文档库 最新最全的文档下载
当前位置:文档库 › 电线电缆综合技术手册

电线电缆综合技术手册

电线电缆综合技术手册
电线电缆综合技术手册

电线电缆综合技术手册

上海胜华电缆集团

编辑部严丙鑫

2011-8月

前言

为了适应我厂发展的需要,提高我厂操作人员的素质和技能水平,经厂委会组织,技术部、生产部、质保部等多个部门人员参与,编制了此质量手册。

本套手册是基于《电线电缆基础知识》为基础,参造各种《电缆工艺学》编制而成,以当前国内线缆制造的成熟技术为立足点,采用最新技术标准,着重介绍线缆生产的原辅材料,设备流水线和工艺制造特征,对成品的质量控制进行分析,预防并消除废次品的出现。

各机台的操作方法和设备技术参数,如需要的员工,可到生产相关部门借阅。

本套手册为我厂技术文件,禁止任何员工私自外传,发现立即开除出厂。

由于时间仓促,水平有限,手册中疏漏不足或错误之处,敬请各员工指正。

上海胜华电缆集团

第一章

电线电缆产品总论

电缆电缆是用以传输电力、传递信息和实现电磁能量转换的一大类电工产品。它广泛用于国民经济的各个部门和人们的日常生活中。

第一节电线电缆的分类

一、产品分类的层次

大类区分的原则:从产品的应用领域出发,兼顾到产品生产工艺的学科相近性、专用设备的公用性等因素。大类以下分为小类、系列、品种、规格等层次。

系列指用途、结构、材料基本相同或相似的产品。

品种指产品的基点,一个品种有一个名称、一个型号,互相对应。

规格指某一个品种中结构尺寸大小或结构组成多少的变化。

二、电线电缆产品分五个大类

1、裸电线与裸导体制品

产品都是无绝缘层的导体。如架空输、配电线路用的架空导线(钢芯铝绞线),以及铜、铝汇流排材(母线)和特种导电制品。

2、电力电缆

产品是提供电力系统从超高压到低压各电压等级的输电、变电、配电和供电线路用。以输送大功率强电流为其主要任务。

3、电气装备用电线电缆

这是进入用户的末端用电线路和各种用电设备作电气联接的一大类产品如:各种家用电线、软线等

4、通信电缆与光缆

主要用于传输信息如:传输信号电话、宽带网等这类电线(我厂没生产,后面不在讲述)

5、电磁线

用于实现电磁能量的相互转化,用于各种电机、电器、仪表、变压器以及电极磁场发生器中的绕组线圈用。(我厂没生产,后面不在讲述)

第二节电线电缆产品命名和型号按我国的电线电缆的产品型号特编制各种型号的代号及其含义

7

(1)电线电缆产品的导体以铜为主,只采用铜导体的品种数占总数的70%以上;铝导体的用量虽然不小,但集中在电力系统的少数品种。因此,除了裸电线及裸导体制品大类以外,所有线缆产品型号都不标明铜芯的代号T,只有用铝导体的品种在型号中必须加上铝的代号L,以资区别。

(2)有三类产品一般不表明大类代号,即裸导体及裸导体制品类,电力电缆类、电磁线类。

(3)电力电缆、控制电缆,不少产品均有防止各种外力损伤的金属铠装(钢带、钢丝)结构,并与外护层一起组合,通常用数字表示,具体见表格1

(4)第6项的派生是指同一种品种、同一种规格的产品有部分变化。

(5)第5项不做表述

(6)第7项的特征是各种特殊使用场合或附加特殊使用要求的标记,是在型号后面以汉语拼音字母标清。如阻燃(ZR-)

例:我厂所生产的常用裸电线及裸导体制品型号及含义

TY—硬圆铜线LY9—硬圆铝线(第9种)LJ—铝绞线JL/GIA—钢芯铝绞线

TJ—铜绞线

我厂所生产的常用电力电缆制品型号及含义

VV22——铜芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆

VLV22——铝芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆

YJV22——铜芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆YJLV22——铝芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆JKV、YKYJ——铜芯交联聚乙烯绝缘架空电缆

JKLV、YKLYJ——铝芯交联聚乙烯绝缘架空电缆

楼层综合布线用线量计算

教你快速准确的计算综合布线用线量 (1)确定线缆的类型 要根据综合布线系统所包含的应用系统来确定线缆的类型。对于计算机网络和电话语音系统可以优先选择4对双绞线电缆,对于屏蔽要求较高的场合,可选择4对屏蔽双绞线;对于屏蔽要求不高的场合应尽量选择4对非屏蔽双绞线电缆。对于有线电视系统,应选择75Ω的同轴电缆。对于要求传输速高或保密性高的场合,应选择光缆作为水平布线线缆。 (2)确定电缆的长度 要计算整座楼宇的水平布线用线量,首先要计算出每个楼层的用线量,然后对各楼层用线量进行汇总即可。每个楼层用线量的计算公式如下: C=[0.55(F+N)+6]×M 其中,C为每个楼层用线量,F为最远的信息插座离楼层管理间的距离,N为最近的信息插座离楼层管理间的距离,M为每层楼的信息插座的数量,6为端对容差(主要考虑到施工时线缆的损耗、线缆布设长度误差等因素)。 整座楼的用线量:S=ΣMC ,M为楼层数,C为每个楼层用线量。 应用示例:已知某一楼宇共有6层,每层信息点数为20个,每个楼层的最远信息插座离楼层管理间的距离均为60米,每个楼层的最近信息插座离楼层管理间的距离均为10米,请估算出整座楼宇的用线量。 解答:根据题目要求知道: 楼层信息点数M=20 最远点信息插座距管理间的距离F=60m 最近点信息插座距管理间的距离N=10m 因此,每层楼用线量C=[0.55(60+10)+6]×20=890m 整座楼共6层,因此整座楼的用线量S=890×6=5340m (3).订购电缆 目前市场上的双绞线电缆一般都以箱为单位进行订购。常见装箱形式为:305m(1000ft) WE TOTE包装形式。因此在水平子系统设计中,计算出所有水平电缆用线总量后,应换算为箱数,然后进行电缆的订购工作。订购电缆箱数的公式应如下: 订购电缆箱数=INT(总用线量/305) ,INT()为向上取整函数。 例如,已知计算出整座楼的用线量为5340m,则要求订购的电缆箱数为: INT(5340/305)=INT(17.5)=18(箱)

输电电缆综合在线监测预警系统

输电电缆综合在线监测预警系统 【摘要】随着经济社会的快速发展以及人们生活水平的不断提高,城市电力系统也在不断的发展,尤其随着用电需求的增加,电力电缆的供电网络也在不断的扩展。同时这种发展也对电力部门的安全管理提出了巨大的挑战。但是电力电缆的安全影响因素包括各个方面的内容。因此,有必要针对输电电缆建立一套综合在线监测预警系统对电缆的运行进行监测,以便及时的发现电力电缆中存在的问题,消除隐患,将损失降到最低。 【关键词】输电电缆;电缆综合在线监测;预警系统 城市输电电缆运行的管理部门每年都要定期对电缆在沟井内的环境状况以及电缆的运行状态进行巡视检查,尤其是在温度高、大负荷用电季节更要加大巡视力度,运用红外测温设备对对沟井内的电缆接头进行检测监控,并且要采取措施防止井盖的偷窃与破坏。但是这些措施仍然不能及时的掌握电缆的运行以及相关环境状况,并且更不能对其进行预防和监测。因此要建立一个综合在线监测预警系统,对电缆沟(隧道)内的设备运行状况进行实时监控。 1 国内输电电缆综合在线监测预警系统发展现状 目前我国电缆综合在线监测系统在传统形式上主要是有线光纤的形式,利用这种形式的监测系统对沟井内的电缆进行监测时,通常是监测单一的电缆接头温度或者是监测沟井内的气体状态,这种监测项目缺乏针对沟井内综合环境状态的监测。并且有线光纤的安装范围大都局限在一条线路上,无法监测电缆在沟井内的大面积状态,对不在光纤范围内的电缆无法做到有效监控。有线光纤的监测形式不仅投资巨大,而且对监测数据的分析处理以及数据的管理方式都存在很多漏洞,对相关数据的分析比较简单,监测系统服务器的软件落后并且功能单一,监测数据的记录类型单一,并且系统不具有较好的预警功能,进而也就不能根据这些数据对电力电缆在沟井内的实际运行状况进行分析。在这种情况下,急需建立一个完整的输电电缆综合在线监测预警系统,更好的对输电电缆进行监测和预警,从而更好地维护电力的供应。 2 输电电缆综合在线监测预警系统相关内容介绍 2.1 输电电缆综合在线监测预警系统结构 监测预警系统的结构简单来说就是由若干个无线监测装置组成的,这些无线监测装置的主要作用是对电力电缆进行实时的监控。这些无线监测装置都带有数据采集终端,这些数据采集终端对沟井内电缆所处的各个环境参数的相关数据进行自动的采集,并且对采集到的数据进行简单的处理保存后传送到无线监测装置上,各个无线监测装置的数据采集终端将传输上来的数据参数进行打包,然后通过各个装置各有的通信模块在统一时间内发送到电缆监测主站进行最终分析处理。

实用线缆用量计算公式

实用线缆用量计算公式 一、综合布线系统 1 水平子系统,线缆用量计算方法: 电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)每箱线缆布线根数=每箱电缆长度/实际电缆平均长度电缆需要箱数=信息点总数/每箱线缆布线根数注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。上面的“电缆平均长度”计算公式适 应一层或三层设置一个楼层配线间(IDF)的情形。 2 主干子系统 ①铜线缆用量计算方法: 电缆平均长度=(最远IDF距离+最近IDF距离)/2 实际电缆平均长度= 电缆平均长度×1.1+(端接容限,通常取6) 每轴线缆布线根数= 每轴电缆长度/实际电缆平均长度 电缆需要轴数= IDF的总数/每箱线缆布线根数 注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。 大对数电缆对数按照1:2(即1个语音点配置2对双绞线)计算,并分别选择25/50对电缆进行合理设计。100对大对数电缆一般不要选择,因施工较困难。 ②光缆用量计算方法: 光缆平均长度=(最远IDF距离+最近IDF距离)/2 实际光缆平均长度=光缆平均长度×1.1+(端接容限,通常取6) 光缆需要总量=IDF的总数×实际光缆平均长度 注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。 二、安全防范系统 1 电视监控系统

综合布线系统工程量计算规则和说明

综合布线系统工程量计算规则和说明 ——小蚂蚁算量工厂综合布线系统是智能化办公室建设数字化信息系统基础设施,是将所有语音、数据等系统进行统一的规划设计的结构化布线系统,为办公提供信息化、智能化的物质介质,支持将来语音、数据、图文、多媒体等综合应用。是安装工程的一部分,今天小蚂蚁算量工厂为大家总结整理了综合布线系统工程量计算规则,希望大家能用上。 一、工程量计算规则 1.双绞线缆、光缆、漏泄同轴电缆、电话线和广播线敷设、穿放、明布放以"m"计算。电缆敷设单根延长米计算,如一个架上敷设3根各长100m的电缆,应按300m计算,以此类推。电缆附加及预留的长度是电缆敷设长度的组成部分,应计入电缆长度量之内。电缆进入建筑物预留长度2m;电缆进入沟或吊架上引上(下)预留1.5m;电缆中间接头盒。预留长度两端各留2m。 2.制作跳线以"条"计算,卡接双绞线缆以"对"计算,跳线架、配线架安装"条"计算。 3.安装各类信息插座、过线(路)盒、信息插座的底盒(接线盒)、光缆终端盒和跳块打接以"个"计算。 4.双绞线缆测试,以"链路''或"信息点"计算,光纤测试以"链路"或"芯"计算。 5.光纤连接以"芯"(磨制法)以"端口"计算。 6.布放尾纤以"根"计算。 7.室外架设架空光缆以"m"计算。 8.光缆接线以"头"计算。

9.制作光缆成端接头以"套"计算。 10.安装漏泄同轴电缆接头以"个"计算。 11.成套电话组线箱、机柜、机架、抗震底座安装以"台"计算。 12.安装电话出线口、中途箱、电话电缆架空引入装置以"个"计算。 二、说明 1.综合布线包括:双绞线、光缆、漏泄同轴电缆、电话线和广播线的敷设、布放和测试工程。 2.综合布线不包括的内容:钢管、PVC管、桥架、线槽敷设工程、管道工程、杆路工 程、设备基础和埋式光纤的填挖土工程,若发生时执行《电气设备安装工程》和有关土建工程消耗项目。 3.综合布线双绞线布放是按六类以下(含六类)系统编制的,六类以上的布线系统工程所用消耗量的综合工日的用量按增加20%计列: 4.在已建天棚内敷设线缆时,所用消耗量的综合工日的用量按增加80%计列。 三、计算工程量套用消耗量标准时的要点 1.工程造价预算需计算工程量的项目 (1)水平布线系统(包含工作区子系统) 水平线缆种类、数量:目前多用五类、超五类或六类双绞线。 信息模块种类、数量:数量=信息点+语音点。 面板型号、数量:数量:信息点+语音点。 用户区跳线类型、数量:数量=信息点+语音点。 (2)垂直主干布线系统

电力电缆数据采集与分析系统

电力电缆数据采集与分析系统 随着城市化规模扩大建设速度加快,相应的城市附属设施建设同样发展迅速,电力电缆供电网络也得以快速发展,规模庞大的地下供电网络,电缆分布众多,如何发展同时对电力部门电缆安全运行,事故预防亦提出更高要求。 电力电缆安全运行管理设计面较多,具有分布广、相距远、地面环境复杂等特点。如果能够对其实现全天候全面监测,无疑对保障供电及电力安全生产有重大意义。由此立项有针对性监测电缆接头温度及其所处环境(井内沟内有毒气体、可燃气体、积水、井盖盖板防盗)展开研究,设立一套综合性实时数据采集和在线监测系统配合以GIS地理信息系统,已完成实现电力安全生产及现代化管理。 本系统采用无线(GPRS)通信方式在不破坏市政路面情况下,传输所监测数据,并可根据监测要求设定部分数值,辅以GIS地理信息系统准确定位,及时判断故障点并发出预警信息,上位机系统基于.NET平台B/S网络架构,具有数据分析预测功能,方便管理人员网内即时查询,能够满足综合检测管理需求,方便管理。此系统具有可靠性高、覆盖范围广、成本低、方便安装维护等特点。是一套确保地下电缆安全运行的理想系统。 输电电缆运行管理,相关部门每年都投入大量人力物力,对电缆沟井内电缆及环境进行巡视检查。特别是在高温、大负荷季节进行大量巡检工作对井沟内电缆接头进行的红外测温,井盖安全防偷窃防破坏巡视,及井沟内积水、防火观察检测等,但无法实时掌握,进行预防,及时预测。在这种情况下建立一个综合有效地电缆沟井运行状态在线监测平台,对影响运行的重要状态进行实时在线监测。 针对电力部门的应用给出了对沟井电力电缆接头温度、环境温湿度、可燃有毒气体、火灾积水、井盖防窃盗(并可扩展视频监控)、短信报警的综合在线监测系统平台,实现了电缆沟井内环境及运行状态的在线实时监测,对相关运行人员提供了可靠地数字依据,更好的做出运行安排,减轻了劳动强度,为安全运行提供了保障。 目前国内对电缆沟井在线监测系统,在形式上主要以有线光纤为主,监测项目通常为电缆接头温度或沟井可燃气体监测,不能综合监测电缆沟井内多项综合环境因素,并存在有线监测安装范围局限(只在一条线路内)。不能适应电缆多分布监测的需要,投资大,施工难强度大。并对于监测的数据不能分析处理储存,不能预测预警。为有效地评估预测安排相应检修工作带来困难,建设研发新综合监测系统及可靠地数据收发、分

综合布线网线长度的计算公式

计算需要多少线的公式 1、最长的线距+最短的线距)/2=平均值 (平均值+5米)X点数=总长度 总长度/305(标准每箱米数)+2箱=总箱数 2、每个服务需一条4对非屏蔽双绞线电缆或2芯(62.5/125微米多模)光缆; 每个通讯间中水平电缆的总数量=(由通讯间提供服务的工作区的数量)*(每一工作区提供的服务的数量) 工作区水平布线计算: A:最近信息点距离 B:最远信息点距离; C:每层工作区信息点数量

每层所需电缆长度=(A+B)/2*1.1*C 总共所需电缆箱数=各层电缆长总和/305米/箱(电子工业出版社综合布线系统工程设计)3、C=[0。55(F+N)+6]Xn(m) C每个楼层的用线量 F为最远信息插座离配线间的距离 N为最近的信息插座离配线间的距离 n为每层信息插座的数量 简单公式: 1.(最长线距+最短的线距)/2*1.1= 平均线长 平均线长*信息点=需要的线缆总数

线缆总数/305=需要多少箱线 2. 线数:(最长+最短)/2x1.1+2x楼高 箱数:线数x信息点数/305 3. (最远距离+ 最近距离)/ 2 *1.1 + 层高)* 节点数)/ 305 = 线缆箱数 其中:1.1系数是损耗;层高是楼层高度,如果水平线槽走天花板,则必须计算;如果是架空地板可以不计;305是1000英尺换算。 4. 最长的网线和最短网线的平均值X总的点数,然后再加10%的冗余 不按公式的算法: 按公式算线长,以我的经验是一定不准的 但是也没有一定准确方法

在施工的过程里还有不可预测的变动呢 我们国家对八芯双绞线(包括五类,超五类,六类)最长布线距离规定在一百米以内 设计院设计图纸的时候一定也会考虑到 那么一般情况下最短的线应该在十米左右,最长的线在九十米左右(留十米的余量) 平均一下,每根线在五十米左右 如果穿越楼层的话,每根再加个楼层高度就可以了 误差不会太大 最关键还是要看现场情况,以及要熟练看懂图纸,这个是要时间和磨练的 RJ-45头的需求量:m=n*4+n*4*15% m:表示RJ-45接头的总需求量

综合布线线长计算方法

水平子系统订购线缆计算实例 1、平均电缆长度=(最远F+最近N两条电缆总长)÷2 总电缆长度L=(平均电缆长度+备用部分(平均长度的10%)+端接容差(一般设为6 m))×信息总点数楼层用线量L=[0.55(F+N)+6 ]×n n楼层信息点数 总用线量L=?Li i=1,….,m m为总楼层数 此计算方式目前正在项目实施中验证,待查! 2、鉴于双绞线一般按箱订购,每箱305 m(1000英尺,每圈约1 m),而且网络线不容许接续,即每箱零头要浪费,所以 每箱布线根数=(305÷平均电缆长度),并取整 则 所需的总箱数=(总点数÷每箱布线根数),并向上取整 3、计算实例 a) 例题(错误计算) 设有140个信息点。单位走线长度24m,线缆包装305m(1000英尺)一箱,需要多少箱线? 解:24 ×140 = 3360m 3360÷305 = 11 箱 需要11箱电缆 b) 例题(正确计算) 设有140个信息点。单位走线长度24m,线缆包装305m(1000英尺)一箱,需要多少箱线? 解:305 ÷24 = 12.7 每箱12根双绞线(正确取整) 140 ÷12 = 11.6 舍入得12 需要12箱线 2、每个服务需一条4对非屏蔽双绞线电缆或2芯(62.5/125微米多模)光缆; 每个通讯间中水平电缆的总数量=(由通讯间提供服务的工作区的数量)*(每一工作区提供的服务的数量) 工作区水平布线计算: A:最近信息点距离 B:最远信息点距离;

C:每层工作区信息点数量 每层所需电缆长度=(A+B)/2*1.1*C 总共所需电缆箱数=各层电缆长总和/305米/箱 (电子工业出版社综合布线系统工程设计) 3、C=[0。55(F+N)+6]Xn(m) C每个楼层的用线量 F为最远信息插座离配线间的距离 N为最近的信息插座离配线间的距离 n为每层信息插座的数量 简单公式: 1.(最长线距+最短的线距)/2*1.1= 平均线长 平均线长*信息点=需要的线缆总数 线缆总数/305=需要多少箱线 2. 线数:(最长+最短)/2x1.1+2x楼高 箱数:线数x信息点数/305 3. (最远距离+ 最近距离)/ 2 *1.1 + 层高)* 节点数)/ 305 = 线缆箱数 其中:1.1系数是损耗;层高是楼层高度,如果水平线槽走天花板,则必须计算;如果是架空地板可以不计;305是1000英尺换算。 4. 最长的网线和最短网线的平均值X总的点数,然后再加10%的冗余 不按公式的算法: 按公式算线长,以我的经验是一定不准的 但是也没有一定准确方法 在施工的过程里还有不可预测的变动呢 我们国家对八芯双绞线(包括五类,超五类,六类)最长布线距离规定在一百米以内 设计院设计图纸的时候一定也会考虑到 那么一般情况下最短的线应该在十米左右,最长的线在九十米左右(留十米的余量) 平均一下,每根线在五十米左右 如果穿越楼层的话,每根再加个楼层高度就可以了

电缆综合监测系统

EOM4011-GT高压电缆综合在线监测系统 一、产品简介 高压电缆综合在线系统适合安装在110kV及以上电压等级的电缆沟、电缆隧道,或者电缆终端。本系统通过采集和测量电缆的环境温度、接头温度、振动状态、接地线环流,并通过GPRS或光纤的方式,以一定的时间间隔将数据远程传输到计算机后台服务程序,后台服务程序收集数据后建立历史数据文件,并将这些数据绘制成各种曲线,电缆运行维护人员可根据这些曲线提供的信息来了解整条电缆的长期运行状态。高压电缆综合在线监测系统,加入了暂态录波功能,能将故障时刻的波形进行展示回放,提高了故障分析的效率。同时,后台服务程序对采集的电流数据进行处理,能够实现电缆外护套受到多种外力破坏时的自动鉴别和定位,如外力破坏、虫蚁啃噬等。 二、系统说明 l 硬件系统 本系统硬件部分主要由感应取电地电流互感器,主缆电流测量互感器,接地线电流测量互感器、温度传感器、湿度传感器、振动传感器、远程测量单元(RTU)、GSM/GPRS 通讯网络、后台服务器、客户端软件、RTU调试软件,工程调试设备等件部分组成。系统结构如下图所示:

电缆金属护层环流监测系统通过对电缆金属护层环流、电缆表面温度、中间及终端接头振动及中间及终端接头压力进行24小时不间断连续在线监测,并通过与线芯计算温度比较达到环流与线芯电流比值与线芯温度关系的监测。 电缆金属护层环流监测系统应能有效监测电缆金属护层环流是否超标,通过对护层环流变化监测及时发现外力破坏及定位、及时发现虫害破坏及定位。 l 软件系统 本系统软件应用平台基于微软最新的Net Framework 4.0框架开发,可实现电缆状态综合监测、分析和展示,并拥有自主知识产权的电缆外力破坏自动识别、电缆虫蚁啃噬自动识别智能算法。同时,综合分析后台可结合运行维护的需要,进行各种日常运维的统计报表分析,并可进行系统报警准确率修正,极大提高了系统故障报警准确率。主界面如下图:

电缆多状态在线监测系统

ES-2015电缆多状态在线监测系统 一、综述 目前全国大多数电力公司一样,对电力隧道、沟道内主干电缆的管理还处于计划检修阶段,一般采用定期巡视的方法对电缆的运行状况进行检查。从经济角度和技术角度来说,计划检修都有很大的局限性,例如定期试验和检修造成了很大的直接和间接经济浪费,许多绝缘缺陷和潜在的故障无法及时发现。 随着国家电力基础设施投入的逐年增大,电力隧道的长度也正在迅速增加,由于运行维护人员的增长速度远远跟不上电力基础设施的增长速度,致使电力隧道运行工作面临着巨大压力,再者随着城市的加速发展,电力沟道和高压管线的迅速增长,电力负荷的急剧增加,电力公司对隧道的运行维护工作面临着巨大压力。如何保证隧道内电缆不因过载、过热等情况突发大的运行安全事故,隧道内积水、可燃气体等不影响到供电系统的安全等新的要求,想解决当前面临的种种问题,仅靠大量增加运行人员数量来应对电力隧道的迅速增长和管理压力已经不现实,采用现代化的技术手段来提高电力隧道运行维护水平是当务之急。 电力隧道加装水位、气体探测装置,可有效监测到隧道内水位及气体情况,及时发现由于外部跑水至电力隧道内,外部可燃气体进入隧道内等情况。通过水位、气体监测报警,及时发现隐患点所在位置及水位数值、气体成分含量等情况,为及时有效处置提供技术支撑,改善电力隧道运行环境,保证电力隧道及隧道内电力电缆的安全稳定运行有重要意义。 电缆是电缆网发生故障几率较大的设施,分别通过传感器耦合电缆接地线的信号、传感器对电缆接头的局部放电及分布式光纤测温系统对电缆进行监测数据采集,将其采集到的接地电流参量、局部放电参量及电缆温度参量传送到监测中心,对电缆的运行状态进行分析评估,实现电缆运行状态的时时监控,从而为电力部门有效的预防事故灾害的发生提供有力的的保障。 二、总体结构 电力电缆多状态在线监测系统,主要对电缆局部放电、温度、接地电流、有害气体及水位,井盖进行在线监测,将监测信号上传至工业服务器进行处理存储,可实现对各技术监测量进行界面显示,谱图分析,报表打印,数据查询,报警等功能。系统结构图如下:

综合布线线缆长度计算公式

综合布线线缆长度计算公式水平子系统订购线缆计算实例 1、平均电缆长度=(最远F+最近N两条电缆总长)÷2 总电缆长度L=(平均电缆长度+备用部分(平均长度的10%)+端接容差(一般设为6 m))×信息总点数 楼层用线量L=[0.55(F+N)+6 ]×n n楼层信息点数 总用线量L=?Li i=1,….,m m为总楼层数 此计算方式目前正在项目实施中验证,待查! 2、鉴于双绞线一般按箱订购,每箱305 m(1000英尺,每圈约1 m),而且网络线不容许接续,即每箱零头要浪费,所以 每箱布线根数=(305÷平均电缆长度),并取整 则 所需的总箱数=(总点数÷每箱布线根数),并向上取整 3、计算实例 a) 例题(错误计算)

设有140个信息点。单位走线长度24m,线缆包装305m (1000英尺)一箱,需要多少箱线? 解:24 ×140 = 3360m 3360÷ 305 = 11 箱 需要11箱电缆 b) 例题(正确计算) 设有140个信息点。单位走线长度24m,线缆包装305m (1000英尺)一箱,需要多少箱线? 解:305 ÷ 24 = 12.7 每箱12根双绞线(正确取整) 140 ÷ 12 = 11.6 舍入得12 需要12箱线 2、每个服务需一条4对非屏蔽双绞线电缆或2芯(62.5/125微米多模)光缆; 每个通讯间中水平电缆的总数量=(由通讯间提供服务的工作区的数量)*(每一工作区提供的服务的数量)工作区水平布线计算: A:最近信息点距离 B:最远信息点距离;

C:每层工作区信息点数量 每层所需电缆长度=(A+B)/2*1.1*C 总共所需电缆箱数=各层电缆长总和/305米/箱 (电子工业出版社综合布线系统工程设计) 3、C=[0。55(F+N)+6]Xn(m) C每个楼层的用线量 F为最远信息插座离配线间的距离 N为最近的信息插座离配线间的距离 n为每层信息插座的数量 简单公式: 1.(最长线距+最短的线距)/2*1.1= 平均线长 平均线长*信息点=需要的线缆总数 线缆总数/305=需要多少箱线 2. 线数:(最长+最短)/2x1.1+2x楼高 箱数:线数x信息点数/305 3. (最远距离+ 最近距离)/ 2 *1.1 + 层高)* 节点数)/ 305 = 线缆箱数

电缆隧道在线监测系统

电缆隧道监测技术方案 1、项目概况 1.1项目概述 项目名称:**电缆隧道监测工程 项目单位:安徽供电公司 1.2项目任务: 1)电缆本体温度监测及载流量分析 2)电缆隧道环境温度监测 3)电缆隧道内有毒有害气体含量监测 4)电缆隧道内积水水位监测 5)电缆隧道内风机、水泵联动控制 6)局部隧道视频监控 7)本系统设备具有网络通讯传输接口,能将实时监测数据接入电缆隧道综合监测平台 8)后台软件可实现市、区、站三级管理 1.3 建设规模: 本工程电缆线路工程,本期敷设2回220kV电缆线路,电缆截面2500mm2,电缆线路长约4887m。新建电缆构筑物长约4088m(不含顶管、盾构工作井)。 利用已建和在建电缆构筑物长度688m。 1.4 安装环境

2、技术方案 本方案为模块化方案,可根据需要配置2.1-2.6六个子系统及2.8中软件的各个软件包。 2.1分布式电缆温度监测系统 2.1.1概述 采用分布式光纤测温系统(DTS)实时监测电缆的全程表面温度,并能根据电缆的实际电流,电缆本体温度等信息,利用载流量分析软件对电缆的载流能力进行分析和预测,并在温度异常(包括温度过高,温升过快等)时发出报警。测温主机采用6公里8通道主机(本期用3通道,预留5通道),其中2个通道分别用于监测本期2回220kV电缆,另外1个通道用于监测隧道环境温度。 2.1.2系统性能 分布式测温:整根光缆不仅用作信号传输,同时也是温度探测传感器,光缆全程进行温度探测,探测精度可根据需要人为设定。能对测量区域在长度上进行分区,对某些区域进行局部重点监测。 电子显示:实时显示线路导体上的温度监测数据,并可以用图表的形式反映各点温度变化情况。 报警功能:分布式光纤测温系统应具有连续测温功能,能检测电缆温度变化情况,报警值可在软件中设置,每个区域应能设置高温报警、温升过速报警等参数。故障自检:当光缆发生断裂或信号衰减过大时,可以在光缆全长曲线上指示出断点的具体位置,及时报警; 使用寿命:激光器和光开关的寿命可达20年,探测光缆的寿命可达30年。2.1.4 测温主机技术参数

弱电工程项目综合布线估算方法和公式(实用)

弱电工程项目综合布线估算方法和公式(实用) 弱电系统中线缆的计算是一门技术活,不是简单的心算就可以完成的,也有一些基本方法和公式来套用,本篇文章分系统介绍弱电线缆估算方法。 一、综合布线系统1.1 水平子系统,线缆用量计算方法:电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)实际电缆平均长度=电缆平均长度 ×1.1+(端接容限,通常取6)每箱线缆布线根数=每箱电缆长度/实际电缆平均长度电缆需要箱数=信息点总数/每箱线缆 布线根数注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。上面的“电缆平均长度”计算公式适应一层或三层设置一个楼层配线间(IDF)的情形。1.2 主干子系统,铜线缆用量计算方法:电缆平均长度=(最远IDF距离+最近IDF距离)/2实际电缆平均长度= 电缆平均长度×1.1+(端接容限,通常取6)每轴线缆布线根数= 每轴电缆长度/实际电缆平均长度电缆需要轴数= IDF的总数/每箱线缆布线根数注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。大对数电缆对数按照1:2(即1个语音点配置

2对双绞线)计算,并分别选择25/50对电缆进行合理设计。100对大对数电缆一般不要选择,因施工较困难。1.3 主干子系统,光缆用量计算方法:光缆平均长度=(最远IDF距离+最近IDF距离)/2实际光缆平均长度=光缆平均长度 ×1.1+(端接容限,通常取6)光缆需要总量=IDF的总数×实际光缆平均长度注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。 二、有线电视系统2.1 星型布线计算法:此方法定义为:所有的楼层分支分配器集中在弱电间内,从每个用户终端(插座)独立敷设一根射频电缆到相应的弱电间与分支分配器联接。水平部分电缆(通常为RG6),线缆用量计算方法:电缆平均长度=(最远用户终端水平距离+最近用户终端水平距离)/2+2H(H——楼层高度)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取3)电缆需要总数=用户终端总数x实际电缆平均长度(米)注:最远、最近用户终端水平距离是从楼层分配箱到最远、最近终端用户插座的实际距离,包含水平实际路由的距离,若是多层设置一个楼层分配箱则还应包含相应楼层高度。主干电缆(通常为RG11/RG9),线缆用量计算方法:电缆平均长度=(最远楼层分配箱距离+

电缆多状态在线监测系统

电缆多状态在线监测系统 一、综述 目前全国大多数电力公司一样,对电力隧道、沟道内主干电缆的管理还处于计划检修阶段,一般采用定期巡视的方法对电缆的运行状况进行检查。从经济角度和技术角度来说,计划检修都有很大的局限性,例如定期试验和检修造成了很大的直接和间接经济浪费,许多绝缘缺陷和潜在的故障无法及时发现。 随着国家电力基础设施投入的逐年增大,电力隧道的长度也正在迅速增加,由于运行维护人员的增长速度远远跟不上电力基础设施的增长速度,致使电力隧道运行工作面临着巨大压力,再者随着城市的加速发展,电力沟道和高压管线的迅速增长,电力负荷的急剧增加,电力公司对隧道的运行维护工作面临着巨大压力。如何保证隧道内电缆不因过载、过热等情况突发大的运行安全事故,隧道内积水、可燃气体等不影响到供电系统的安全等新的要求,想解决当前面临的种种问题,仅靠大量增加运行人员数量来应对电力隧道的迅速增长和管理压力已经不现实,采用现代化的技术手段来提高电力隧道运行维护水平是当务之急。电力隧道加装水位、气体探测装置,可有效监测到隧道内水位及气体情况,及时发现由于外部跑水至电力隧道内,外部可燃气体进入隧道内等情况。通过水位、气体监测报警,及时发现隐患点所在位置及水位数值、气体成分含量等情况,为及时有效处置提供技术支撑,改善电力隧道运行环境,保证电力隧道及隧道内电力电缆的安全稳定运行有重要意义。 电缆是电缆网发生故障几率较大的设施,分别通过传感器耦合电缆接地线的信号、传感器对电缆接头的局部放电及分布式光纤测温系统对电缆进行监测数据采集,将其采集到的接地电流参量、局部放电参量及电缆温度参量传送到监测中心,对电缆的运行状态进行分析评估,实现电缆运行状态的时时监控,从而为电力部门有效的预防事故灾害的发生提供有力的的保障。 二、总体结构 电力电缆多状态在线监测系统,主要对电缆局部放电、温度、接地电流、有害气体及水位,井盖进行在线监测,将监测信号上传至工业服务器进行处理存储,可实现对各技术监测量进行界面显示,谱图分析,报表打印,数据查询,报警等功能。系统结构图如下:

综合布线线材计算公式

做工程的朋友经常会遇到需要计算线缆的时候,比如工程设计的时候,审计的时候,需要有说服力,下面我把搜集的一些常见的线缆计算公式介绍给大家。 订货总量(总长度M)=所需总长+所需总长*10%+总点数*6 1、平均电缆长度=(最远F+最近N两条电缆总长)÷2 总电缆长度L=(平均电缆长度+备用部分(平均长度的10%)+端接容差(一般设为6 m))×信息总点数 楼层用线量L=[0.55(F+N)+6 ]×n n楼层 信息点数 总用线量L= L i i=1,….,m m为总楼层数 2、鉴于双绞线一般按箱订购,每箱305 m(1000英尺,每圈约1 m),而且网络线不容许接续,即每箱零头要浪费,所以 每箱布线根数=(305÷平均电缆长度),并取整 则 所需的总箱数=(总点数÷每箱布线根数),并向上取整 3、计算实例 a) 例题(错误计算) 设有140个信息点。单位走线长度24m,线缆包装305m(1000英尺)一箱,需要多少箱线? 解:24 ×140 = 3360m 3360÷305 = 11 箱 需要11箱电缆 b) 例题(正确计算) 设有140个信息点。单位走线长度24m,线缆包装305m(1000英尺)一箱,需要多少箱线? 解:305 ÷24 = 12.7 每箱12根双绞线(正确取整) 140 ÷12 = 11.6 舍入得12 需要12箱线 以上例题仅供参考... 管槽线缆容量对照表 1 PVC槽(型号)20*10 24*14 39*19 59*2 2 99*27 99*40 2 五类线(根数) 2 4 9 16 32 48 3 PVC管(型号)ф16 ф20 ф25 ф32 ф40 ф50 4 五类线(根数) 2 3 6 9 1 5 24

综合布线网线长度的计算公式

综合布线网线长度的计算公式 1、根据图纸或现场勘测结果,确定线缆实际走线路由。最好是现勘测能准一点 2、根据线缆实际走线路由计算点位最大长度和最小长度。 3、线缆平均长度计算公式: (最大长度+最小长度)/2*1.1+6 1.1 为余量系目前,局域网中常用到的双绞线一般都是非屏蔽的5类4对(即8根导线)的电缆线。这些双绞线的传输速率都能达到100Mbps。 市场上出售的3类双绞线外层保护胶皮薄,胶皮上标注“ CAT3字样,外包装纸箱上标注有“3 类”字样,售价较低; 5 类双绞线外层保护胶皮厚,胶皮上标注“CAT5字样,外包装纸箱上标注有“5类”字样,售价较高。购买时切勿图便宜而购买劣质 5 类双绞线,这些产品往往只能作为 3 类双绞线使用。 超 5 类双绞线属非屏蔽双绞线。与普通5类双绞线比较,超5类双绞线在传送信号时衰减更小,抗干扰能力更强。在100 M网络中,用户设备的受干扰程度 只有普通 5 类线的1/4 ,是为网络应用提供的理想解决方案。 " 超五类"指的是超五类非屏蔽双绞线(UTP—UnshieldedTwistedPair) 非屏蔽双绞线电缆是由多对双绞线和一个塑料外皮构成。五类是指国际电气 工业协会为双绞线电缆定义的五种不同的质量级别。 超五类非屏蔽双绞线是在对现有五类屏蔽双绞线的部分性能加以改善后出现的电缆,不少性能参数,如近端串扰、衰减串扰比,回波损耗等都有所提高,但其传输带宽仍为100MHz。 超五类双绞线也是采用 4 个绕对和 1 条抗拉线,线对的颜色与五类双绞线完全相同,分别为白橙、橙、白绿、绿、白蓝、蓝、白棕和棕。裸铜线径为0.51mm (线规为24AWG,绝缘线径为0.92mm UTP电缆直径为5mm 超五类双绞线通常只被应用于100Mb/s快速以太网,实现桌面交换机到计算机的连接。如果想以后将网络升级为千兆以太网,那么不妨在水平布线中采用超五类非屏蔽双绞线。超五类非屏蔽双绞线也能提供高达1000Mb/s的传输带宽,但是往往需要借助于价格高昂的特殊设备的支持。 超五类还是六类 " 六类" 是指六类非屏蔽双绞线 六类非屏蔽双绞线的各项参数都有大幅提高,带宽也扩展至250MHz或更高。 六类双绞线在外形上和结构上与五类或超五类双绞线都有一定的差别,不仅增加了绝缘的十字骨架,将双绞线的四对线分别置于十字骨架的四个凹槽内,而且电缆的直径也更粗。 电缆中央的十字骨架随长度的变化而旋转角度,将四对双绞线卡在骨架的凹槽内,保持四对双绞线的相对位置,提高电缆的平衡特性和串扰衰减。另外,保证在安

计算综合布线用线量数目的方法

计算综合布线用线量数目的方法 如何又快又准的计算综合布线的用线量数目?小蚂蚁算量工厂觉得综合布线有时会非常复杂,线路多、杂,给计算者带来很多的麻烦,那有什么秘诀可以提高效率,下面小蚂蚁算量工厂总结一下方法。 一、根据线缆的类型选定 一定要根据综合布线系统所包含的应用系统来确定线缆的类型,对于计算机网络和电话语音系统可以优先选择4对双绞线电缆,对于屏蔽要求较高的场合,可选择4对屏蔽双绞线;对于屏蔽要求不高的场合应尽量选择4对非屏蔽双绞线电缆。对于有线电视系统,应选择75Ω的同轴电缆,对于要求传输速高或保密性高的场合,应选择光缆作为水平布线线缆。 二、确定电缆的长度 要计算整座楼宇的水平布线用线量,首先要计算出每个楼层的用线量,然后对各楼层用线量进行汇总即可,每个楼层用线量的计算公式如下: 三、C=[0.55(F+N)+6]×M 其中,C为每个楼层用线量,F为最远的信息插座离楼层管理间的距离,N为最近的信息插座离楼层管理间的距离,M为每层楼的信息插座的数量,6为端对容差(主要考虑到施工时线缆的损耗、线缆布设长度误差等因素)。 四、整座楼的用线量:S=ΣMC,M为楼层数,C为每个楼层用线

量 1、应用示例:已知某一楼宇共有6层,每层信息点数为20个,每个楼层的最远信息插座离楼层管理间的距离均为60米,每个楼层的最近信息插座离楼层管理间的距离均为10米,请估算出整座楼宇的用线量。 2、问题解答:根据题目要求知道: 楼层数M=20 最远点信息插座距管理间的距离F=60m 最近点信息插座距管理间的距离N=10m 因此,每层楼用线量C=[0.55(60+10)+6]×20=890m 整座楼共6层,因此整座楼的用线量S=890×6=5340m 上面就是小蚂蚁总结的方法,还有案例配合大家理解,希望能帮助到大家,给大家参考下。

线缆的计算公式

1、订货总量(总长度M)=所需总长+所需总长*10%+总点数*6 2、整数用线量(总长度M)=楼层*每层用线量 每层用线量=[0.55*(最远点距离+最近点距离)+6]*楼层信息点数3、总长度=最短信息点长度+最长信息点长度/2*总点数*3.3*1.2 注:得出的长度为英尺 用线箱数计算 用线箱数=总长度(单位米)/305+1

线槽规格品种和线缆铺设 布线系统中除了线缆外,槽管是一个重要的组成部分。可以说,金属槽、PVC槽、金属管、PVC管是综合布线系统的基础性材料。在综合布线系统中使用的线槽主要有以下几件种: ◆金属槽和附件 ◆金属管和附件 ◆PVC塑料槽和附件 ◆PVC塑料管和附件 现叙述如下。 一、金属槽和塑料槽 金属槽由槽底槽盖组成,每根槽一般长度为2M,槽与槽连接时应使用相应尺寸的铁板和螺丝固定。槽的外形如图7-1所示。 图7-1槽的外形 在综合布线系统中一般使用的金属槽的规格有50㎜×100㎜,100㎜×100㎜,100㎜×200㎜,100㎜×300㎜,200㎜×400㎜等多种规格。

塑料槽的外形与图7-1类似,但它品种规格更多,从型号上分有PVC-20系列、PVC-25系列、PVC-25F系列、PVC-30系列、PVC-50系列、PVC-40系列等等。 从规格上分有20㎜×12㎜,25㎜×12.5㎜,25㎜×25㎜,30㎜×15㎜,40㎜×20㎜等等。与PVC槽配套的附件有阳角、阴角、直转角、平三角、顶三角、左三角、右三角、连接头、终端头和接线盒(暗盒、明盒)等。 二、金属管和塑料管 金属管用于分支结构暗埋的线路,它的规格上分有D16,D20,D25,D32,D40,D50,D63,D25,D110,等规格。 在金属管内穿线比线槽布线难度更大一些,在选择金属管时要注意选择管径大一点。一般管内填充物占30%左右,以便于穿线。金属管还有一种是软管(蛇皮管),供不便于弯曲的地方使用。 塑料管在产品中分为两大类,即PE阻燃导管和PVC阻燃导管。 PE阻燃导管是一种塑制半硬导管,按外径分有D16,D20,D25,D32,四种规格。它的外观为白色,具有强度高,而腐蚀,绕性好,内壁光滑等优点,明、暗装穿线兼用。它可以盘为单位,每盘重为25㎏。 PVC阻燃导管是一种以聚氯乙烯树脂为主要原料,国入适量的助剂,经加工设备剂压成型的刚性导管。小管径PVC阻燃际管可在常温下进行弯曲,便于用户使用,按外径分有D16,D20,D25,D32,D40,DD45,D63,D25,和D110等规格。

综合监控系统相关知识

1.1 综合监控系统概述 综合监控系统通过与各地铁相关机电系统接口,实现地铁信息互通、资源共享,达到提升自动化水平,提高地铁的安全性、可靠性和响应性要求的目的。 成都地铁1号线一期工程综合监控系统将深度集成火灾自动报警系统(FAS)、环境与设备监控系统(BAS)、电力监控系统(PSCADA)及隧道火灾探测系统(TFDS)深度集成后,FAS/BAS/PSCADA/TFDS 将以子系统的形式纳入综合监控系统,由本标段统一实施。 1.1.1 综合监控系统 综合监控系统应采用冗余的分层、分布式结构,中央级和车站级采用基于TCP/IP 或UDP/IP 的网络协议,并应采用行之有效的故障隔离和抗干扰措施。 综合监控系统由位于OCC 的中央级综合监控系统(CISCS)、位于各车站的车站综合监控系统(SISCS)、位于车辆段的车辆段综合监控系统(DISCS,同属于站级综合监控系统)以及连接这几部分的主干传输网络构成。 1)硬件构成 综合监控系统从硬件设备配置上分为三层: 中央级综合监控系统(CISCS); 车站级综合监控系统(SISCS); 现场级控制设备(各子系统部分); 2)软件构成 综合监控系统的软件从逻辑上分为三层: 数据接口层 专门用于数据采集和协议转换。 数据处理层 对收集数据进行判断和处理。 人机界面层 用于工作站上显示人机界面,使运营人员完成各种监控和操作。本承包商将按照综合监控系统网络与设备配置的基本要求提供详细设计,应包括以下内容:所选设备配置的方案与案例支持(国内外地铁应用业绩情况) 设备的详细性能指标 设备对软件体系的适应性 对实现主要功能的保障作用 1.1.2 环境与设备监控子系统(BAS) 成都地铁1号线一期工程全线BAS作为子系统完全融入综合监控系统。现场底层 BAS 子系统主要通过过程控制技术,对地铁通风空调等机电设施按设置功能、系统运行工况和地铁环境标准等要求进行监测、控制和科学管理,并能配合综合监控系统下的火灾报警子系统、 PSCADA 子系统等为地铁线路创造舒适、安全可靠的乘车环境,并达到节能的目的。

综合布线线缆计算公式

综合布线线缆长度计算公式 水平子系统订购线缆计算实例 1、平均电缆长度=(最远 F+最近 N 两条电缆总长)÷2 总电缆长度L=(平均电缆长度+备用部分(平均长度的10%)+端接容差(一般设为6 m))×信息总点数 楼层用线量L=[0.55(F+N)+6 ]×n n 楼层信息点数 总用线量L=?Li i=1,….,m m为总楼层数 此计算方式目前正在项目实施中验证,待查! 2、鉴于双绞线一般按箱订购,每箱 305 m(1000 英尺,每圈约 1 m),而且网络线不容许接续,即每箱零头要浪费,所以 每箱布线根数=(305÷平均电缆长度),并取整 则 所需的总箱数=(总点数÷每箱布线根数),并向上取整 3、计算实例 a) 例题(错误计算) 1 设有 140 个信息点。单位走线长度 24m,线缆包装 305m(1000 英尺)一箱,需要多少箱线? 解:24 ×140 = 3360m 3360÷ 305 = 11 箱 需要11箱电缆

b) 例题(正确计算) 设有140个信息点。单位走线长度24m,线缆包装305m(1000英尺)一箱,需要多少箱线? 解:305 ÷ 24 = 12.7 每箱12根双绞线(正确取整) 140 ÷ 12 = 11.6 舍入得 12 需要12箱线 2、每个服务需一条 4 对非屏蔽双绞线电缆或 2 芯(62.5/125 微米多模)光缆; 每个通讯间中水平电缆的总数量=(由通讯间提供服务的工作区的数量)*(每一工作区提供的服务的数量) 工作区水平布线计算: A:最近信息点距离 B:最远信息点距离; C:每层工作区信息点数量 每层所需电缆长度=(A+B)/2*1.1*C 总共所需电缆箱数=各层电缆长总和/305米/箱 (电子工业出版社综合布线系统工程设计) 3、C=[0。55(F+N)+6]Xn(m) C 每个楼层的用线量 F 为最远信息插座离配线间的距离 N 为最近的信息插座离配线间的距离 n 为每层信息插座的数量

地下电缆综合在线监测

地下电缆综合在线监测预警系统应用 (技术支持*** ASTONE电气公司)2011.10 摘要: 随着城市化规模扩大建设速度加快,相应的城市附属设施建设同样发展迅速,电力电缆供电网络也得以快速发展,规模庞大的地下供电网络,电缆分布众多,如何发展同时对电力部门电缆安全运行,事故预防亦提出更高要求。 电力电缆安全运行管理设计面较多,具有分布广、相距远、地面环境复杂等特点。如果能够对其实现全天候全面监测,无疑对保障供电及电力安全生产有重大意义。由此立项有针对性监测电缆接头温度及其所处环境(井内沟内有毒气体、可燃气体、积水、井盖盖板防盗)展开研究,设立一套综合性实时数据采集和在线监测系统配合以GIS地理信息系统,已完成实现电力安全生产及现代化管理。 本系统采用无线(GPRS)通信方式在不破坏市政路面情况下,传输所监测数据,并可根据监测要求设定部分数值,辅以GIS地理信息系统准确定位,及时判断故障点并发出预警信息,上位机系统基于.NET平台B/S网络架构,具有数据分析预测功能,方便管理人员网内即时查询,能够满足综合检测管理需求,方便管理。此系统具有可靠性高、覆盖范围广、成本低、方便安装维护等特点。是一套确保地下电缆安全运行的理想系统。关键词GPRS在线监测,电缆接头温度,GIS电缆沟井 正文 输电电缆运行管理,相关部门每年都投入大量人力物力,对电缆沟井内电缆及环境进行巡视检查。特别是在高温、大负荷季节进行大量巡检工作对井沟内电缆接头进行的红外测温,井盖安全防偷窃防破坏巡视,及井沟内积水、防火观察检测等,但无法实时掌握,进行预防,及时预测。在这种情况下建立一个综合有效地电缆沟井运行状态在线监测平台,对影响运行的重要状态进行实时在线监测。 针对电力部门的应用给出了对沟井电力电缆接头温度、环境温湿度、可燃有毒气体、火灾积水、井盖防窃盗(并可扩展视频监控)、短信报警的综合在线监测系统平台,实现了电缆沟井内环境及运行状态的在线实时监测,对相关运行人员提供了可靠地数字依

相关文档
相关文档 最新文档