文档库 最新最全的文档下载
当前位置:文档库 › 高二化学人教版选修3课后作业:2.3.1 键的极性和分子的极性

高二化学人教版选修3课后作业:2.3.1 键的极性和分子的极性

高二化学人教版选修3课后作业:2.3.1 键的极性和分子的极性
高二化学人教版选修3课后作业:2.3.1 键的极性和分子的极性

第三节分子的性质

第1课时键的极性和分子的极性[目标要求] 1.掌握键的极性和分子极性的实质及其相互关系。2.会判断分子的极性,并知道分子极性对物质性质的影响。

一、键的极性

1.写出下列分子的结构式

(1)H2O____________(2)NH3________________

(3)CO2____________ (4)CCl4________________

(5)HCN______________ (6)CH3Cl______________

2.共价键有两种:________共价键和____________共价键。

3.极性共价键是指______________________共价键,电子对会____________,电负性较大的原子呈________电性,电负性较小的原子呈________电性,简称极性键。

4.非极性共价键是指由__________________共价键,电子对______________,又简称非极性键。

二、分子的极性

1.极性分子中______________________________,使分子的某一个部分呈________,另一部分呈________。

2.非极性分子是指________________________________________。

3.分子的极性是分子中化学键的________________。当分子中各个键的极性的向量和为________时,该分子是非极性分子,否则是极性分子。

4.只含非极性共价键的分子________是非极性分子。只含极性键的分子________是极性分子,________是非极性分子。如H2O是________分子,而CH4是________分子。

5.极性分子中________含有非极性键,如H2O2;非极性分子中________含有极性键,如C2H4。

1.下列说法中不正确的是()

A.共价化合物中不可能含有离子键

B.有共价键的化合物,不一定是共价化合物

C.离子化合物中可能存在共价键

D.以极性键结合的分子,肯定是极性分子

2.下列叙述中正确的是()

A.以非极性键结合起来的双原子分子一定是非极性分子

B.以极性键结合起来的分子一定是极性分子

C.非极性分子只能是双原子单质分子

D.非极性分子中,一定含有非极性共价键

3.根据科学人员探测,在海洋深处的沉积物中含有可燃冰,主要成分是甲烷水合物。有关其组成的两种分子的下列说法正确的是()

A.它们都是极性键构成的极性分子

B.它们都只有π键

C.它们的成键电子的原子轨道都是sp3-s

D.它们的立体结构都相同

4.下列叙述不正确的是()

A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强

B.以极性键结合的分子,不一定是极性分子

C.判断A2B或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角

小于180°,为非直线形结构

D.非极性分子中,各原子间都应以非极性键结合

5.A、B、C、D、E是相邻三个周期中的五种元素,它们的原子序数依次增大,B、C、D属同一周期,A、E在周期表中处于同一纵行。已知:

①除A外,各元素原子的内层均已填满电子,其中B的最外层有4个电子;

②A与B,B与C都能生成气态非极性分子的化合物;

③D与E生成离子化合物,其离子的电子层结构相同。

回答:

(1)A为________元素,B为________元素,C为________元素,D为________元素。

(2)C元素在周期表中属第________周期________族元素,其原子核外电子排布式为

________。

(3)B与C形成的非极性分子的电子式是________________。其中共价键类型及数目是

______________(填σ或π键)

练基础落实

知识点1化学键及其类型

1.下列关于化学键的叙述中正确的是()

A.化学键存在于原子之间,也存在于分子之间

B.两个原子之间的相互作用叫做化学键

C.离子键是阴、阳离子之间的相互吸引力

D.化学键通常是指相邻的两个或多个原子之间强烈的相互作用

2.下列各组物质中,化学键类型都相同的是()

A.CaCl2和NaOHB.Na2O和Na2O2

C.CO2和CS2D.HCl和NaOH

3.下列物质中,既有离子键又有共价键的是()

A.CaCl2B.KBr

C.H2OD.NH4F

知识点2共价键的极性

4.下列分子中,含有极性键和非极性键的是()

A.H2SB.N2

C.CS2D.H2O2

5.下列物质中含有非极性键且为盐的是()

A.CH3COONaB.NH4Cl

C.CaCl2D.H2O2

6.下列物质中含有非极性键的共价化合物是()

A.HClB.Na2O2

C.C2H2D.CH4

7.下列各组分子中,按共价键极性由强到弱排序正确的是()

A.HF H2O NH3CH4

B.CH4NH3H2O HF

C.H2O HF CH4NH3

D.HF H2O CH4NH3

知识点3键的极性与分子极性的关系

8.下列叙述正确的是()

A.含有非极性键的分子一定是非极性分子

B.非极性分子中一定含有非极性键

C.由极性键形成的双原子分子一定是极性分子

D.键的极性与分子的极性有关

9.下列化合物中,化学键的类型和分子的极性(极性或非极性)皆相同的是()

A.CO2和SO2B.CH4和SiO2

C.BF3和NH3D.HCl和HI

练方法技巧

由键的极性、分子构型判断分子极性的技巧

10.判断AB2型分子是极性分子的主要依据是()

A.分子中存在离子键

B.分子中存在极性键

C.分子为直线形

D.分子为非直线形

11.X、Y为两种不同元素,由它们组成的下列物质的分子中,肯定有极性的是() A.XY4B.XY3

C.XY2D.XY

由分子的极性判断分子性质的技巧

12.根据物质溶解性“相似相溶”的一般规律,能说明碘、溴单质在CCl4中比在水中溶解度大的是()

A.溴、碘单质和CCl4中都含有卤素

B.溴、碘是单质,CCl4是化合物

C.Cl2、Br2、I2是非极性分子,CCl4也是非极性分子,而水为极性分子

D.以上说法都不对

13.下列物质在水中的溶解度比在苯中的溶解度大的是()

A.NH3B.CH4C.C2H4D.CO2

练综合拓展

14.下列变化过程中,原物质分子内共价键被破坏,同时有离子键形成的是()

A.盐酸和NaOH溶液反应

B.氯化氢溶于水

C.溴化氢与氨反应

D.锌和稀H2SO4反应

15.氮化钠(Na3N)是一种重要的化合物,它与水作用可产生NH3。请回答下列问题:

(1)Na3N的电子式为______________________,该化合物是通过________键形成的。

(2)Na3N与盐酸反应生成________种盐,其电子式是_________________。

(3)Na3N与水的反应属于________反应。

(4)比较Na3N中两种粒子的半径大小________________________________。

16.短周期元素D、E、X、Y、Z原子序数逐渐增大。它们的最简氢化物分子的空间构型依次是正四面体、三角锥形、正四面体、角形(V形)、直线形。回答下列问题:

(1)Y的最高价氧化物的化学式为__________;Z的核外电子排布式是__________。

(2)D的最高价氧化物与E的一种氧化物为等电子体,写出E的氧化物的化学式________。

(3)D和Y形成的化合物,其分子的空间构型为________________;D原子的轨道杂化方式是________________。X与Z构成的分子是____________分子(填“极性”或“非极性”)

(4)写出一个验证Y与Z的非金属性强弱的离子反应方程式________________________。

(5)金属镁和E的单质在高温下反应得到的产物与水反应生成两种碱性物质,该反应的化学方程式是__________________________________________。

第三节分子的性质

第1课时键的极性和分子的极性基础落实

一、

2.极性非极性

3.由不同原子形成的发生偏移负正

4.同种原子形成的不发生偏移

二、

1.正电中心和负电中心不重合正电性负电性

2.分子中的正电中心和负电中心重合的分子

3.极性的向量和零

4.一定可能也可能极性非极性

5.也可能也可能

课堂练习

1.D[以极性键结合的分子,如果空间结构对称,是非极性分子。]

2.A[可用反例法通过具体的实例判断正误。A项是正确的,如O2、H2、N2等;B项错误,以极性键结合起来的分子不一定是极性分子,若分子的构型对称,正负电荷重心重合,就是非极性分子,如CH4、CO2、CCl2、CS2等;C项错误,非极性分子也可以是化合物,如C2H4、CCl4等;D项错误,非极性分子中不一定含有非极性键,如CH4、CO2。] 3.C

4.D[对比HF、HCl、HBr、HI分子中H—X极性键强弱,知卤素中非金属性越强,键的极性越强是对的。以极性键结合的双原子分子,一定是极性分子,但以极性键结合的多原子分子,也可能是非极性分子,如CO2。A2B型如H2O、H2S等,AB2型如CO2、CS2等,判断其为极性分子的依据是必有极性键且电荷分布不对称。CO2、CH4等多原子分子,其电荷分布对称,这样的非极性分子中可以含有极性键。]

5.(1)氢碳氧氟(2)二ⅥA1s22s22p4

(3)2个σ键2个π键

解析B的最外层有4个电子,应在第ⅣA族,是C或Si,A与B,B与C都能生成气态非极性分子的化合物,则B是碳,A是氢,C是氧,由B、C、D属同一周期,且与E 是相邻三个周期,D与E生成离子化合物,其离子的电子层结构相同知,D是氟,E是钠。

课时作业

1.D[化学键的定义强调两个方面:一是“相邻的两个或多个原子之间”;二是“强烈的相互作用”。选项A、B中都没有正确说明这两点,所以不正确。选项C只强调离子键中阴、阳离子之间的吸引作用而没有排斥作用,所以不正确。只有D正确。]

2.C[A、B两项中四种物质虽都含有离子键,但NaOH中含极性共价键,Na2O2中含非极性共价键,故A、B错;D项中HCl只含共价键;C项中两种物质都只含共价键,故只

有C正确。]

3.D 4.D

5.A[CH3COONa属于盐且碳原子间为非极性键。]

6.C[Na2O2为离子化合物,HC≡CH分子中碳原子间为非极性键。]

7.A[共价键极性的强弱取决于形成共价键的两原子的电负性,其电负性相差越大,形成的共价键极性越强。]

8.C[含有非极性键的分子不一定是非极性分子,如H2O2;非极性分子中不一定含有非极性键,如CH4、CO2均是非极性分子,却都只含有极性键;键的极性只与成键原子是否相同有关,与分子的极性无关,分子的极性除与键的极性有关外,还与分子的空间构型有关。] 9.D10.D

11.D[XY为直线形分子,不同种元素对电子对吸引能力不同,分子必有极性。] 12.C[相似相溶原理是从实验中归纳出的经验规律。一般非极性溶质(或极性小的)易溶于非极性溶剂,难溶于极性溶剂,强极性溶质易溶于极性溶剂,难溶于非极性溶剂。] 13.A

14.C[原物质为共价分子的只有B、C,但HCl溶于水共价键被破坏而发生电离,并没有形成离子键;而HBr+NH3===NH4Br过程中,破坏了H—Br共价键,形成了离子键。]

(3)复分解(4)r(Na+)

16.(1)SO31s22s22p63s23p5(2)N2O(3)直线形

sp杂化非极性(4)Cl2+S2-===S↓+2Cl-

(5)Mg3N2+6H2O===3Mg(OH)2↓+2NH3↑

解析短周期元素的氢化物有CH4、NH3、H2O、HF、SiH4、PH3、H2S、HCl,空间构型呈正四面体的有CH4、SiH4,呈三角锥形的有NH3、PH3,呈角形的有H2O、H2S,呈直线形的有HF、HCl。由D、E、X、Y、Z原子序数逐渐增大,它们的氢化物分子的空间构型依次是正四面体、三角锥形、正四面体、角形、直线形知,D、E、X、Y、Z分别是碳、氮、硅、硫、氯。

高中化学:分子极性

高中化学:分子极性 一、分类:按照分子的极性,可把分子分为两类。 1、非极性分子:正负电荷重心重合,分子对外不显示电负性的分子。例如: 等。 疏水分子是指不溶于水的分子。非极性分子是指原子间以共价键结合,分子里电荷分布均匀,正负电荷中心重合的分子。水分子是极性分子,根据相似相溶原理,非极性分子很难溶于水。但疏水分子也可能是极性很大的分子,例如各类脂肪酸,所以疏水分子不一定是非极性分子! 2、极性分子:正负电荷重心不重合,分子对外显示电负性的分子。例如 HCl、H 2O 2等。 二、掌握常见分子极性及其空间构型:常见分子极性及其空间构型可用下表表示。 三、了解常见分子空间构型及其键角:中学常见分子空间构型及其键角列举如下:(1)等双原子单质分子为直线形,夹角为180°。 (2)为平面形,夹角为104.5°。 (3)为三角锥形,夹角为107°18”。

(4)S为平面形,夹角为92°。 (5)为正四面体形,夹角为109°28”。 (6)为四面体形,夹角不确定。 (7)为直线形,夹角为180°。 (8)为平面形,夹角为120°。 (9)为平面形,夹角为60°。 (10)为正四面体形,夹角为109°28”。 (11)为直线形,夹角为180°。 (12)为平面形,夹角为120°。 ②③④⑤ 注意:中学常见的四面体物质有①CH 4 ⑥⑦⑧⑨等。其中是正四面体的有①、⑤、⑥、 ⑦、⑧、⑨共6种。 四、分子极性判断规律。 ①双原子单质分子都是非极性分子。如等。 ②双原子化合物分子都是极性分子。如HCl、HBr、HI等。 ③多原子分子极性要看空间构型是否对称,对称的是非极性分子,否则是极性分 O、等是极性分子; 子。如H 2 等是非极性分子。

高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

选修三二共价键一时优秀教案

共价键第一课时 学习目标: 1.知道化学键地概念,能用电子式表示常见物质地离子键或共价键地形成过程. 2.知道共价键地主要类型δ键和π键. 3.说出δ键和π键地明显差别和一般规律. 教学重点:理解σ键和π键地特征和性质 教学难点:σ键和π键地特征 教学过程:【复习提问】什么是化学键?物质地所有原子间都存在化学键吗? [学生活动]请同学们思考,填写下表:离子化合物和共价化合物地区别 比较项目离子化合物共价化合物 化学键 概念 达到稳定结 构地途径 构成微粒 构成元素 表示方法电子式:(以NaCl为例) 离子化合物地结构: NaCl地形成过程: 以HCl为例: 结构式:H—C1 电子式:: HCl地形成过程: 一、共价键 1.共价键地形成条件和本质 定义:间通过形成形成共价键. 2.共价键地本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反地未成对电子形成共用电子对,两原子核间地电子云密度增加,体系能量降低 [讨论交流]列表比较σ键和π键 键型 项目 σ键π键

成键方向电子云形状牢固程度 成键判断规律共价单键全是σ键,共价双键中一个是σ键,另一个是π键;共价叁键中一个σ键,另两个为π键 【科学探究】1.已知氮分子地共价键是三键(N三N),你能模仿图2—1、图2—2、图2—3,通过画图来描述吗?(提示:氮原子各自用三个p轨道分别跟另一个氮原子形成1个σ键和两个π键 例1:画出下列物质地电子式,并指出其中地化学键类型 NH3 H2O2 NaCl MgCl2 Na2O2 NaOH 【科学探究】2.钠和氯通过得失电子同样形成电子对,为什么这对电子不被钠原子和氯原子共用形成共价键而形成离子键呢?你能从电子地电负性地差别来理解吗?讨论后填写下表: 原子Na Cl H Cl C O 电负性 电负性之差 (绝对值) 0.9 结论: 形成条件:(1) 两原子相同或相近 (2) 一般成键原子有 (3) 成键原子地原子轨道在空间上发生重叠 【科学探究】3.乙烷:σ键乙烯:σ键π键乙炔:σ键π键 2.共价键地特征: 饱和性:共价键饱和性是指每个原子形成共价键地数目是确定地. 方向性:根据电学原理,成键电子云越密集,共价键越强.要使成键地原子轨道最大程度地重叠,原子轨道必须沿一定方向重叠. 相关知识:画出s、p电子云地示意图 例:下列分子中,原子地最外层不能都满足8电子稳定结构地是() A.CO2 B.PCl3 C.PCl5 D.SO2 E.NO2 F.SO3 G.H2O2

化学键 非极性分子和极性分子

化学键 非极性分子和极性分子(上) 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 B . 难点聚焦 (1) 化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 (2) 离子键: 一、 离子化合物:由阴、阳离子相互作用构成的化合物。如 NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 二、 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X ---+ +-???→???→ ????→吸引、排斥达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: +-Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法: 在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,在离子化合物的电子式中由阳离子和带中括号的阴离子组成且简单的阳离子不带最外

高中化学选修三知识点总结

高中化学选修三知识点总结 第一章原子结构与性质 1、电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小。 2、电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 3、原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 4、原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。 5、原子核外电子排布原理: (1)能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道;

(2)泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子;(3)洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1 6、根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 7、第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1)原子核外电子排布的周期性 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化: 每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到 ns2np6的周期性变化.

分子的极性

2.3 分子的性质第1课时键的极性和分子的极性每课一练 知识点1化学键及其类型 1.下列关于化学键的叙述中正确的是() A.化学键存在于原子之间,也存在于分子之间 B.两个原子之间的相互作用叫做化学键 C.离子键是阴、阳离子之间的相互吸引力 D.化学键通常是指相邻的两个或多个原子之间强烈的相互作用 2.下列各组物质中,化学键类型都相同的是() A.CaCl2和NaOH B.Na2O和Na2O2C.CO2和CS2D.HCl和NaOH 3.下列物质中,既有离子键又有共价键的是() A.CaCl2B.KBr C.H2O D.NH4F 知识点2共价键的极性 4.下列分子中,含有极性键和非极性键的是() A.H2S B.N2C.CS2D.H2O2 5.下列物质中含有非极性键且为盐的是() A.CH3COONa B.NH4Cl C.CaCl2D.H2O2 6.下列物质中含有非极性键的共价化合物是() A.HCl B.Na2O2C.C2H2D.CH4 7.下列各组分子中,按共价键极性由强到弱排序正确的是() A.HF H2O NH3CH4B.CH4NH3H2O HF C.H2O HF CH4NH3D.HF H2O CH4NH3 知识点3键的极性与分子极性的关系 8.下列叙述正确的是() A.含有非极性键的分子一定是非极性分子 B.非极性分子中一定含有非极性键 C.由极性键形成的双原子分子一定是极性分子 D.键的极性与分子的极性有关 9.下列化合物中,化学键的类型和分子的极性(极性或非极性)皆相同的是( ) A.CO2和SO2B.CH4和SiO2C.BF3和NH3D.HCl和HI 练方法技巧 由键的极性、分子构型判断分子极性的技巧 10.判断AB2型分子是极性分子的主要依据是() A.分子中存在离子键 B.分子中存在极性键 C.分子为直线形 D.分子为非直线形 11.X、Y为两种不同元素,由它们组成的下列物质的分子中,肯定有极性的是()

高二化学选修前三章知识点总结

学大教育高二化学(选修4)各章节知识点梳理 第一章化学反应与能量 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应(1).符号:△H(2).单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应 ⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应 ④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示气态,液态,固态,水溶液中溶质用aq表示)。 ③热化学反应方程式要指明反应时的温度和压强。 ④热化学方程式中的化学计量数可以是整数,也可以是分数。 ⑤各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变。 三、燃烧热 1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应而生成1mol H2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为: H+(aq) +OH-(aq) =H2O(l) ΔH=-57.3kJ/mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。 4.中和热的测定实验 五、盖斯定律 1.内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。

非极性分子和极性分子

https://www.wendangku.net/doc/2c18950084.html, 你的首选资源互助社区贵州省贵阳一中2011届高三化学一轮复习教学案第14讲: 非极性分子和极性分子 【考纲要求】 1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。 2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。 3.理解分子间作用力和氢键的概念以及对物质性质的影响。 教与学方案 【自学反馈】 一、概念辨析 1.非极性键: (1)概念:。 (2)形成条件:。 2.极性键: (1)概念:。 (2)形成条件:。 (3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越 大,键的极性就越强。试比较下列两组共价键的强弱: ①H—H、H—F、H—O、H—N、H—C:; ②H—F、C—F、N—F、O—F、F—F:。 3.极性分子: (1)含义:。 (2)举例:。 4.非极性分子: (1)含义:。 (2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠 ②根据AB n的中心原子A周围是否为完全等价的电子对 ③根据AB n的中心原子A的最外层价电子是否全部参与形成 了同样的共价键。(或A是否达最高价)

(3)常见AB n型分子中极性分子与非极性分子比较: 分子类型举例键角构形分子极性 AB CO AB2(A2B)H2O CS2 BeCl2 AB3PCl3 BF3 SO3 AB4CH4 AB2C2CH2Cl2 A2B4C2H4 A2B2C2H2 A6B6C6H6 5.分子间作用力: (1)概念:。 (2)影响因素:。 (3)对物质性的影响:。 6.氢键: (1)概念:。 (2)形成条件:。 (3)对物质性质的影响:。 7.相似相溶原理: 。 .【例题解析】 [例1] ] 氰(CN)2为无色可燃气体、剧毒、有苦杏仁味,和卤素单质的性质相似。 (1)写出氰与苛性钠溶液反应的离子方程式:_______________________。 (2)已知氰分子键之间夹角为180°并有对称性,(CN)2的电子式为______________,结构式为______________,(CN)2分子为______________(填“极性”或“非极性”)分子。 (3)CN-中电子数为______________,CN-的电子式为______________。 解题思路: 。

高二化学选修4知识点总结

高二化学知识点总结 化学反应原理复习(一) 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为

2021新人教版高中化学选修三2.1《共价键》word教案

第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程 [设问] 前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠?例:H2的形成 [讲解、小结] [板书]

1.δ键:(以“头碰头”重叠形式) a.特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变, 轴对称图形。 b.种类:S-Sδ键 S-Pδ键 P-Pδ键 [过渡] P电子和P电子除能形成δ键外,还能形成π键 [板书] 2.π键 [讲解] a.特征:每个π键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含原子核的平面镜面,它们互为镜像,这种特征称为镜像对称。 3.δ键和π键比较 ①重叠方式 δ键:头碰头 π键:肩并肩 ②δ键比π键的强度较大 ②成键电子:δ键 S-S S-P P-P π键 P-P δ键成单键 π键成双键、叁键

4.共价键的特征 饱和性、方向性 [科学探究] 讲解 [小结] 生归纳本节重点,老师小结 [补充练习] 1.下列关于化学键的说法不正确的是( ) A.化学键是一种作用力 B.化学键可以是原子间作用力,也可以是离子间作用力 C.化学键存在于分子内部 D.化学键存在于分子之间 2.对δ键的认识不正确的是( ) A.δ键不属于共价键,是另一种化学键 B.S-Sδ键与S-Pδ键的对称性相同 C.分子中含有共价键,则至少含有一个δ键 D.含有π键的化合物与只含δ键的化合物的化学性质不同3.下列物质中,属于共价化合物的是( ) A.I2 B.BaCl2 C.H2SO4 D.NaOH 4.下列化合物中,属于离子化合物的是( ) A.KNO3 B.BeCl C.KO2 D.H2O2 5.写出下列物质的电子式。 H2、N2、HCl、H2O 6.用电子式表示下列化合物的形成过程 HCl、NaBr、MgF2、Na2S、CO2 [答案] 1.D 2.A3.C4.AC5.略6.略 第二章分子结构与性质 第一节共价键 第二课时 [教学目标]:

高二化学选修4知识点总结

高二化学知识点总结 化学反应原理复习(一) 第1章、化学反应与能量转化 化学反应得实质就是反应物化学键得断裂与生成物化学键得形成,化学反应过程中伴随着能量得释放或吸收。 一、化学反应得热效应 1、化学反应得反应热 (1)反应热得概念: 当化学反应在一定得温度下进行时,反应所释放或吸收得热量称为该反应在此温度下得热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应得关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热得测定 测定反应热得仪器为量热计,可测出反应前后溶液温度得变化,根据体系得热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系得热容,T1、T2分别表示反应前与反应后体系得温度。实验室经常测定中与反应得反应热。 2、化学反应得焓变 (1)反应焓变 物质所具有得能量就是物质固有得性质,可以用称为“焓”得物理量来描述,符号为H,单位为kJ·mol-1。 反应产物得总焓与反应物得总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q得关系。 对于等压条件下进行得化学反应,若反应中物质得能量变化全部转化为热能,则该反应得反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应得关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质得变化与反应焓变同时表示出来得化学方程式称为热化学方程式,如:H2(g)+O2(g)= H2O(l);ΔH(298K)=-285、8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质得聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH得单位就是J·mol-1或 kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质得系数加倍,ΔH得数值也相应加倍。 3、反应焓变得计算 (1)盖斯定律 对于一个化学反应,无论就是一步完成,还就是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变得计算。 常见题型就是给出几个热化学方程式,合并出题目所求得热化学方程式,根据盖斯定律可知,该方程式得ΔH为 上述各热化学方程式得ΔH得代数与。 (3)根据标准摩尔生成焓,Δf H mθ计算反应焓变ΔH。对任意反应:aA+bB=cC+dD ΔH=[cΔf H mθ(C)+dΔf H mθ(D)]-[aΔf H mθ(A)+bΔf H mθ(B)] 二、电能转化为化学能——电解

分子极性判断

分子概述 如果分子的构型不对称,则分子为极性分子。 如:氨气分子,HCl分子等。 区分极性分子和非极性分子的方法: 非极性分子的判据:中心原子化合价法和受力分析法 1、中心原子化合价法: 组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5 2、受力分析法: 若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分子. 如:CO2,C2H4,BF3 3、非极性分子: 同种原子组成的双原子分子都是非极性分子。 不是非极性分子的就是极性分子了! 高中阶段知道以下的就够了: 极性分 子:HX,CO,NO,H2O,H2S,NO2,SO2,SCl2,NH3,H2O2,CH3Cl,CH2Cl2,CHCl3,CH3CH2OH 非极性分 子:Cl2,H2,O2,N2,CO2,CS2,BF3,P4,C2H2,SO3,CH4,CCl4,SiF4,C2H4,C6H6,PCl5,汽油 简单判断方法 对于AnBm型 n=1 m>1 若A化合价等于主族数则为非极性 有机极性判断 弱极矩μ 有机化合作大多难溶于水,易溶于汽油、苯、酒精等有机溶剂。原因何在?中学课本、大学课本均对此进行了解释。尽管措词不同,但中心内容不外乎是:有机化合物一般是非极性或弱极性的,它们难溶于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂。汽油的极性在课本中均未做详细说明,故而在教学中常常做如下解释:所有的烷烃,由于其中的O键的极性极小,以及

结构是对称的,所以其分子的偶极矩为零,它是一非极性分子。烷烃易溶于非极性溶剂,如碳氢化合物、四氯化碳等。以烷烃为主要成分的汽油也就不具有极性了。确切而言,上述说法是不够严格的。我们知道,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的。根据其分子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极矩μ则是其极性大小的客观标度. 分析1 常见烷烃中,CH4、C2H6分子无极性,C3H8是折线型分子,键的极性不能相互完全抵消,其μ≠为0.084D。至于其它不含支链的烷烃,分子中碳原子数为奇数时,一定不完全对称而具有极性;分子中碳原子数为偶数时,仅当碳原子为处于同一平面的锯齿状排布的反交叉式时,分子中键的极性才能相互完全抵消,偶极矩为零,但由于分子中C—C键可以旋转,烷烃分子(除CH4)具有许多构象,而上述极规则的锯齿状反交叉式仅是其无数构象“平衡混合物”中的一种,所以,从整体来说,除CH4、C2H6外,不带支链的烷烃均有极性。带有支链的烷烃,也仅有CH4、C2H6等分子中H原子被—CH3完全取代后的产物尽其用,2—二甲基丙烷、2,2,3,3—四甲基丁烷等少数分子不显极性,余者绝大多数都有一定的极性。由于烷烃中碳原子均以SP3杂化方式成键,键的极性很小,加上其分子中化学键的键角均接近于109°28′,有较好的对称性(但非绝对对称)故分子的极性很弱,其偶极矩一般小于0.1D. 分析2 烷烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D。2—丁烷,顺—2—丁烯的μ=0.33D,反—2 —丁烯的偶极矩为零,即仅以C=C对称的反式烯烃分子偶极矩为零(当分子中C原子数≥6时,由于C-CO键旋转,产生不同的构象,有可能引起μ的变化),含奇数碳原子的烯径不可能以C=C绝对对称,故分子均有极性。二烯烃中,丙二烯(通常不能稳定存在)、1、3一丁二烯分子无极性,1、2一丁二烯分子μ为0.408D,2—甲基一1,3—丁二烯(异戊二烯)分子也为极性分子。炔烃中,乙炔、2—丁炔中C原子均在一条直线上,分子以C—C对称,无极性,但丙炔、1—丁炔分子不对称,其极性较大,μ分别为0.78D和0.80D。芳香烃中,苯无极性,甲苯、乙苯有极性,μ分别为0.36D、0.59D;二甲苯中除对一二甲苯外的另两种同分异构体分子不对称,为极性分子,显而易见,三甲苯中之间一三甲苯分子的μ为零,联苯、萘的分子也无极性。 结论 综上所述,烃的分子有无极性仍是取决于各自的对称程度是否将键的极性完全抵消。当某分子并不因其中C—CO键的旋转而引起碳干排布不同的构象时,构型则绝对对称,分子无极性。将其分子中H原子全部用——CH3所替代,分

高二化学选修4知识点归纳总结大全

高二化学选修4知识点归纳总结大全 高二部分理科生可能觉得学习化学知识点归纳不重要,可一到考试就不知道怎么去复习了。为了方便大家的时间, 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q0时,反应为吸热反应;Q0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为焓的物理量

来描述,符号为H,单位为kJmol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用H表示。 (2)反应焓变H与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=H=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: H0,反应吸收能量,为吸热反应。 H0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+ O2(g)=H2O(l);H(298K)=-285.8kJmol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态 (g)、溶液(aq)。 ②化学方程式后面写上反应焓变H,H的单位是Jmol-1或kJmol-1,且H后注明反应温度。 ③热化学方程式中物质的系数加倍,H的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反

化学选修三知识点总结

高中化学选修 3 知识点全部归纳(物质的结构与性质) ▼第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M 、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p 、d、f 表示不同形状的轨道,s 轨道呈球形、p 轨道呈纺锤形,d 轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2. (构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1?36号元素原子 核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有 多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①?能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道 ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子 ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同? 洪特规则的特例:在等价轨道的全充满(p6、d10 、f14 )、半充满(p3 、d5 、f7 )、全空时(p0、

d0、fO)的状态,具有较低的能量和较大的稳定性?如24Cr [Ar]3d54s1 、29Cu [Ar]3d104s1. (3) . 掌握能级交错图和1-36 号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能 级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3. 元素电离能和元素电负性第一电离能:气态电中性基态原子失去1 个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1 表示,单位为kJ/mol 。 (1) .原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1 到ns2np6 的周期性变化. (2) .元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素 要大即第n A族、第V A族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、 P ②.元素第一电离能的运用: a. 电离能是原子核外电子分层排布的实验验证

分子极性判断方法

分子极性判断方法 一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原 子形成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH中的C-C”键、CH2=CH中的C=C键、Na20冲的O-0”键等具有 结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象CH3CH2OHCH3C00H 等结构不对称的分子中的C-C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、02、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非极性键。但在03分子中的0-0”键却不是非极性键,而是极性键。这是因为03分子结构呈V' 型(或角型),键长为127.8pm (该键长正好位于氧原子单键键长148 pm与双键键长112 pm 之间),与S02吉构相似,可模仿S0把03称作二氧化氧”,所以03分子中的0-0”键是极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷 分布是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分 子,各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键就是极性分子,如HF HI等;若含非极性键就是非极性分子,如I2、02、N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如C02 BF3 CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H20 NH3 PCI3等。 三、共价键的极性和分子的极性的关系 空间不对称 极性键极性分子

高二化学选修5归纳与整理_有机化学基础

高二化学选修5《有机化学基础》知识点整理 一、重要的物理性质 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。 (3)具有特殊溶解性的: ①乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇来溶解植物色素 或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率,提高反应限度。 ②苯酚:室温下,在水中的溶解度是9.3g(属可溶),易溶于乙醇等有机溶剂,当温度高于65℃时,能 与水混溶,冷却后分层,上层为苯酚的水溶液,下层为水的苯酚溶液,振荡后形成乳浊液。苯酚易溶于碱溶液和纯碱溶液,这是因为生成了易溶性的钠盐。 ③乙酸乙酯在饱和碳酸钠溶液中更加难溶,同时饱和碳酸钠溶液还能通过反应吸收挥发出的乙酸,溶解 吸收挥发出的乙醇,便于闻到乙酸乙酯的香味。 ④有的淀粉、蛋白质可溶于水形成胶体 ..。蛋白质在浓轻金属盐(包括铵盐)溶液中溶解度减小,会析出(即盐析,皂化反应中也有此操作)。但在稀轻金属盐(包括铵盐)溶液中,蛋白质的溶解度反而增大。 ⑤线型和部分支链型高聚物可溶于某些有机溶剂,而体型则难溶于有机溶剂。 *⑥氢氧化铜悬浊液可溶于多羟基化合物的溶液中,如甘油、葡萄糖溶液等,形成绛蓝色溶液。 2.有机物的密度 (1)小于水的密度,且与水(溶液)分层的有:各类烃、一氯代烃、氟代烃、酯(包括油脂) (2)大于水的密度,且与水(溶液)分层的有:多氯代烃、溴代烃(溴苯等)、碘代烃、硝基苯 3.有机物的状态[常温常压(1个大气压、20℃左右)] (1)气态: ①烃类:一般N(C)≤4的各类烃注意:新戊烷[C(CH3)4]亦为气态 ②衍生物类: 一氯甲烷(CH3Cl,沸点为-24.2℃) 氟里昂(CCl2F2,沸点为-29.8℃)

人教版高二化学选修3第二章-第一节--共价键教案

第二章分子结构与性质 第一节共价键第一课时 知识与技能: 1. 复习共价键的概念,能用电子式表示物质的形成过程。 2.知道共价键的主要类型为σ键和π键。 3. 说出σ键和π键的明显差别和一般规律。 过程与方法: 类比、归纳、判断、推理的方法,注意概念之间的区别和联系,熟悉掌握各知识点的共性和差异性。 情感态度与价值观: 使学生感受到在分子水平上进一步形成有关物质结构的基本观念,能从物质结构决定性质的角度解释分子的某些性质,并预测物质的有关性质,体验科学的魅力,进一步形成科学的价值观。 教学重点:σ键和π键的特征和性质。 教学难点:σ键和π键的特征。 教学过程: [引入] 在第一章中我们学习了原子结构和性质,知道了大多数原子是会构成分子。那么原子是如何构成分子的呢?通过必修二的学习我们知道原子之间可以通过离子键形成离子化合物,通过共价键形成分子。这节课我们先来讨论共价键。 [板书]第一节共价键 [复习] 请大家回忆如何用电子式表示H2,HCl,C12的形成过程? [学生活动] 请学生写在黑板上。 [师生讨论] 讨论H2,HCl,C12 的共同点。 ]板书]一.共价键的本质:原子之间形成共用电子对。 [师生互动]“按共价键的共用电子对理论,不可能有H3,H2Cl和Cl3分子,这表明共价键具有饱和性. ”此句话的含义。 [总结]共价键的饱和性:按照共价键的共用电子对理论,一个原子有几个未成对电子,便可和几个自旋相反的未成对电子配对成键,这就是共价键的“饱和性”。H 原子、Cl原子都只有一个未成对电子,因而只能形成H2、HCl、Cl2分子,不能形成H3、H2Cl、Cl3分子。 [设问]我们在第一章学习了H原子1s原子轨道是球形,那么当两个氢原子形成氢分子时,它们的原子轨道的是如何重叠的呢?请同学们不看课本,用橡皮泥做出两个S轨道,从数学的角度试试他们有几种重叠方式呢? [师生互动]请学生讲讲他们的想法。 [阅读教材]图2-1

相关文档
相关文档 最新文档