θλ∴=?=?,半波带数目N = 4. [C]2.(基础训练5)一单色平行光束垂直照射在宽度为 mm 的单缝上,在缝后放一焦距为 m 的会聚透镜。已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 mm ,则入射光波长约为 (A )100 nm (B )400 nm (C )500 nm (D )600 nm 【提示】.2,2f x a a f x ?=∴= ?λλ, [B]3(基础训练6)一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现 (A )a +b =2 a (B )a +b =3 a (C )a +b =4 a (A ) a + b =6 a 【提示】光栅缺级:()sin sin 'a b k a k θλθλ +=?? =?,',2,3,...a b a b a b a b k k a a a a ++++==, 依题意,3,6,9缺级,,a+b=3a. [D]4.(基础训练10)孔径相同的微波望远镜和光学望远镜相比较,前者分辨本领较小的原因是 (A ) 星体发出的微波能量比可见光能量小 (B ) 微波更易被大气所吸收 (C ) 大气对微波的折射率较小

大学物理--光的衍射发展史

光的衍射发展史 摘要:光的衍射是光的波动性的重要标志之一,从衍射的发现到衍射的应用经历了几百年的时间,期间花费许多科学家的 心血,他们发挥了惊人的智慧,为光学的发展作出了巨大贡

献。 关键词:【干涉现象】【发现】【惠更斯-菲涅耳原理】【应用】【发展】【原因】 背景: 光的衍射是光的波动性的重要标志之一,光在传播过程中所呈现的衍射现象,进一步揭示了光的波动本性。同时衍射也是讨论现代光学问题的基础。波在传播中表现出衍射现象,既不沿直线传播而向各方向绕射的现象。 论述: 1.光的干涉现象 光的干涉现象是几束光相互叠加的结果。实际上即使是单独的一束光投射在屏上,经过精密的观察,也有明暗条纹花样出现。例如把杨氏干涉实验装置中光阑上两个小孔之一遮蔽,使点光源发出的光通过单孔照射到屏上,仔细观察时,可看到屏上的明亮区域比根据光的直线传播所估计的要大得多,而且还出现明暗不均匀分布的照度。光通过狭缝,甚至经过任何物体的边缘,在不同程度上都有类似的情况。把一条金属细线(作为对光的障碍物)放在屏的前面,在影的中央应该是最暗的地方,实际观察到的却是亮的,这种光线绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强不均匀的分布的现象叫做光的衍射。 光的衍射现象的发现,与光的直线传播现象表现上是矛盾的,

如果不能以波动观点对这两点作统一的解释,就难以确立光的波动性概念。事实上,机械波也有直线传播的现象。超声波就具有明显的方向性。普通声波遇到巨大的障碍物时,也会投射清楚的影子,例如在高大墙壁后面就听不到前面的的声响。在海港防波堤里面,巨大的海浪也不能到达。微波一般也同样是以直线传播的。衍射现象的出现与否,主要决定于障碍物线度和波长大小的对比。只有在障碍物线度和波长可以比拟时,衍射现象才明显的表现出来。声波的波长可达几十米,无线电波的波长可达几百米,它们遇到的障碍物通常总远小于波长,因而在传播途中可以绕过这些障碍物,到达不同的角度。一旦遇到巨大的障碍物时,直线传播才比较明显。超声波的波长数量级小的只有几毫米,微波波长的数量级也与此类似,通常遇到的障碍物都远较此为大,因而它们一般都可以看作是直线传播。 光波波长约为3.9-7.6×10 cm ,一般的障碍物或孔隙都远大于此,因而通常都显示出光的直线传播现象。一旦遇到与波长差不多数量级的障碍物或孔隙时,衍射现象就变的显著起来了。 2.光的衍射的发现 光的衍射,是由意大利物理学家格里马尔迪(Grimaldi,Francesco Maria)(1618-1663)发现的。他发现在点光源的照射下,一根直竿形成的影子要比假定光以直线传播所应有的宽度稍大一些,也就是说光并不严格按直线传播,而会绕过障碍物前进。后来,他让一束光通过两个(前后排列的)

现代仪器分析 第三章

第三章原子发射光谱分析 3.1原子发射光谱分析的基本原理 3.11原子光谱的产生 原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。 当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得能量,使原子中外层电子从基态跃迁到更高的能级上。处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位。 当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。离子中的外层电子也能被激发,其所需的能量即为相应的离子激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。当原子从较高能级跃迁到基态或其它较低能级时,将释放出多余的能量,这种能量是以一定波长的电磁波形式辐射出去的,其辐射的能量可用下式表示: 式中: E2、E1——高能级和低能级的能量,通常以电子伏特(eV=1.6021892?10-19J)为单位; ν、λ——所发射的电磁波的频率和波长; c——光速(2.997 ?1010 m/s); h——普朗克常数(6.626 ?10-34J?s) 每一条所发射的谱线的波长取决于跃迁前后两个能级之差。由于原子的能级很多,原子在被激发后,其外层电子可有不同的跃迁,但这些跃迁应遵循一定的规则(即“光谱选律”),因此对特定元素的原子,可产生一系列不同波长的特征光谱线,这些谱线按一定的顺序排列,并保持一定的强度比例。光谱分析就是从识别这些元素的特征光谱来鉴别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。

相关文档