文档库 最新最全的文档下载
当前位置:文档库 › 基于道路试验的电动汽车滑行阻力系数分析_周荣宽

基于道路试验的电动汽车滑行阻力系数分析_周荣宽

基于道路试验的电动汽车滑行阻力系数分析_周荣宽
基于道路试验的电动汽车滑行阻力系数分析_周荣宽

纯电动汽车整车控制器(TAC)

纯电动汽车整车控制器(TAC) 项目介绍: 纯电动汽车整车控制器对新能源汽车的动力性、安全性、经济性、操纵稳定性和舒适性等都有重要影响,它是新能源汽车上的一种关键装置。在车辆行驶过程中,整车控制器通过开关输入端口、模拟量转换模块、CAN总线等硬件线路采集路况信息、驾驶员意图、车辆状态、 设备运行状态等参数,依托高速运行的 CPU和控制端口来执行预设的控制算法和管理策略,再将指令和信息等通过 CAN总线、开关输出端口等对动力系统的执行部件进行实时的、可靠的、科学的控制,以实现车辆的动力性、可靠性和经济性。 其硬件结构框图如图一所示。

tihJTJt 川“ J人 整车控制器实物图如图二所 示。 it电" * st 电 M U 电柢第iC 4- if 邨 ESlh 卜 [? ■: *■ DC IX*科电乳 ■ 1 .^ptt'AN :■' - 彝竝 tt」 7%谢洩M!* WI KX T.7*帀小

性能指标: 1)工作环境温度:-30 C—+80C 2)相对湿度:5%~93% 3)海拔高度:不大于3000m 4)工作电压:18VDC —32VDC 5)防护等级:IP65 功能指标: 1)系统响应快,实时性高 2)采用双路 CAN总线(商用车 SAE J1939协议) 3)多路模拟量采样(采样精度10位);2路模拟量输出(精度 12位)4)多路低/高端开关输出 5)多路I/O输入 6)关键信息存储 7)脉冲输入捕捉 8)低功耗,休眠唤醒功能 该项目使用的INFINEON 的物料清单:

整车控制器(VMS, vehicle management Syetem ),即动力总成控制器。是整个汽车的核心控制部件,它采集加速踏板信号、制动踏板信号及其他部件信号,并做出相应判断后, 控制下层的各部件控制器的动作,驱动汽车正常行驶。作为汽车的指挥管理中心,动力总成控制器主要功能包括:驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN网 络的维护和管理、故障的诊断和处理、车辆状态监视等,它起着控制车辆运行的作用。因此VMS的优劣直接影响着整车性能。 纯电动汽车整车控制器 (Vehicle Controller)是纯电动汽车整车控制系统的核心部件,它对汽车的正常行驶,再生能量回收,网络管理,故障诊断与处理,车辆的状态与监视等功能起着关键的作用。 与各部件控制器的动态控制相比,整车控制器属于管理协调型控制。 整个车辆系统采用一体化集成控制与分布式处理的车辆控制系统的体系结构,各部件都有 独立的控制器,整车控制器对整个系统进行能量管理及各部件的协调控制。为满足系统数 据交换量大,实时性、可靠性要求高的特点,整个分布式控制系统之间采用CAN总线进 行通讯。 整车控制器主要由控制器主芯片,Flash存储器和RAM存储器及相关电路组成,控制器主 芯片的输出与Flash存储器和RAM存储器的输入相连。 整车控制器通过 CAN总线接口连接到整车的 CAN网络上与整车其余控制节点进行信息交换和控制。 控制器硬件包括微处理器、CAN通信模块、BDM调试模块、串口通信模块、电源及保护 电路模块等。微处理器选用了Motorola公司专门为汽车电子开发的MCgS12,它具有运 算速度快和内部资源与接口丰富的特点,适合实现整车复杂的控制策略和算法。CAN通信 模块符合CAN2.0B技术规范,采用了光电隔离、电源隔离等多项抗干扰设计;BDM调试模块用于实时对控制程序进行调试、修改;串口通信模块用于对控制系统的诊断和标定;电源模块进行了二级滤波的冗余设计,保证控制器在车载12V系统供电情况下正常工作,并具短路保护功能。 CAN,全称为"Controller Area Network ”,即控制器局域网,是一种国际标准的,高性价的现场总线,在自动控制领域具有重要作用。CAN是一种多主方式的串行通讯总线,具有较高的实时性能,因此,广泛应用于汽车工业、航空工业、工业控制、安全防护等领域。 决策层控制单元是车辆智能化的关键,其收集车辆运行过程中的信息,并根据智能算法的决 策向物理器件层控制单元发送命令;动力源控制单元负责调节动力源系统部件以满足决策层控制单元的命令要求;驱动/制动控制单元则调节双向变量电机和能耗制动系统实现车辆的各种工况,如驱动控制、防抱制动等。 整车控制器功能需求: 整车控制器在汽车行驶过程中执行多项任务,具体功能包括:(1)接收、处理驾驶员的驾驶

基于纯电动汽车的整车控制器分析

基于纯电动汽车的整车控制器分析 发表时间:2019-09-12T11:46:14.157Z 来源:《基层建设》2019年第17期作者:丘东海[导读] 摘要:本文主要对纯电动汽车整车控制器做进一步的分析和了解。中兴智能汽车有限公司 519040 摘要:本文主要对纯电动汽车整车控制器做进一步的分析和了解。随着纯电动汽车的快速发展,整车电控系统成为一种非常重要的应用技术。纯电动汽车整车控制对整车控制系统的设计开发具有较强的指导意义。关键词:纯电动汽车;整车控制器;分析引言: 整车控制系统是纯电动汽车电控系统的三大核心技术之一,纯电动电控系统与传统汽车的控制系统相比,纯电的汽车电控系统的控制单元数量与复杂程度高出很多。电控系统是保证纯电动汽车整车功能集成和优化的核心单元,为保证纯电动汽车各部件系统在最佳工况下能够协调运行,需要制定相应的控制策略。纯电动汽车电控系统主要包括整车控制系统(简称VCU)、电池管理系统(简称BMS)、电机控制系统(简称MCU)、辅件控制系统等环节。整车控制系统确保各系统之间要协调工作,方能保证整车的稳定性和安全性,对纯电动汽车的发展意义重大。 一、整车控制系统的介绍 整车控制系统主要包括整车控制器、CAN总线通讯网络以及驾驶员意图解析系统、信息显示系统、动力驱动系统、电机控制系统、辅件控制系统等。作为纯电动汽车的核心部分,控制各个系统之间的相互配合。通过接收其他控制器发出的信号,比如驾驶员控制指令信息、加速踏板信息、制动踏板信息等,然后通过特定算法来处理这些信号,通过CAN总线通讯网络输出信号给相应的下层控制器去执行对应的动作。 整车控制策略作为VCU重要的软件部分。一套成熟、可靠的整车控制策略须包括以下部分:驾驶员解析控制策略、驱动控制策略、上下电管理控制策略、扭矩解析控制策略、辅件控制策略、能量回收控制策略、安全控制策略、故障诊断控制策略等。要能够符合驾驶员的操作需求,具备智能化的安全控制,从而保证车上人员的安全,提升汽车性能,提高纯电动汽车的续驶里程。 二、整车控制器的功能 VCU作为上层控制单元负责协调动力系统各个部件的运行,根据驾驶员操作信号进行驾驶意图解析、根据各部件和整车工作状态进行整车时序逻辑控制、安全管理和能量分配决策,向各部件控制器发送控制指令,并向仪表等显示设备输出整车电控系统状态信息。各部件控制器根据其指令控制相应部件,驱动汽车正常行驶。概括起来整车控制系统就是实现:(1)上下电管理,(2)驾驶员意图识别,(3)动力系统的扭矩解析控制,(4)能量回收管理,(5)辅件控制管理,(6)整车网络管理,(4)车辆状态监视和故障诊断及保护。整车控制器技术水平直接影响整车的动力性、经济性及安全性,是电动汽车的关键技术。 三、整车控制器的组成 VCU作为纯电动汽车控制系统最核心的部件,其承担了数据交换、安全管理、驾驶员意图解析、能量流管理的任务。VCU的功能划分如图1所示。 (1)数据交换层。该层对直接馈入整车控制器的物理量信息(如驾驶员的操作反馈的信息和其它执行部件的工作状态信息)进行采样处理,并通过I/O、D/A和PWM,提供对显示单元、继电器等的控制信号。(2)安全故障管理层车辆出现故障时,故障只体现在数据交换层。在检测出故障后,该层会做出相应的处理,在保证车辆安全性的条件下,给出执行部件可供使用的范围,以尽可能满足驾驶员的驾驶意图。(3)驾驶员意图解释层驾驶员的所有与驾驶操作相关的操作信号都直接进入整车控制器,整车控制器对采集的信息进行处理分析,计算出驱动系统的目标转矩和车辆行驶时的需求功率来实现驾驶员的驾驶意图。(4)能量流管理层,该层的主要工作是能量源之间进行需求功率分配。 四、整车控制器的硬件设计 (1)微控制器模块:本设计采用主从芯片设计,主从芯片之间进行校验,确保主芯片工作状态正常,主控制芯片选用SPC5606,是整车控制器的控制核心,包括主控制芯片(微控制器)及其外围电路,负责数据的运算及处理,也是控制方法实现的载体;(2)电源模块:为各输入和输出模块提供电源,并对蓄电池电压进行监控,与微控制器相连;(3)信号处理模块:用于模拟和数字量输入信号的调理,包括模拟量信号处理和数字量信号处理,其一端与传感器或开关相连,另一端与微控制器相接; (4)功率驱动模块:用于驱动多个继电器或系统状态指示灯,包括低端驱动和PW M驱动两部分,与微控制器通过I/O相连,另一端与被控继电器(低端驱动)或指示灯(PW M驱动)相接,微处理器可通过SPI总线进行故障诊断;(5)通讯模块:整车控制器与其他设备相连的接口,包括两路CAN总线、一路FlexRay总线、一路LIN总线及一路RS232总线,其中CAN总线是整车控制器最重要的对外通讯接口。整车控制器的整体硬件框图,如图2所示。

新能源电动汽车市场分析报告

新能源电动汽车行业分析报告 班级:车辆122 姓名:刘书成 学号:201210603103

在这深入研究新能源汽车的产业,包括它的产业链、产业结构、产业运营等。还将通过国内外数个案例来进行具体分析。进一步让读者了解新能源电动汽车的发展。 一、产业研究(一)新能源产业链上游:IC制造、正极材料、负极材料、电解液、隔膜、有色资源、钢铁等。 中游:电控系统(电池管理系统、电机控制系统、动力总成控制系统)、电池系统(电芯、电池组)、电机系统(驱动电机)、充电配套设备(充电桩、充电机)、仪表仪器、橡胶轮胎、变速箱系统、配件内饰等。 下游:乘用车、客车 后服务:销售、维修保养、金融、保险、二手车、充电设施、电池回收、汽车租赁、车联网、增值应用。 (二)产业链上游是资源类公司,主要为新能源汽车提供原始材料有色资源:天齐锂业、赣峰锂业、吉思镍业、贵研铂业、包钢稀土、厦门钨业 负极材料:杉杉股份、中国宝安 电解液:新亩邦、天赐材料、多氟多 隔膜:沧州明珠、南洋科技、云天化 正极材料:中信国安、杉杉股份、中国宝安、恒店东磁、当升科技 钢铁:宝钢股份、鞍钢股份、武钢股份、马钢股份、方大股份 (三)产业链中游的三大核心技术:电池+电机+电控,其中电池厂商可以成为东软的潜在合作伙伴新能源汽车=插电式混合动力+纯电动 核心技术: 1、镍氢电池:科力远、春兰股份、中炬高新、凯恩股份、北方稀土 2、锂电池: (1)电芯:比亚迪、成飞集团、万向集团、东莞ATL、佛山照明 (2)BMS:比亚迪、德赛电池、欣旺达、凹凸科技 3、电机+电控:大洋电机、江特电机、宁波韵升、方正电机、湘电股份、信质电机、宗升

纯电动汽车整车控制器硬件电路开发与设计

纯电动汽车整车控制器硬件电路开发与设计 摘要:纯电动汽车整车控制器作为纯电动汽车控制系统的核心部件,直接影响 着整车的动力性、经济性和可靠性。 关键词:纯电动汽车;整车控制器硬件;电路开发;设计 引言:纯电动汽车是由多个子系统构成的一个复杂系统,各子系统几乎都通 过其控制单元(ECU)来完成各自功能和目标。为了满足整车动力性、经济性、 安全性和舒适性的目标,各系统还必须彼此协作,优化匹配。因此,必须要有一 个整车控制器来管理协调电动汽车中的各个部件。整车控制器通过采集驾驶员的 操作信息与汽车状态,进行分析与运算,通过 CAN 总线对网络信息进行管理和调度,并针对车型的不同配置,进行相应的能量管理,实现整车驱动控制、能量优 化控制、制动回馈控制和网络管理等。 1纯电动汽车电控系统组成及工作原理 1.1 电控系统组成 纯电动汽车电控系统主要由整车控制器(VCU)、驱动电机及其控制器、动 力电池及BMS、电转向助力及其控制器、电空压机及其控制器、DC/DC、操控面 板等组成。 1.2 工作原理 纯电动汽车以动力电池作为全车的动力源,为各个高压用电设备提供动力。 其中:电空压机为整车提供气源;转向助力泵为整车提供转向助力;DC/DC将动 力电池的高压电转化为低压电,提供给车载低压设备使用;整车控制器负责采集 和处理信号,控制驱动电机工作,实现整车正常行驶与制动。 2 整车控制器的功能模块组成及工作原理 2.1 工作原理 整车控制器(VCU)作为纯电动汽车的核心部件,通过读取和处理驾驶员的 驾驶操作指令,与电机驱动系统、电池管理系统(BMS)及其它控制单元进行交互,使车辆按驾驶期望行驶。另外,还可动态监测系统故障,根据故障的紧急程 度作出相应的保护,例如紧急情况下可切断高压系统以保证车辆行驶安全等。 2.2功能模块组成 整车控制器主要由微控制器模块、电源模块、开关量输入和输出模块、模拟 量输入和输出模块、频率量的输入和输出模块、CAN总线模块、存储模块等组成。 2.2.1 微控制器模块 微控制器(MCU)是整车控制器的核心,它负责信号的采集和处理、逻辑运 算以及控制的实现等。本文选用的是DSP芯片TMS320F28335,该芯片在性价比、功耗、运算能力、存储空间、CAN通讯方面等均有很好的表现,完全可以满足整 车控制器的需要。微控制器模块主要包括:电源电路、时钟电路、复位电路、存 储电路,JTAG接口电路等。1)电源电路:选用的是TPS767D301-Q1,该芯片是 专业的汽车级芯片,其输入电压为2.7~10 V,一路输出固定电压3.3 V,另一路 输出可调电压,每路最大输出电流为1 A [3] 。本文通过降压电路将24 V转换为5 V,再通过TPS767D301-Q1将5 V转为DSP芯片所需的3.3 V和1.9 V。2)时钟电路:TMS320F28335 时钟频率为150MHz,由外部时钟信号通过DSP内部的PLL倍 频得到。3)复位电路:为方便调试,增加了复位按钮,当按下复位按钮后,会 产生一个低电平脉冲输入到DSP的复位引脚中。4)JTAG接口电路: TMS320F28335通过JTAG接口与仿真器连接,实现DSP的在线编程和调试。

电动汽车市场分析报告

新能源汽车行业 概述: ●十二五规划中明确要求,重点发展新兴产业,新能源汽车要着重发展插电式混 合动力汽车、纯电动汽车、燃料电池汽车等安全、节能的汽车。 ●即将出台的《节能与新能源汽车产业发展规划》(2011 年~2020 年),为我国新能源汽车的发展指明了方向。 ●在油价和政策的双重影响,节能和新能源汽车将更受关注。油价上涨在一定程 度上影响到消费者利益的同时,也在发挥着它的积极作用,促使一些消费者改变消费习惯。可以预见的是,随着燃油成本上升和消费者对燃油经济性的关注,再加上“节能产品惠民工程”的惠及面不断扩大,小排量、经济型轿车和新能与汽车的市场前景要乐观一些。 ●新能源汽车必将取代传统内燃机汽车。在石油资源枯竭和环境污染严重的双重 压力下,传统汽车产业已经走到了穷途末路,人类再次站在了交通能源动力系统变革的十字路口,以纯电动汽车为代表的新能源汽车将最终取代传统内燃机汽车。 ●新能源汽车有望成为“再次改变世界的机器”。汽车曾被誉为“改变世界的机 器”,在给我们带来快捷交通方式的同时,也产生了能源安全、环境污染和全球气候变暖等一系列问题。目前节能减排已成为全球汽车产业的首要任务,发展新能源汽车产业已成为我国汽车工业的战略方向。 ●中国发展新能源汽车产业的优势。巨大的市场容量,明确的增长预期;政策的

大力扶持;较好的技术储备;众多企业和科研机构的联合攻关;能源状况、自然资源对发展新能源汽车产业比较有利。预计到2015年中国新能源汽车将达到100万辆左右,年均复合增长率在216%左右。 ●初步建立了“三纵三横”的研发布局和技术体系,技术路线基本明确。混合动 力汽车具有较好的节能减排效果,技术上易实现,是近期产业化重点,但其过渡性特征明显;纯电动汽车是中长期发展方向;燃料电池是未来汽车工业发展战略方向。预计“三纵”各类产品将各领风骚数十年。与此同时,多能源动力总成控制、驱动电机和动力蓄电池”三横”技术得到很大提升。 ●产业政策加快新能源汽车技术进步的步伐。国家对私人购买新能源汽车补贴政 策意义重大,政策效果将远大于政府补贴对公交领域新能源汽车的影响。预计国家近期将出台全面、系统的新能源汽车发展规划,为新能源汽车产业发展增添新动力,同时也将成为新能源汽车类股票表现的催化剂。 ●新能源汽车的产业带动作用强。将带动上游矿产资源开采、电池材料制造和充 电设备需求的大幅增长,此外还将产生电池租赁等新的商业模式。整车领域则看好传统汽车基础扎实、具有一定新能源产业链技术、较强整合匹配能力和产业化能力的公司。 ●驱动电机系统是新能源车三大核心部件之一。电机驱动控制系统是新能源汽车 车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成。 ●动力电池是新能源汽车的绿色心脏。动力电池是电动汽车的动力之源,是能量

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传 统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电 动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科 技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提 供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文 从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能 量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控 制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车 辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车 控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内 各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核 心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对 整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车 通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行 驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统 发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传 输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实 时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节 点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟 踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系 统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成 了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计

纯电动汽车整车控制系统教案

课程单元教学设计任课教师:科目纯电动汽车整车控制系统检修授课班级:

一、知识一、任务导入 假如你是北汽新能源4S店的一名车辆维修人员,需要对某待维修 的车辆进行整车状态参数读取,请问你会正确使用故障诊断仪进行 数据流读取吗? 二、容及过程设计 教师活动 1、电动汽车整车控制系统的作用 1.1控制系统的基本概念 控制系统一般包括传感器、控制器和执行元件。传感器采集信 息并转换成电信号发送给控制器,控制器根据传感器的信息进行运 算、处理和决策,并向执行元件发送控制指令以完成某项控制功能。 1.1.2北汽EV160纯电动汽车整车控制系统的组成 北汽EV160纯电动汽车的整车控制系统结构如图所示,按照各 部件的功能,可以将整车控制系统分为动力电池系统、充电系统、 驱动电机系统、传动系统、电动助力转向系统、制动系统等。该车 的主要高压部件,都集中在了汽车前机舱,如电机控制器、高压控 制盒DC/DC变换器、车载充电机、驱动电机等。 教 师: 引 出 话 题 教 师: 板 书、 展 示、 解 说、 提 问 提 问、 启 发 比 喻 多 媒 体 展 示、 互 动 步骤教学容教师、 学生 活动 教 学 方 法 与 手 段 时 间 分 配

二、 技能 一、技能训练项目及组织 2、实训组织 1)分两组,每次一组组,其他学生完成布置作业 2)实习、学习指导(教师分工 (1)一位教师负责实训室进行操作示 (2)另一位教师负责指导完成相关学习任务 3、使用设备 教师: 示演 示

4、安全和纪律要求 1、穿好工作服、讲究仪容仪表 2、服从安排,遵守纪律,讲究秩序 3、不允许擅自乱动设备 5、学习评估 按学校要求评估

最新电动汽车电池管理系统应用与分析

研修班毕业论文 电动汽车电池管理系统应用与分析 授课老师:邓亚东 专业:车辆工程 姓名:石琪 完成日期:2017年6月15日

摘要 随着社会的发展以及能源、环保等问题的日益突出,纯电动汽车以其零排放,噪声等优点越来越受到世界各国的重视,被称作绿色环保车。作为发展电动车的关键技术之一的电池管理系统(BMS),是电动车产业纯的关键。,以锂电池为动力的电动自行车、混合动力汽车、电动汽车、燃料电池汽车等受到了市场越来越多的关注。我国对电动车的发展极为重视,早在1992年就把电动车的开发发展列入国家的“八五”重点科技攻关项目,对电池管理系统以及充电机系统进行了长期深入的研究开发,在BMS方面取得很大的突破,与国外水平也较为接近,研制产品在纯电动和混合动力电动车上得到大量使用。但电池管理技术还并不成熟,电动汽车的发展及产业化,对动力蓄电池管理系统将具有巨大的市场需求,同时技术上也将提出更高的要求。 关键词:BMS 纯电动汽车动力电池锂电池 can通讯单片机

Abstract with the oil price, the energy shortage, the increasingly serious urban environment pollution, an alternative to oil development of new energy use more and more attention by governments. In the new energy system, battery systems is one of the indispensable important component. In recent years, with the lithium battery powered electric bicycle, hybrid cars, electric vehicles, fuel cell automobile, by the market more and more attention. The development of electric vehicle in China, a great importance in early 1992, the development of the electric car in national development of "five-year" key torch-plan projects of battery management system, and charging machine system for the long-term in-depth research development, in BMS gained great breakthrough, and foreign level also approaches, the research products in pure electric and hybrid electric vehicle got a lot of use. But battery management technology is still not mature, electric vehicles and the development of industrialization of motive battery management system, with the huge market demand, but technology will also put forward higher request. Keywords:BMS pure electric vehicle power battery lithium batteries can communication microcontroller

电动车市场调研报告

竭诚为您提供优质文档/双击可除电动车市场调研报告 篇一:雅迪电动车市场调研报告 调研承担:德州学院委托调研:完成日期: 11级市场营 销第四组 雅迪科技有限公司(市 场部) 20XX年12月调研项目:雅迪电动车市场调研 目录 经理揽要 -------------------------------------------------------------------------3引言 -------------------------------------------------------------------------------5方法 -------------------------------------------------------------------------------9调查结果 ---------------------------------------------------

----------------------12局限 -------------------------------------------------------------------------------15结论和建议 ----------------------------------------------------------------------16参考文献 -------------------------------------------------------------------------17附件 -------------------------------------------------------------------------------18 附件1、调查问卷 ----------------------------------------------------------------------------18 尊敬的市场部经理先生: 您好! 首先感谢您对我团队的信任。在过去的1个月里,我团队经过充分的市场调查和研究分析,现就本次调查的相关情况向您做一个简单的汇报。正如您多期望的,我们本次调研的主要目的是通过对德州市雅迪电动车消费市场的调研,初步了解到德州市雅迪电动车消费偏好及特征,为贵公司的经营决策提供参考意见。在调查中,我们根据具体实际情况,选取了人流量较多的步行街雅迪电动车消费者组成的对象 进行了调研。通过对以上对象实施关于雅迪电动车的优势、

电动汽车控制系统设计设计

电动汽车控制系统设计设计

摘要 在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。 本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。 在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方 37

式,有效的节约了成本。电源模块采用基于UC3842的开关电源电路。选用IR 公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。 驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。 他励直流电动机驱动系统能够很 37

好的运行在电动汽车上,性能可靠、结构简 单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。 关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制 37

中国电动汽车行业发展困境及对策分析

中国电动汽车行业发展困境及对策分析 一、中国电动汽车行业发展困境 (一)产业发展较慢 中投顾问在《2016-2020年中国电动汽车产业投资分析及前景预测报告》中表示,美日欧等发达国家的电动汽车产业起步较早,发展也较快。2013年美国电动汽车和插电式混合动力汽车的销售量达到96602辆,占汽车销售总量的0.62%。欧洲电动汽车协会数据显示,2013年法国电动汽车注册量为8799辆,占汽车市场份额的0.83%。此外,日本、德国等国的电动汽车产业也保持了较快的发展速度。 与发达国家相比,我国电动汽车产业发展速度明显缓慢。2013年我国汽车的产销量分别达到2211.68万辆和2198.41万辆,而高速电动汽车的产销量仅为1.76万辆和1.75万辆,尚不足汽车产销量总量的2‰,按照当前的发展速度,将很难实现《节能与新能源汽车产业发展规划(2012-2020年)》设定的2015年和2020年产销量分别达到50万辆和500万辆的目标。 (二)产业链不完整 中投顾问在《2016-2020年中国电动汽车产业投资分析及前景预测报告》中指出,电动汽车产业链不完整,核心零部件对外依存度过高。在电动汽车产业链中,上游产业为镍氢及锂电池材料,中游产业为电池模块、电机及控制模块、整车控制模块等,下游产业为整车生产。 多数国内企业热衷于整车生产,处于产业链下游的企业实力明显较强,整车动力系统匹配与集成设计等技术处于世界先进水平。然而,愿意从事基础研发工作和关键零部件生产的企业数量较少,由于这些企业缺乏先进的技术、充足的资金和一流的人才,很难生产出高技术含量的电机和控制器基础组件等产品。若在电动汽车的关键部位安装国产零部件,通常会对电动汽车整车的动力性、可靠性、安全性和产品寿命产生不利影响。 因此,基于市场竞争考虑,电动汽车生产企业倾向于从国外进口电机、电池所需的关键部件和材料、控制器基础硬件、芯片、高速CAN网关和信号处理放大部件等产品,逐渐形成了对国外先进零部件的习惯性依赖。 (三)产业秩序混乱 2016年4月,国家公安部、国家工业和信息化部、国家工商行政管理总局、国家质量监督检验检疫总局四部委联合下发《关于加强电动自行车管理的通知》(以下简称《通知》),对“超标”电动车实行限期淘汰。对此,引起了社会的广泛争议。 1、90%电动自行车“被”超标 所谓的超标是根据1999年国家标准委员会制定的《电动自行车通用技术条例》,条例规定电动车的时速不超过20公里、整车质量(重量)不大于40公斤,按照规定,不符合此标准的均为超标车,禁止生产、销售和上路,而违规企业将受到停业整顿、取消生产许可资格、吊销企业营业执照等处罚。

新能源汽车行业分析报告产业竞争现状与发展战略评估

新能源汽车行业分析报告产业竞争现状与发展战略 评估 Revised final draft November 26, 2020

2019年中国新能源汽车行业分析报告-产业竞争现状与发展战略评估 观研天下-中国报告网 观潮向·研精深·怀天下

【目录名称】2019年中国新能源汽车行业分析报告-产业竞争现状与发展战略评估 【交付方式】Email电子版/特快专递 目前全球新能源车发展仍处于高速增长阶段,未来渗透率将持续提升。根据数据显示,2017年全球插电式的新能源销量达128.1万辆,渗透率1.34%,基于预测,到2030年新能车的渗透率可达30%。 全球新能源汽车销量增速(%) 数据来源:汽车工业协会 我国作为全球最大的新能源汽车消费国地位稳固。目前中国已经成为世界新能源汽车的最大市场,根据数据显示,2017年我国插电式新能车销量达60.6万辆,同比增长73%,全球占比49.5%。到2018年一季度我国插电式新能车销量达13.2万辆,同比增长113%,全球占比42.3%。 2017年我国占比全球49.5% 数据来源:汽车工业协会 但未来随着补贴渐退,预计我国新能源汽车的增速将会放缓,预计到2022年,我国新能源汽车销量有望超过300万辆。 2017-2022年中国新能源汽车销量预测(单位:万辆) 数据来源:汽车工业协会(ww)中国报告网是观研天下集团旗下打造的业内资深行业分析报告、市场深度调研报告提供商与综合行业信息门户。《2019年中国新能源汽车行业分析报告-产业竞争现状与发展战略评估》涵盖行业最新数据,市场热点,政策规划,竞争情报,市场前景预测,投资策略等内容。更辅以大量直观的图表帮助本行业企业准确把握行业发展态势、市场商机动向、正确制定企业竞争战略和投资策略。本报告依据国家统计局、海关总署和国家信息中心等渠道发布的权威数据,以及我中心对本行业的实地调研,结合了行业所处的环境,从理论到实践、从宏观到微观等多个角度进行市场调研分析。 它是业内企业、相关投资公司及政府部门准确把握行业发展趋势,洞悉行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。本报告是全面了解行业以及对本行业进行投资不可或缺的重要工具。观研天下是国内知名的行业信息咨询机构,拥有资深的专家团队,多年来已经为上万家企业单位、咨询机构、金融机构、行业协会、个人投资者等提供了专业的行业分析报告,客户涵盖了华为、中国石油、中国电信、中国建筑、惠普、迪士尼等国内外行业领先企业,并得到了客户的广泛认可。本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。本研究报告采用的行

电动汽车产业研究报告

、全球汽车行业 进入21世纪,全球汽车行业保持快速增长,但是增速大幅下滑。2013年至2015年,全球汽车行业产值CAGR为7.5%,增速高于全球生产总值增速;汽车生 产数量CAGR为2.6%,低于行业产值增速,表明单位汽车的附加产值逐步上升。而根据Market Line的预测,2015年至2019年,全球汽车产业产值仍将以5.4%的年复合增长率增长,生产数量以2.9%的年复合增长率上升。 图1 全球汽车年生产量预测 对于全球两大汽车市场——中国和美国来说,一直都保持正增长,2013年至2015年,中国市场和美国市场的汽车生产数量CAGR分别为6.4%和4.1%。中国汽车市场持续实现高增长,已经成为了支撑全球汽车产业发展的重要市场之一。2015年至2019年,尽管中国市场和美国市场的增速均有所放缓,但中国汽车 生产数量仍大幅超过全球平均水平。

图2 中美汽车生产量预测 二、电动汽车行业情况 近几年,自电动汽车进入市场以来,快速增长。2013年至2015年全球电动汽车行业年均复合增长率达到了31.8%。未来随着电池、电池管理系统BMS、电机等方面的技术进一步完善,以及车联网等生态的构建和丰富,电动汽车的需求势必更快增长。中国和美国作为两大主要的电动汽车开发和生产国,在发展电动汽车方面具有得天独厚的优势,预计未来将实现持续高增长。

图3 中美汽车市场规模预测 三、中美政府补贴政策 中美两国在电动汽车方面都有非常大力度的补贴,中美两国对电动汽车的支持政策如下:

图4 中美政府新电动汽车优惠政策 在补贴方面,美国的电动车补贴政策具有显著的区域特征,总体补贴力度低于我国。但美国政府建设了大量充电桩供车主免费充电,从而极大提升了电动车的活动半径,使得购车人在选择车型时更少受到电动车行驶里程弱点的影响,逐步促进消费者转变消费习惯。 四、电动汽车——三电设备 电动汽车的核心——电池、电机、电控三电技术关系到电动汽车整车生产,是电动汽车能否突破商业化瓶颈的关键。 电机方面,我国新能源汽车驱动电机系统将朝着永磁化、数字化和集成化方向发展。永磁同步驱动电机系统具有宽调速范围、高功率密度、低转矩脉动等特性,能够有效满足不同车型在不同工况下的行驶需求,因此其应用范围不断扩大,已从乘用车逐步扩展到了商用车领域。

电动汽车用整车控制器总体设计方案

电动汽车用整车控制器总体设计方案

目次  1 文档用途 (1) 2 阅读对象 (1) 3 整车控制系统设计 (1) 3.1 整车动力系统架构 (1) 3.2 整车控制系统结构 (2) 3.3 整车控制系统控制策略 (3) 4 整车控制器设计 (4) 5 整车控制器的硬件设计方案 (5) 5.1 整车控制器的硬件需求分析 (5) 5.2 整车控制器的硬件设计要求 (6) 6 整车控制器的软件设计方案 (7) 6.1 软件设计需要遵循的原则 (7) 6.2 软件程序基本要求说明 (7) 6.3 程序中需要标定的参数 (7) 7 整车控制器性能要求 (8)

整车控制系统总体设计方案  1 文档用途  此文档经评审通过后将作为整车控制系统及整车控制器开发的指导性文件。 2 阅读对象  软件设计工程师 硬件设计工程师 产品测试工程师 其他相关技术人员 3 整车控制系统设计  3.1 整车动力系统架构  如图1所示,XX6120EV纯电动客车采用永磁同步电机后置后驱架构,电机○3通过二挡机械变速箱○4和后桥○5驱动车轮。车辆的能量存储系统为化学电池(磷酸铁锂电池组○8),电池组匹配电池管理系 统(Battery Management System,简称BMS)用以监测电池状态、故障报警和估算荷电状态(State of Charge,简称SOC)等,电池组提供直流电能给电机控制器○2通过直-交变换和变频控制驱动电机运转。 整车控制器○1(Vehicle Control Unit,简称VCU)通过CAN(Control Area Network)和其它控制器联接,用以交换数据和发送指令。该车采用外置充电机传导式充电,通过车载充电插头利用直流导线联接充电 机○9,充电机接入电网。 ○1整车控制器○2电机控制器○3交流永磁同步电机○4变速箱○5驱动桥 ○6车轮○7电池管理系统○8磷酸铁锂动力电池组○9外置充电机○10电网连接插座 图1 整车动力系统架构简图

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

相关文档
相关文档 最新文档